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INTRODUCTION &
PROPERTIES OF MATERIAL

1.1 Introduction to stress

STRESS

¢ It is the measure of internal resistance of the body against external load.
e It is defined as internal force per unit area at a given point on any plane.
e Sl unit is Pa (N/m?).

P

/ /'(%(tern)al
4

(Internal

/ force)

P
XE =0
Fig. 1.1 Stress in a bar subjected to axial force

P——  E¥Tey

Y
P— ANEE 58 e B’
Y (Internal
force)

Fig. 1.2 Internal resisting force due to external load
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2E =0
Stress == iz = Pa
A m
Moo N e e
mmz~ 106mz - m?
1.2 Types of Loads
Load

Force Moment
Axial Transverse Bending Twisting
Tensile Compressive
I |F
e Bl il — Ft - E
Fa A 1 Fa E
F, F, ;
////////:/// /4

Fig. 1.4 Axial and Transverse force representation

e [, — Axial force
e F;— Transverse force
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AN
f_I
e
<
s

7 Z M,

Fig. 1.5 Bending and Twisting Couples

e X — Normal to Plane

e y/z — Parallel to Plane

e My — Twisting/Torsional moment/Torque
¢ My/M,; — Bending moment

1.3 Types of stresses

Stiess
Direct (Force) Indirect (Moment)
v |
Axial (o) Shear (1) Bending (o) Torsional (1)
y y
v Vo v v o
Tensile Compressive Tensile Compressive

1.3.1 Direct stress

» Direct stresses are developed due to external force directly acting on the plane.

Fig. 1.6 Bar subjected to direct axial stress
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1.3.2 Indirect stress

¢ Indirect stresses are developed due to moments, when external force is not passing through the centroid of the plane.
Ly

Fig. 1.7 Bar subjected to indirect stress

1.3.3 Normal & Shear Stress

e Normal stress (o) is developed when the internal forces are acting normal (perpendicular) to the plane and shear
stress (7) is developed when the internal forces are acting parallel to the plane.

» |f the internal force is acting at some angle to the plane, both normal stress and shear stress are developed on the
plane

Fig. 1.8 Normal and shear stress representation

1.3.4 Direct Axial Stress

Fig. 1.9 Direct axial stress

GATE WALLAH MECHANICAL HANDBOOK 7.4



° Introduction & Properties of Material °
A\ V.4
-  ——
— p = _P
— o=—r — =— 0=
] = ° A = A
Fig. 1.10 Direct axial tensile stress Fig. 1.11 Direct axial compressive stress

1.3.5 Direct Shear Stress

t
iR
; Tavg A

Fig. 1.12 Direct Shear stress

1.3.6 Bending Stress

M 100 mm M 90 mm

=
- =T

<

Fig. 1.13 Bending stress
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1.3.7 Torsional Stress

("

\

Tr
T=—

J

Fig. 1.14 Torsional stress

A\ M\

1.4 Stress analysis under general loading

]

/ 4

9 Gxx

Fig. 1.15 Triaxial state of stress at a point

GATE WALLAH MECHANICAL HANDBOOK 7.6
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100) i
0k

1,

X 'y z
(yz) X|Oxx Txy Txz Txy = Tyx
(X2) Y|tk Oy Ty Ty = Tz ¢ COMplimentary Shear Stress
(xy) z| 1, Ty Tz Tyz = Tgy
(Symmetric matrix)
Scalar Vector Tensor
e Magnitude e Magnitude e Magnitude
e Direction e Direction
e Plane

1.5 Tensor

* Tensors are quantities which are characterized by magnitude, direction and plane.

o Examples — Stress, Strain and Moment of Inertia

1.5.1 Stress Tensor

Y (0)
yy
b
T
ﬁyx
e o
Ty
T y
i )__’ Oxx
1E
o- tzx Xz > X
2z x
Z/ X| Oxx
Y| Tyx
2| Ty

Fig. 1.16 Stress Tensor at a point

¢ 6 Independent Stress components
¢ 3 Dependent Stress components
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1.6 Complimentary shear stress

known as complimentary shear stress.

