

JEEMAIN 2024

ATTEMPT - 01, 27TH JAN 2024, SHIFT - 02

PAPER DISCUSSION

PHYSICS

Does kinetic friction and static friction depend on surface of contact and material of surface

- Only on surface
- Only on material В
- both material on surface If only surface native is mentioned C
- None of these

Assertion: angular velocity of moon revolving about earth is more than angular velocity of earth revolving around Sun.

Reason: Time taken by moon to revolve around earth is less than time taken by earth to revolve around sun.

- Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
- Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
- Assertion (A) is true and Reason (R) is false. C
- Assertion (A) is false and Reason (R) D

JEE MAIN 2024 DIVEO PAPER DISCUSSION

A pendulum is given velocity such that it acceleration at mean and extreme position are same, then find maximum angle of deflection.

$$\frac{1}{R} = \frac{1}{R} = \frac{1}$$

$$\frac{2H}{R} = Sin\theta$$

$$\frac{2(R-R\cos\theta)}{R} = Sin\theta$$

$$Sin(0+tan^{-1}2) = \frac{2}{\sqrt{5}} + \frac{9}{\sqrt{5}} = \frac{2in^{-1}2}{\sqrt{5}} + tan^{-1}2$$

A bullet gets embedded in a fixed target. It is found that bullet losses 1/3rd of its velocity in traveling 4 cm into target and losses remaining kinetic energy while traveling further $d \times 10-3$ m. Find d.

$$\frac{2\sqrt{3}}{3}^{2} - \sqrt{3}^{2} = 2(-\alpha) \cdot (4 \times 10^{-2}) \Rightarrow 7 + \frac{5\sqrt{3}}{9} = 7 + 80 \times 10^{-2}$$

$$(2\sqrt{3})^{2} - \sqrt{3}^{2} = 2(7\alpha) \cdot (4 \times 10^{-2}) \Rightarrow 7 + \frac{5\sqrt{3}}{9} = \frac{8\alpha \times 10^{-2}}{5}$$

$$0^{2} + (2\sqrt{3})^{2} = 2(7\alpha) \cdot (4 \times 10^{-2}) \Rightarrow 7 + \frac{2\sqrt{3}}{9} = \frac{8\alpha \times 10^{-2}}{5}$$

$$\frac{4\sqrt{3}}{9} = 2\alpha \times d \times 10^{-3} \Rightarrow 4 \times \frac{84}{5} \times 10^{-2} = 24 d \times 10^{-3}$$

$$\frac{4\sqrt{3}}{9} = 2\alpha \times d \times 10^{-3} \Rightarrow 4 \times \frac{84}{5} \times 10^{-2} = 24 d \times 10^{-3}$$

$$\frac{4\sqrt{3}}{9} = 2\alpha \times d \times 10^{-3} \Rightarrow \frac{2}{5} \times \frac{16}{5} \times \frac{16$$

A person is standing on horizontal ground. A rod of mass 12 kg is touching a shoulder of person and other end is resting on ground. Angle made by rod with horizontal is 60°. Reaction force applied by person on

rod is

Between two polaroid placed in crossed position, a third polaroid is introduced. By what angle (in degree) the introduced polaroid placed should be rotated to get maximum intensity of the out coming light.

A particle covers 80 m is last 2 s from A to b in free fall then distance of A from

Starting point is:

$$S = \sqrt{avg} \times t$$

$$80 = \left[\frac{y + (y - 20)}{x}\right] \times x$$

Find total kinetic energy of 1 mole of oxygen gas at 27° C (take R = 25/3 J/(mol – K)

$$\int = \frac{nfRT}{2} = \frac{1 \times 5 \times 25 \times 3/60}{2/ \times 3/}$$

3125 J

= 25×25×10

12500 J

= 6250 J

625 J

If the work function of a metal is 6.68 eV, then find the threshold frequency

$$1.6 \times 10^{15} \, \text{Hz}$$

$$1.2 \times 10^{15} \,\mathrm{Hz}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{6.68 \text{ g/s}}{4.14 \times 10^{-15} \text{ eV.} \text{ s}}$$

$$= \frac{4.14 \times 10^{-15} \text{ eV.} \text{ s}}{1.6 \times 10^{-15} \text{ Hz.}}$$

If $\left(p - \frac{a}{v^2}\right)(V - b) = nRT$ where P, V, R&T are pressure, volume, universal gas constant and temperature, then $\left(\frac{a}{b^2}\right)$ has same dimensional formula as that of

$$[P] = [a] \Rightarrow [a] = [Pv']$$

$$[ML'T-2][L']$$

$$\begin{bmatrix} a \\ b^2 \end{bmatrix} = \begin{bmatrix} ML^5T^{-2} \\ ML^5T^{-2} \end{bmatrix} = \begin{bmatrix} ML^1T^{-2} \\ ML^5 \end{bmatrix}$$

In the circuit shown in figure $R = \pi/2$ m and $r = \pi/4$ m the current flowing in the circuit is 2 A, then find magnetic field at the centre 0.

