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Exercise 1.1

Question 1: Is zero a rational number? Can you write it in the form p/q, where p and q are
integers and q ≠ 0?

Solution:

Yes, zero is a rational number.

It can be written in p/q form, provided that q ≠ 0.

For example, 0/1 or 0/3 or 0/4 etc.



Question 2: Find five rational numbers between 1 and 2.

Solution:

We know that one rational number between two numbers m and n = (m+n)/2

To find: 5 rational numbers between 1 and 2

Step 1: Rational number between 1 and 2

= (1+2)/2

= 3/2

Step 2: Rational number between 1 and 3/2

= (1+3/2)/2

= 5/4

Step 3: Rational number between 1 and 5/4

= (1+5/4)/2

= 9/8

Step 4: Rational number between 3/2 and 2

= 1/2 [(3/2) + 2)]

= 7/4

Step 5: Rational number between 7/4 and 2

= 1/2 [7/4 + 2]

= 15/8

Arrange all the results: 1 < 9/8 < 5/4 < 3/2 < 7/4 < 15/8 < 2

Therefore required integers are, 9/8, 5/4, 3/2, 7/4, 15/8

Question 3: Find six rational numbers between 3 and 4.

Solution:

Steps to find n rational numbers between any two numbers:



Step 1: Multiply and divide both the numbers by n+1.

In this example, we have to find 6 rational numbers between 3 and 4. Here n = 6

Multiply 3 and 4 by 7

3 x 7/7 = 21/7 and

4 x 7/7 = 28/7

Step 2: Choose 6 numbers between 21/7 and 28/7

3 = 21/7 < 22/7 < 23/7 < 24/7 < 25/7 < 26/7 < 27/7 < 28/7 = 4

Therefore, 6 rational numbers between 3 and 4 are

22/7, 23/7, 24/7, 25/7, 26/7, 27/7

Question 4: Find five rational numbers between 3/5 and 4/5.

Solution:

Steps to find n rational numbers between any two numbers:

Step 1: Multiply and divide both the numbers by n+1.

In this example, we have to find 5 rational numbers between 3/5 and 4/5. Here n = 5

Multiply 3/5 and 4/5 by 6

3/5 x 6/6 = 18/30 and

4/5 x 6/6 = 24/30

Step 2: Choose 5 numbers between 18/30 and 24/30

3/5 = 18/30 < 19/30 < 20/30 < 21/30 < 22/30 < 23/30 < 24/30 = 4/5

Therefore, 5 rational numbers between 3/5 and 4/5 are

19/30, 20/30, 21/30, 22/30, 23/30

Question 5: Are the following statements true or false? Give reasons for your answer.

(i) Every whole number is a natural number.

(ii) Every integer is a rational number.



(iii) Every rational number is an integer.

(iv) Every natural number is a whole number,

(v) Every integer is a whole number.

(vi) Every rational number is a whole number.

Solution:

(i) False.

Reason: As 0 is not a natural number.

(ii) True.

(iii) False.

Reason: Numbers such as 1/2, 3/2, and 5/3 are rational numbers but not integers.

(iv) True.

(v) False.

Reason: Negative numbers are not whole numbers.

(vi) False.

Reason: Proper fractions are not whole numbers.

Exercise 1.2

Question 1: Express the following rational numbers as decimals.
(i) 42/100 (ii) 327/500 (iii) 15/4

Solution:





Question 2: Express the following rational numbers as decimals.
(i) 2/3 (ii) -4/9 (iii) -2/15 (iv) -22/13 (v) 437/999 (vi) 33/26
Solution:

(i) Divide 2/3 using long division:

(ii) Divide using long division: -4/9



(iii) Divide using long division: -2/15

(iv) Divide using long division: -22/13



(v) Divide using long division: 437/999



(vi) Divide using long division: 33/26

Exercise 1.3

Question 1: Express each of the following decimals in the form p/q:

(i) 0.39

(ii) 0.750

(iii) 2.15

(iv) 7.010

(v) 9.90

(vi) 1.0001

Solution:

(i)

0.39 = 39/100

(ii)



0.750 = 750/1000 = 3/4

(iii)

2.15 = 215/100 = 43/20

(iv)

7.010 = 7010/1000 = 701/100

(v)

9.90 = 990/100 = 99/10

(vi)

1.0001 = 10001/10000

Question 2: Express each of the following decimals in the form p/q:

Solution:

(i) Let x = 0.4̅

or x = 0.4̅ = 0.444 …. (1)

Multiplying both sides by 10

10x = 4.444 …..(2)

Subtract (1) by (2), and we get

10x – x = 4.444… – 0.444…

9x = 4

x = 4/9

=> 0.4̅ = 4.9



(ii) Let x = 0.3737.. …. (1)

Multiplying both sides by 100

100x = 37.37… …..(2)

Subtract (1) from (2), and we get

100x – x = 37.37… – 0.3737…

100x – x = 37

99x = 37

x = 37/99

(iii) Let x = 0.5454… (1)

Multiplying both sides by 100

100x = 54.5454…. (2)

Subtract (1) from (2), and we get

100x – x = 54.5454…. – 0.5454….

99x = 54

x = 54/99

(iv) Let x = 0.621621… (1)

Multiplying both sides by 1000

1000x = 621.621621…. (2)

Subtract (1) from (2), and we get

1000x – x = 621.621621…. – 0.621621….

999x = 621

x = 621/999

or x = 23/37

(v) Let x = 125.3333…. (1)



Multiplying both sides by 10

10x = 1253.3333…. (2)

Subtract (1) from (2), and we get

10x – x = 1253.3333…. – 125.3333….

9x = 1128

or x = 1128/9

or x = 376/3

(vi) Let x = 4.7777…. (1)

Multiplying both sides by 10

10x = 47.7777…. (2)

Subtract (1) from (2), and we get

10x – x = 47.7777…. – 4.7777….

9x = 43

x = 43/9

(vii) Let x = 0.47777….

Multiplying both sides by 10

10x = 4.7777…. …(1)

Multiplying both sides by 100

100x = 47.7777…. (2)

Subtract (1) from (2), and we get

100x – 10x = 47.7777…. – 4.7777…

90x = 43

x = 43/90

Exercise 1.4



Question 1: Define an irrational number.

Solution:

A number which cannot be expressed in the form of p/q, where p and q are integers and q ≠ 0. It
is a non-terminating or non-repeating decimal.

Question 2: Explain how irrational numbers differ from rational numbers.

Solution:

An irrational number is a real number which can be written as a decimal but not as a fraction i.e.
it cannot be expressed as a ratio of integers.

It cannot be expressed as terminating or repeating decimals.

For example, √2 is an irrational number

A rational number is a real number which can be written as a fraction, and as a decimal i.e. it
can be expressed as a ratio of integers.

It can be expressed as a terminating or repeating decimal.

For example, 0.10 and 5/3 are rational numbers

Question 3: Examine whether the following numbers are rational or irrational:

Solution:

(i) √7

Not a perfect square root, so it is an irrational number.

(ii) √4



A perfect square root of 2.

We can express 2 in the form of 2/1, so it is a rational number.

(iii) 2 + √3

Here, 2 is a rational number, but √3 is an irrational number.

Therefore, the sum of a rational and irrational number is an irrational number.

(iv) √3 + √2

√3 is not a perfect square, thus an irrational number.

√2 is not a perfect square, thus an irrational number.

Therefore, the sum of √2 and √3 gives an irrational number.

(v) √3 + √5

√3 is not a perfect square, and hence, it is an irrational number

Similarly, √5 is not a perfect square, and it is an irrational number.

Since the sum of two irrational numbers is an irrational number, √3 + √5 is an irrational number.