YFy=0
2Fx=0
M=0

(txy X bc) X a= (tyx X ab) X c
(txy X abc) = 1« X abc

Txy = Tyx

<

VA
Fig. 1.17 Cross shear or complimentary shear

If there is a shear stress on one plane, there must be an equal and opposite shear stress on the perpendicular plane

1.7 Bi-axial stress (Plane Stress)

-~

> T..
Lr\} | Xy
'_%6\\

R

Oxx

[O_xx Txy]
Tyx  Oyy

Fig. 1.18 Bi-axial state of stress or Plane stress condition
e Examples of Plane Stress

GATE WALLAH MECHANICAL HANDBOOK
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Fs

Fig. 1.19. Thin plate subjected to forces acting
in the midplane of the plate

Introduction & Properties of Material

Fig. 1.20. On the free surface of a
structural element or machine

1.8 Pure Shear Stress

T
T " 0 t
T 0
Fig. 1.21 Pure shear state of stress
1.9 Hydrostatic Stress
r
|
— 17
/
¥
o I c 00
v 0 o O
0 0 o

Ox =0,=0,=0

Fig. 1.22 Hydrostatic state of stress
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1.10 Types of strain
Strain
Normal (€) Shear (y)
Longitudinal Lateral Volumetric

1. 11 Normal Strain (€)

e It is the measure of change in size.
e It is defined as change in a dimension per unit original dimension.

< lf >
?
I A
P <€ d,‘ df >P
1 A 4
Y

— | ——»

Fig.1.23 Bar Subjected to pure axial loading
Al

Elong = &x T
_ _ __Ad
Elateral = &y = &7 = 7

Av
e,,ol=7=£x+£y+ez

1.12 Shear Strain (y)

» |t is the measure of change in shape.
» |tis a defined as change in angle between two mutually perpendicular planes.

<
y
<
==
/2
%
Fig. 1.24 Pure shear state of stress Fig. 1.25 Distorted member due to shear load
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1.12.1 Strain Tensor:

c—¢
7oL
2
Y €
yy
— ¥
Yyz »2
- ; Vay
L Zande
g |55 ——x
€2z 2
z ~
Fig.1.26 Triaxial state of strain at a point
1.13Types of Material

Types of Material

|
l l

* Homogeneous * Isotropic
* Non * Anisotropic
homogenous * Orthotropic

1.13.1 Homogenous Material:

Material properties are same at all points in the same direction.

E,

E,
L} EX
E, '
E,
EX

Fig.1.27 Homogeneous Material
1.13.2 Non - Homogenous Material:

Material properties are different at all points in the same direction.
—
E 1x
—
E 2x

Fig.1.28 Non-Homogeneous Material
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1.13.3Isotropic Material:

Material properties are same in every direction at a point.

L E

E E
Fig.1.29 Isotropic Material
1.13.4 Anisotropic Material:
Material properties are different in every direction at a point.
E; E,

E,

E
4 E,

Fig.1.30 Anisotropic Material
1.13.5 Orthotropic Material:

Material properties are different in mutually perpendicular directions at a point.

E

z

Fig.1.31 Orthotropic Material

1.14 Elastic Constants

» Elastic constants are material properties.
e They are the relation between the stress and strain.
« The magnitude of strain under external load, depends on elastic constants of the material.

Stress = Elastic Constant x Strain
Types of Elastic Constants

v v v v

Modulus of Modulus of Bulk Poisson’s
elasticity rigidity modulus Ratio
(E) (GorC) (K) [u or %J

GATE WALLAH MECHANICAL HANDBOOK 712
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1.14.1 Modulus of Elasticity /Young’s Modulus (E):

Ratio of normal stress and normal (longitudinal) strain.
o

E=- 1GP, = 10°P, = 103MP,

&

Esteer = 200GP,
E¢y = 100GP,
E, = 70GP,

1.14.2 Modulus of Rigidity /Shear Modulus (C or G):

Ratio of shear stress and shear strain.

