NCERT Solutions for Class 7 Maths Chapter 4: Students can use Simple Equations to help them with their homework and exam preparation. We have developed NCERT Solutions for Class 7 Maths Chapter 4 step-by-step solutions with thorough descriptions for students who are anxious about tackling NCERT Solutions for Class 7 Maths Chapter 4. We advise students who want to improve their math grades to review these NCERT Solutions for Class 7 Maths Chapter 4 and broaden their understanding.

NCERT Solutions for Class 7 Maths Chapter 4

Below we have provided NCERT Solutions for Class 7 Maths Chapter 4 for students to help them understand the poem better and to score good marks in their examination.

Exercise 4.1 Page: 81

1. Complete the last column of the table.

S. No.	Equation	Value	Say whether the equation is satisfied. (Yes/No)
(i)	x + 3 = 0	x = 3	
(ii)	x + 3 = 0	x = 0	
(iii)	x + 3 = 0	x = -3	
(iv)	x – 7 = 1	x = 7	
(v)	x – 7 = 1	x = 8	
(vi)	5x = 25	x = 0	
(vii)	5x = 25	x = 5	
(viii)	5x = 25	x = -5	
(ix)	(m/3) = 2	m = - 6	
(x)	(m/3) = 2	m = 0	
(xi)	(m/3) = 2	m = 6	

Solution:

(i)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = 3

Then,

LHS =
$$3 + 3 = 6$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

(ii)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = 0,

Then,

LHS =
$$0 + 3 = 3$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

(iii)
$$x + 3 = 0$$

$$LHS = x + 3$$

By substituting the value of x = -3,

Then,

LHS =
$$-3 + 3 = 0$$

By comparing LHS and RHS,

LHS = RHS

∴ Yes, the equation is satisfied.

(iv)
$$x - 7 = 1$$

$$LHS = x - 7$$

By substituting the value of x = 7,

Then,

LHS =
$$7 - 7 = 0$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

$$(v) x - 7 = 1$$

$$LHS = x - 7$$

By substituting the value of x = 8,

Then,

LHS =
$$8 - 7 = 1$$

By comparing LHS and RHS,

LHS = RHS

∴ Yes, the equation is satisfied.

$$(vi) 5x = 25$$

$$LHS = 5x$$

By substituting the value of x = 0,

Then,

$$LHS = 5 \times 0 = 0$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

$$(vii) 5x = 25$$

$$LHS = 5x$$

By substituting the value of x = 5,

Then,

LHS =
$$5 \times 5 = 25$$

By comparing LHS and RHS,

∴ Yes, the equation is satisfied.

$$(viii)$$
 5x = 25

$$LHS = 5x$$

By substituting the value of x = -5,

Then,

LHS =
$$5 \times (-5) = -25$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

$$(ix) m/3 = 2$$

$$LHS = m/3$$

By substituting the value of m = -6,

Then,

LHS =
$$-6/3 = -2$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

$$(x) m/3 = 2$$

$$LHS = m/3$$

By substituting the value of m = 0,

Then,

LHS =
$$0/3 = 0$$

By comparing LHS and RHS,

LHS ≠ RHS

∴ No, the equation is not satisfied.

$$(xi) m/3 = 2$$

LHS = m/3

By substituting the value of m = 6,

Then,

LHS = 6/3 = 2

By comparing LHS and RHS,

LHS = RHS

∴ Yes, the equation is satisfied.

S. No.	Equation	Value	Say whether the equation is satisfied. (Yes/No)
(i)	x + 3 = 0	x = 3	No
(ii)	x + 3 = 0	x = 0	No
(iii)	x + 3 = 0	x = -3	Yes
(iv)	x - 7 = 1	x = 7	No
(v)	x - 7 = 1	x = 8	Yes
(vi)	5x = 25	x = 0	No
(vii)	5x = 25	x = 5	Yes
(viii)	5x = 25	x = -5	No
(ix)	(m/3) = 2	m = -6	No
(x)	(m/3) = 2	m = 0	No
(xi)	(m/3) = 2	m = 6	Yes

2. Check whether the value given in the brackets is a solution to the given equation or not.

(a)
$$n + 5 = 19 (n = 1)$$

Solution:

LHS = n + 5

By substituting the value of n = 1, Then, LHS = n + 5= 1 + 5 = 6 By comparing LHS and RHS, 6 ≠ 19 LHS ≠ RHS Hence, the value of n = 1 is not a solution to the given equation n + 5 = 19. (b) 7n + 5 = 19 (n = -2)Solution: LHS = 7n + 5By substituting the value of n = -2, Then, LHS = 7n + 5 $= (7 \times (-2)) + 5$ = -14 + 5= - 9 By comparing LHS and RHS, -9 ≠ 19 LHS ≠ RHS Hence, the value of n = -2 is not a solution to the given equation 7n + 5 = 19. (c) 7n + 5 = 19 (n = 2)Solution: LHS = 7n + 5

By substituting the value of n = 2,

Then,

$$LHS = 7n + 5$$

$$= (7 \times (2)) + 5$$

= 19

By comparing LHS and RHS,

LHS = RHS

Hence, the value of n = 2 is a solution to the given equation 7n + 5 = 19.

(d)
$$4p - 3 = 13 (p = 1)$$

Solution:

$$LHS = 4p - 3$$

By substituting the value of p = 1,

Then,

$$LHS = 4p - 3$$

$$= (4 \times 1) - 3$$

$$= 4 - 3$$

= 1

By comparing LHS and RHS,

1 ≠ 13

LHS ≠ RHS

Hence, the value of p = 1 is not a solution to the given equation 4p - 3 = 13.

(e)
$$4p - 3 = 13$$
 (p = -4)

Solution:

$$LHS = 4p - 3$$

By substituting the value of p = -4,

Then, LHS = 4p - 3 $= (4 \times (-4)) - 3$ = -16 - 3 = -19 By comparing LHS and RHS, -19 ≠ 13 LHS ≠ RHS Hence, the value of p = -4 is not a solution to the given equation 4p - 3 = 13. (f) 4p - 3 = 13 (p = 0) Solution: LHS = 4p - 3By substituting the value of p = 0, Then, LHS = 4p - 3 $= (4 \times 0) - 3$ = 0 - 3= -3 By comparing LHS and RHS, $-3 \neq 13$ LHS ≠ RHS Hence, the value of p = 0 is not a solution to the given equation 4p - 3 = 13. 3. Solve the following equations by trial and error method. (i) 5p + 2 = 17

Solution:

LHS = 5p + 2

By substituting the value of p = 0, Then, LHS = 5p + 2 $= (5 \times 0) + 2$ = 0 + 2= 2 By comparing LHS and RHS, 2 ≠ 17 LHS ≠ RHS Hence, the value of p = 0 is not a solution to the given equation. Let, p = 1LHS = 5p + 2 $= (5 \times 1) + 2$ = 5 + 2 = 7 By comparing LHS and RHS, 7 ≠ 17 LHS ≠ RHS Hence, the value of p = 1 is not a solution to the given equation. Let, p = 2LHS = 5p + 2 $= (5 \times 2) + 2$ = 10 + 2= 12

12 ≠ 17

By comparing LHS and RHS,

LHS ≠ RHS

Hence, the value of p = 2 is not a solution to the given equation.

Let, p = 3

LHS = 5p + 2

 $= (5 \times 3) + 2$

= 15 + 2

= 17

By comparing LHS and RHS,

17 = 17

LHS = RHS

Hence, the value of p = 3 is a solution to the given equation.

(ii) 3m - 14 = 4

Solution:

LHS = 3m - 14

By substituting the value of m = 3,

Then,

LHS = 3m - 14

 $= (3 \times 3) - 14$

= 9 – 14

= - 5

By comparing LHS and RHS,

-5 ≠ 4

LHS ≠ RHS

Hence, the value of m = 3 is not a solution to the given equation.

Let, m = 4

LHS = 3m - 14

$$= (3 \times 4) - 14$$

By comparing LHS and RHS,

-2 ≠ 4

LHS ≠ RHS

Hence, the value of m = 4 is not a solution to the given equation.