$$B_{c} = B_{1} + B_{2} + B_{3}$$

$$= \frac{\mu_{0}T\theta}{4\pi R_{1}} + \frac{\mu_{0}T\theta}{4\pi R_{2}}$$

$$= \frac{\mu_{0}T}{4\pi R_{1}} + \frac{\mu_{0}T}{4\pi R_{2}}$$

$$= \frac{\mu_{0}T}{2\pi} + \frac{\mu_{0}T}{\pi} = \frac{3}{2} \frac{\mu_{0}T}{\pi}$$

$$= \frac{\mu_{0}T}{2\pi} + \frac{\mu_{0}T}{\pi} = \frac{3}{2} \frac{\mu_{0}T}{\pi}$$

$$= \frac{(2.107)}{2}$$

In a LCR series circuit inductor of $\frac{1}{10\pi}$ H, capacitor of $\frac{10^{-3}}{\pi}$ F and resistance of 10Ω is connected through a source of 220 V, 50 Hz. Find the Power factor of the circuit.

0.5

Current of 200 A deflects the coil of a moving coil galvanometer by 609, find the current to cause deflection of $\pi/10$ rad.

$$\frac{1}{T_1} = \frac{0}{0}$$

$$\frac{2 \cos \frac{\pi}{1}}{T_2} = \frac{\pi}{10}$$

$$\frac{\pi}{1} = \frac{2 \cos \pi}{10} = \frac{60 \text{ A}}{10}$$

During an adiabatic process the pressure of gas is proportional to cube of its absolute temperature the ratio of C_p/C_V is

A ring and a solid sphere of same mass and radius are released from same point of inclined plane. Find the ratio of their KE when they reach to bottom without slipping

Grainink. E - Lossin U.
- mgH.

Two bodies having mass 4 kg and mas 5 kg having same kinetic energy find the ratio of their linear momentum?

Assertion: If external force is removed, then body will try to regain its actual shape, this is called elasticity.

Reason: Due to intermolecular force, this happens

В

D

- Assertion True, Reason True & Reason is correct explanation of assertion
- Assertion True, Reason True & Reason is not correct explanation of assertion
- Assertion True, Reason false
 - Assertion false, Reason True

Statement -1: Their can be positive zero in vernier calliper

Statement-2: Defect may occur during manufacturing of measuring instrument.

- A Statement-1 is true, Statement-2 is false.
- В Statement-1 is false, Statement-2 is true.
- Statement-1 and Statement-2 both true. C
- Statement-1 and Statement-2 both false D

Light of intensity $I = 6 \times 10^8 \frac{W}{m^2}$ is incident on an object kept in medium of

refractive index μ = 3 assuming 100% absorption. Find radiation pressure (N/m²)?

$$P = \frac{1}{2} \left(\text{comblete absorbtion} \right) = \frac{6 \times 10^8}{(4/h)} = \frac{2 \times 10^8}{4 \times 10^8} = \frac{6 \times 10^8}{$$

If the primary side of a transformer is connected with 230 V. 50 Hz AC supply and the ration of number of turns of primary to the secondary winding is 10:1) load resistance at secondary coil is 45Ω then power secondary winding is output of the

- 11.5 watt
- 13 watt
- 16 watt C
- 15.6 watt

A body is projected up with a velocity to 3th /4 of the escape velocity from the surface of the earth. The height it reaches from the surface of the earth is:

Com. of Energy

Gain in U = Loss in k.
$$\epsilon$$

$$\frac{Gmm}{(R+H)} = \frac{1}{2}m\left(\frac{3}{4}V_{e}\right)^{2} = 0$$

There exists a uniform electric field of 20 î N/C. A dipole of dipole moment $|\vec{P}| = 15 \text{ c} - \text{m}$ is placed at angle 30° with electric field. Torque on dipole is.

- 250 Nm
- 200 Nm
- 100 Nm

Three voltmeters are connected in a circuit as shown in the diagram. Find correct relation among their reading (V_1, V_2, V_3)

$$V_1 + V_2 = V_3$$

$$V_1 = V_2 = V_3$$

$$V_1 + V_3 = V_2$$

 $^{13}C_6 \rightarrow ^{12}C_6 + Neutron$ 13.0045.... 12.0000. 1.008. Energy required to release the neutron.

$$\Delta U = |\Delta m|C^{2}$$

$$= (13.0045-12+1.008)C^{2}$$

$$= 13.0045-13.008$$

$$= 0.0035 \times 931 \text{ MeV}$$

$$= 3.2585$$

An Electron in Hydrogen atom emits a photon of Paschen Series with maximum possible energy. what is the wavelength of the photon?

$$\frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{8^2} \right]$$

$$\frac{1}{\lambda} = \frac{1}{3^2} = \frac{9}{8}$$

$$\frac{1}{\lambda} = \frac{9}{8}$$

for max. waveleng L

JEE MAIN 2024 D LIVE (**)

PAPER DISCUSSION

Closed organ pipe of length 1.5 m and an open organ pipe of length 3.5 m produced a beat frequency of 7 in their fundamental mode. find the speed of sound

- A 330 m/s
- B 404 m/s
- 294 m/s
- 350 m/s

Find the output Y.