< I«

1.14.3 Bulk Modulus (K):
Ratio of hydrostatic stress and volumetric strain.

K==

&y

1.14.4 Poisson’s Ratio (1/m):
Ratio of magnitude of lateral strain and longitudinal strain.
n=0to0.5
u=0— Cork
u=0.5 — Rubber
n=0.25to 0.33 — Metals

_ _ flateral
” — el

Elong

Introduction & Properties of Material

1.15 Relation between Elastic Constants

(@ E=2G(1+p)
() E=3K (-2

1.16 Hooke’s Law

o Stress is directly proportional to corresponding strain within proportional limit.

e Constants of proportionality are the elastic constants.

GATE WALLAH MECHANICAL HANDBOOK
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GX
GX
—
Oy X &y Txy X yxy
o, =E.¢& Ty = G Vxy

Fig. 1.32 Member subjected to axial load

Generalised Hooke’s Law

y
€yy
F 3 v
Yoz
7_’12/_’2
2
» Vay
e ..
| 4
€2z 2

Fig. 1.34 Triaxial state of strain at a point

.

¥

Ty o %

(o)

sz I
Tox

ZZ

Al

Fig. 1.35 Triaxial state of stress at a point

Fig. 1.33 Member subjected to shear load

#0

o > Ty
= e s Yoy =
Wil giteo, % o] _ T
il I E 2 E Vxz G
. T e =z
&z E U E 1z E Vyz =
Minimum number of Independent Elastic Constants
Material Triaxial Stress Biaxial Stress
Isotropic 2 2
Orthotropic 9 4
Anisotropic 21 6

xx

GATE WALLAH MECHANICAL HANDBOOK
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1.17 Stress - Strain Curve for Ductile Materials

GA o C E'_\

F

B Strain  [Necking

Elastic Plastic | Hardening

A

> 9% g

0
Fig. 1.36 Engineering stress vs Engineering strain diagram for ductile material

1.18 Stress - Strain Curve for Brittle Materials

G A

B

> %¢

0]
Fig. 1.37 Stress vs Strain diagram for Brittle Material

1.18.1 Strength:

Maximum magnitude of stress that the material can sustain without failure.
(i) Yield Strength: Maximum stress that the material can sustain without yielding.

(ii) Ultimate Strength: Maximum stress that the material can sustain without fracture.
A

S b

ut

yt 7T T

>&

Fig. 1.38 Engineering stress vs Engineering strain diagram
Ductile: Sy, = S, > Sy
Brittle:  S,. > Sys > Su:

GATE WALLAH MECHANICAL HANDBOOK 715
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Ductility:
Ability of a material to deform plastically.

% change in length = ATZ x 100%

% change in area = % x 100%

Resilience:
Ability of a material to absorb strain energy without permanent deformation.
Modulus of resilience = S.E./Volume

1 1 a
=-0X&E==-X0X=
2 2 E

>E
Fig. 1.39 Modulus of Resilience
Toughness:
Ability of a material to absorb strain energy without fracture.

Modulus of toughness = Toughness / Volume
(e N

€
Fig. 1.40 Modulus of Toughness

GATE WALLAH MECHANICAL HANDBOOK 716
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1.19 True Stress - Strain

op = — o =~
E=7 T,
Al

Ao
=%

&g nag

l
eT=lni=l

® & = fn(l + SE)
® Or = O'E(l + SE)
Here oy = Engineering stress, o = True stress, ez = Engineering strain, e = True strain

1.20 Power Law

agr = kSTn
k — strength coefficient
n — Strain hardening exponent (0 to 1)

At ultimate point

G4

e

Fig. 1.41 Stress vs strain diagram

Qad

GATE WALLAH MECHANICAL HANDBOOK 717



AXIALLY LOADED MEMBERS

2.1 Axially Loaded Members

l

Fig.2.1 Bar subjected to axial load
Assumptions

* Material of the bar is homogeneous and isotropic.

e Bar is of constant cross-sectional area.