Let, m = 5

$$LHS = 3m - 14$$

$$= (3 \times 5) - 14$$

= 1

By comparing LHS and RHS,

1 ≠ 4

LHS ≠ RHS

Hence, the value of m = 5 is not a solution to the given equation.

Let, m = 6

$$LHS = 3m - 14$$

$$= (3 \times 6) - 14$$

= 4

By comparing LHS and RHS,

4 = 4

LHS = RHS

Hence, the value of m = 6 is a solution to the given equation.

4. Write equations for the following statements.

(i) The sum of numbers x and 4 is 9.

Solution:

The above statement can be written in the equation form as,

= x + 4 = 9

(ii) 2 subtracted from y is 8.

Solution:

The above statement can be written in the equation form as,

= y - 2 = 8

(iii) Ten times a is 70.

Solution:

The above statement can be written in the equation form as,

= 10a = 70

(iv) The number b divided by 5 gives 6.

Solution:

The above statement can be written in the equation form as,

= (b/5) = 6

(v) Three-fourths of t is 15.

Solution:

The above statement can be written in the equation form as,

 $= \frac{3}{4}t = 15$

(vi) Seven times m plus 7 gets you 77.

Solution:

The above statement can be written in the equation form as,

Seven times m is 7m.

= 7m + 7 = 77

(vii) One-fourth of a number x minus 4 gives 4.

Solution:

The above statement can be written in the equation form as,

One-fourth of a number x is x/4.

$$= x/4 - 4 = 4$$

(viii) If you take away 6 from 6 times y, you get 60.

Solution:

The above statement can be written in the equation form as,

6 times y is 6y.

$$= 6y - 6 = 60$$

(ix) If you add 3 to one-third of z, you get 30.

Solution:

The above statement can be written in the equation form as,

One-third of z is z/3.

$$= 3 + z/3 = 30$$

5. Write the following equations in statement forms.

(i)
$$p + 4 = 15$$

Solution:

The sum of numbers p and 4 is 15.

(ii)
$$m - 7 = 3$$

Solution:

7 subtracted from m is 3.

(iii)
$$2m = 7$$

Solution:

Twice of number m is 7.

(iv)
$$m/5 = 3$$

Sal	ution	•
OO.	ation	=

The number m divided by 5 gives 3.

$$(v) (3m)/5 = 6$$

Solution:

Three-fifth of m is 6.

(vi)
$$3p + 4 = 25$$

Solution:

Three times p plus 4 gives you 25.

(vii)
$$4p - 2 = 18$$

Solution:

Four times p minus 2 gives you 18.

(viii)
$$p/2 + 2 = 8$$

Solution:

If you add half of a number p to 2, you get 8.

- 6. Set up an equation in the following cases.
- (i) Irfan says that he has 7 marbles, more than five times the marbles Parmit has. Irfan has 37 marbles (Take m to be the number of Parmit's marbles).

Solution:

From the question, it is given that

Number of Parmit's marbles = m

Then,

Irfan has 7 marbles, more than five times the marbles Parmit has.

= 5 × Number of Parmit's marbles + 7 = Total number of marbles Irfan having

$$= (5 \times m) + 7 = 37$$

$$= 5m + 7 = 37$$

(ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age (Take Laxmi's age to be y years).

Solution:

From the question, it is given that

Let Laxmi's age be = y years old

Then,

Lakshmi's father is 4 years older than three times her age.

= 3 × Laxmi's age + 4 = Age of Lakshmi's father

$$= (3 \times y) + 4 = 49$$

$$= 3v + 4 = 49$$

(iii) The teacher tells the class that the highest marks obtained by a student in her class are twice the lowest marks plus 7. The highest score is 87 (Take the lowest score to be I).

Solution:

From the question, it is given that

Highest score in the class = 87

Let the lowest score be I.

= 2 × Lowest score + 7 = Highest score in the class

$$= (2 \times I) + 7 = 87$$

$$= 21 + 7 = 87$$

(iv) In an isosceles triangle, the vertex angle is twice either base angle (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Solution:

From the question, it is given that

We know that the sum of angles of a triangle is 180°

Let the base angle be b.

Then,

Vertex angle = 2 × base angle = 2b

$$= b + b + 2b = 180^{\circ}$$

$$= 4b = 180^{\circ}$$