(vi) (√2 – 2)2

(√2 – 2)2 = 2 + 4 – 4 √2

= 6 – 4 √2

Here, 6 is a rational number but 4√2 is an irrational number.

Since the sum of a rational and an irrational number is an irrational number, (√2 – 2)2 is an
irrational number.

(vii) (2 – √2)(2 + √2)

We can write the given expression as;

(2 – √2)(2 + √2) = ((2)2 − (√2)2)

[Since, (a + b)(a – b) = a2 – b2]

= 4 – 2 = 2 or 2/1

Since 2 is a rational number, (2 – √2)(2 + √2) is a rational number.



(viii) (√3 + √2)2

We can write the given expression as;

(√3 + √2)2 = (√3)2 + (√2)2 + 2√3 x √2

= 3 + 2 + 2√6

= 5 + 2√6

[using identity, (a+b)2 = a2 + 2ab + b2]

Since the sum of a rational number and an irrational number is an irrational number, (√3 + √2)2

is an irrational number.

(ix) √5 – 2

√5 is an irrational number, whereas 2 is a rational number.

The difference of an irrational number and a rational number is an irrational number.

Therefore, √5 – 2 is an irrational number.

(x) √23

Since, √23 = 4.795831352331…

As the decimal expansion of this number is non-terminating and non-recurring, it is an irrational
number.

(xi) √225

√225 = 15 or 15/1

√225 is a rational number as it can be represented in the form of p/q, and q is not equal to zero.

(xii) 0.3796

As the decimal expansion of the given number is terminating, it is a rational number.

(xiii) 7.478478……

As the decimal expansion of this number is a non-terminating recurring decimal, it is a rational
number.

(xiv) 1.101001000100001……



As the decimal expansion of the given number is non-terminating and non-recurring, it is an
irrational number.

Question 4: Identify the following as rational or irrational numbers. Give the decimal
representation of rational numbers:

Solution:

(i) √4

√4 = 2, which can be written in the form of a/b. Therefore, it is a rational number.

Its decimal representation is 2.0.

(ii) 3√18

3√18 = 9√2

Since the product of a rational and an irrational number is an irrational number.

Therefore, 3√18 is an irrational number.

Or 3 × √18 is an irrational number.

(iii) √1.44

√1.44 = 1.2

Since every terminating decimal is a rational number, √1.44 is a rational number.

And its decimal representation is 1.2.

(iv) √9/27

√9/27 = 1/√3

Since the quotient of a rational and an irrational number is irrational numbers, √9/27 is an
irrational number.

(v) – √64

– √64 = – 8 or – 8/1



Therefore, – √64 is a rational number.

Its decimal representation is –8.0.

(vi) √100

√100 = 10

Since 10 can be expressed in the form of a/b, such as 10/1, √100 is a rational number.

And its decimal representation is 10.0.

Question 5: In the following equation, find which variables x, y, z etc. represent rational
or irrational numbers:

Solution:

(i) x2 = 5

Taking square root on both sides,

x = √5

√5 is not a perfect square root, so it is an irrational number.

(ii) y2 = 9

y2 = 9

or y = 3

3 can be expressed in the form of a/b, such as 3/1, so it is a rational number.

(iii) z2 = 0.04



z2 = 0.04

Taking square root on both sides, we get

z = 0.2

0.2 can be expressed in the form of a/b, such as 2/10, so it is a rational number.

(iv) u2 = 17/4

Taking square root on both sides, we get

u = √17/2

Since the quotient of an irrational and a rational number is irrational, u is an Irrational number.

(v) v2 = 3

Taking square root on both sides, we get

v = √3

Since √3 is not a perfect square root, so v is an irrational number.

(vi) w2 = 27

Taking square root on both sides, we get

w = 3√3

Since the product of a rational and irrational is an irrational number, w is an irrational number.

(vii) t2 = 0.4

Taking square root on both sides, we get

t = √(4/10)

t = 2/√10

Since the quotient of a rational and an irrational number is an irrational number, t is an irrational
number.