* Axial load passes through the centroid of the cross section.
o Stresses are within proportional limit.

P=a W - P
/4_'
— P
Pe——nmwo T A

Fig.2.2 Stress representation on the plane of cross section
Elongation of bar

P [P

Al =—
AE AE

— I —

Fig.2.3 Bar subjected to Pure Axial load

GATE WALLAH MECHANICAL HANDBOOK 7.18
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Axially Loaded Members °
Calculation of Internal Force P

A B C D
@9
100 kN 170 kN 120 kN S50 kN
\

Fig.2.4 Bar subjected to variable axial loads

r

\

PAB = 100 kN
Psc =100—-170 = —70kN
PCD = 50kN

2.2 Elongation of Prismatic Bar due to self-weight

Al 2 VITIIIII4
2E
or
Al :—WI l
2AE
Here,
W = self-weight
= yAL +
= weight/vol ‘or’ weight densit
¥ welght/volume “or- weight density Fig.2.5 Prismatic Bar under self-weight

2.3 Elongation of Conical Bar due to self-weight

2
A=
6E
or
wi l
A=WV
2AE

. Al
Here W = self-weight = il ) ) )
3 Fig.2.6 Conical Bar under self-weight

2.4 Elongation of Circular Tapered Bar

r—{) a}

— 1

Pl

T
—dq.d,.E
412

Al =

Fig.2.7 Elongation of circular tapered bar under axial load

GATE WALLAH MECHANICAL HANDBOOK 719



7D N :
[ Axially Loaded Members
A\ V4

2.5 Elongation of Rectangular Tapered Bar

!

Fig.2.8 Elongation of rectangular tapered bar under axial load

2.6 Statically Indeterminate Bars

F, =0
R, =100+R
Aom A B C
Compatibility Equation:
Al=0 LTS 100N | — >R,

AIAB +AIBC :0

RAXIAB i RCXIBC

Fig.2.9 Bars fixed at both the ends, under axial load
ApgxEpg  ApcxEpc L

2.7 Thermal Stress

Altpermar =1c AT

oc—> coefficient of thermal expansion(/°C)

)I\
h
AT? v

A
w

< I >~
Fig.2.10 Free expansion of rectangular block
2.7.1 Thermal Stress in Bars fixed in one direction:

AItotal =0

AIthermal + AImech =0
( ocAT)—(ﬂjzo
AE

G=B=EOCAT
A

GATE WALLAH MECHANICAL HANDBOOK
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° Axially Loaded Members °

A\ VY4

Ve N

7 N

Z N

Pr——ryF R—— P
’ N
A ! N
ATl

Fig.2.11 Thermal Stress in Bars fixed in one direction
2.7.2 Thermal Stress in Bars fixed in two directions:

_EocAT

(1-v)

Gy =0y

///////////L//////////

e

Fig.2.12 Thermal Stress in Bars fixed in two directions

\\\\T\\\\ N\

\\\\\\L\\\ \

2.7.3 Thermal Stress in Bars fixed in all directions:

é_
®

e LI E oc AT
s W (o)

Fig.2.13 Thermal Stress in Bars fixed in all directions

2.7.4 Thermal Stress in a Bars when there is a gap/yielding of supports

P p

—f s

Fig.2.14 Thermal Stress in a Bars when there is a gap/yielding of supports
Aliora =8

AIthermal + Apmech = d

(1=a7)-( )3

GATE WALLAH MECHANICAL HANDBOOK 721
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2.7.5 Thermal Stress in a tapered bar fixed in one direction

¢ =d, o=d,

AT
Fig.2.15 Thermal Stress in tapered bar fixed in one direction

AItotal =0

AIthermal + AImech =0

(locAT)— P—I =0

T
—d,d,E
412

2.7.6 Thermal Stress in a compound bar

Fig.2.16 Thermal Stress in a compound bar

Aljech = AP_IIE + E
2.7.7 Thermal Stress in Composite Bar
CAI>%Cs
(Altotal )s = (Altotal ) Al
(AocAT) +[Aiéjs =(lcAT) _(AP_IIEJN
7]
2 Steel 2 >
g Al P

AT T

Fig.2.17 Thermal Stress in a composite bar

GATE WALLAH MECHANICAL HANDBOOK
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2.8 Strain Energy due to Axial Load

P<— —>P

< [ 5
-~ Cl

Fig.2.18 Strain Energy due to Axial Load
_ P2
2AE

2.9 Axial Impact Load

GS:V_V AlszﬂI
A AE

o) =ogxIF

A|| ZAISX IF

IF =1+ 1+2—h
Alg

For suddenly applied load (h — 0)
IF=2

Here,

IF = Impact factor

os = Stress due to static load

Als = Elongation due to static load
o) = Stress due to impact load

Al, = Elongation due to impact load

Y4
Fig.2.19 Member subjected to Impact axial load
aaa

GATE WALLAH MECHANICAL HANDBOOK 723



TORSION IN CIRCULAR
SHAFTS

3.1 Torsion Equation

Assumptions

* Material of the shaft is homogeneous and isotropic.

e Stresses are within proportional limit.

* All the transverse sections remain plane and undistorted after twisting. In other words, the diameter of the shaft

remains straight after twisting.

Fig.3.1 Shaft Subjected to pure torsion

IJ,\ i

‘\
D

Go

[

T
r

e
J = Polar moment of inertia

r = radial distance from axis

0 = angle of twist (radians)

3.1.1 Maximum Shear Stress

I_Tmax
J Max
T Trmax_TX(y

Tpd*

GATE WALLAH MECHANICAL HANDBOOK
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@ o Torsion in Circular Shafts O
A\ V\ 4
Tmax = 16—2 [For solid shaft]
nd
Trnax = % [K = ﬁ} — [For hollow shaft]
nd (1— K ) do

3.1.2 Angle of Twist

T_Go

J |

0= T (in radians)
GJ

3.1.3 Polar Section Modulus

* |t is the measure of the strength (maximum applicable torque) of shaft.
¢ It depends on the shape and size of the cross section.
I _ Tmax

J Max

J

Toc——
Fmax

I

I"fT]aX
Zp T—>Tg T tra v — chances of failure |

For same area of cross-section

(Zp)H >(Zp)s

Ty >Tg

3.1.4 Torsional rigidity (GJ)

It is the measure of the resistance to deformation under twisting moment.

3.1.5 Torsional stiffness (q)
It is the magnitude of torque required for unit angle of twist.
T 8
0 |
3.1.6 Internal Torque
T g =100Nm

Tge =100—240 = —140 Nm

Tep =220Nm

GATE WALLAH MECHANICAL HANDBOOK 7.25
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C D
E p= Y

|

7 r\
100Nm 240 Nm \

360 Nm 220 Nm

Fig.3.2 Shaft Subjected to variable twisting moments

3.2 Statically Indeterminate Shaft

B
A 100 Nm C
A C -~ T
-1 -~
1 L~
-~ L
-1 -
N
1y

Fig.3.3 Shaft fixed at both the ends and subjected to twisting moments

M =0
To=100+T;
Compatibility eq"
Opc =0

O +0pc =0

Ta x| T~ x|
axlag  Texlec _ g

GagxJas  Gpc *Jae

3.3 Composite Shaft

1 i
Al /
Steel (
N1
Fig.3.4 Composite shaft subjected to twisting moment

XM =0

Ts+Ta=T

Compatibility equation:

0s =04

Toxl  Tpxl

Gsx\]s —GAX\]A

GATE WALLAH MECHANICAL HANDBOOK
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Torsion in Circular Shafts O

5

3.4 Strain Energy due to Torsion

T

—

l
Fig.3.5 Strain Energy due to Torsion

T
2GJ

aaa
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SHEAR FORCE & BENDING
MOMENT

4.1 Beams

Beams are Structural member used to support transverse loads.

Fig.4.1 Beam subjected to transverse shear load

4.1.1 Types of Beams

Types of Beams

|
l l

Statically Determinate Statically Indeterminate

1. Cantilever Beam

ot

Propped Cantilever Beam

_t-dl

2. Smmply Supported Beam Continuous Beam

3. Overhang Beam

Lad

Fixed (Buili-in) Beam

(A) Cantilever Beam

Fig.4.2 Cantilever Beam

GATE WALLAH MECHANICAL HANDBOOK 728
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° Shear Force and Bending Moment °
A\ V4
2F, =0
XF, =0
>M=0
(B) Simply Supported Beam
| A FAN |
AN e
—s| |

! l

Fig.4.3 Simply Supported Beam

(C) Overhanging Beam

Over hang
A VAN A JAN
VAN N AN -
—> ="
! ! ! !

Fig.4.4 Overhanging Beam

(D) Propped Cantilever Beam

| |
— !

Fig.4.5 Propped Cantilever Beam

(E) Continuous Beam

I I I

Fig.4.6 Continuous Beam

GATE WALLAH MECHANICAL HANDBOOK 7.29



Shear Force and Bending Moment

5

(F) Fixed Beam

-6 I I}
Fig.4.7 Fixed Beam

(G) Beam with Internal Hinge

Internal Hinge
(pin joint)

Rp,

Fig.4.8 Beam with Internal Hinge

(H) Distributed loads

Load intensity = w (KN/m)
Total load = Area under the loading diagram

Fig.4.9 Beam subjected to distributed loads

()  Uniformly Distributed load
Total load = wi

wi
- 12 J 2

/ o \:

Fig.4.10 Beam subjected to uniformly distributed load

GATE WALLAH MECHANICAL HANDBOOK
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° Shear Force and Bending Moment ®
A\ VY4
(J) Uniformly Varying Load
Total load :%.w.l
v wl
L 23
0 e |‘ >
/
20 KN/m
_-—""—_-”

15 KN/m
kv T |

om
Fig.4.11 Beam subjected to uniformly varying load

Total load = 6x5+%x6x15

=30+45
=75KN

4.2 Shear Force

o Shear force is the transverse internal force at a section.
* |tis equal to the sum of total transverse force either on the left or right side of the section.

Wy W wy

Wi Wo W3

R JS SW l R,

Fig.4.12 Beam subjected to transverse shear loads

T | ] l

Fig.4.13 Sign convention of shear force

Sign Convention

GATE WALLAH MECHANICAL HANDBOOK 7.31



Shear Force and Bending Moment
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4.3 Bending Moment

Bending moment is the internal moment at a section.
It is equal to the sum of moment of all the forces either on the left or right side of the section.

M M
Fig.4.14 Bending moment due to transverse shear loads

Sign Convention:

+ve

(Sagging) (Hogging)
Fig.4.15 Bending moment sign convention

4.4 Relation Between Load Intensity(w), Shear Force (F) and Bending Moment (M)

ds B B
@ —=w IdM:dex
dx
A A
dm
(b) v S Mg —M , = Area of SFD between A and B
X
w=0 W = constant Worx
| | \
A B | 1
A B A B
Sy
Sa S = Constant Sp
Socx
S o« x?
Sa
Mg, Mg
M o x
M oc x?
MA MA MA
Fig.4.16 Relation Between Load Intensity, Shear Force and Bending Moment
7.32
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5

4.4.1 Sudden Change in Shear Force

I I I |

L

Fig.4.17 Shear force diagram

4.4.2 Sudden Change in Bending Moment

S

Fig.4.18 Bending Moment Diagram

4.4.3 Point of Maximum Bending Moment

Bending moment is maximum at a section if
» The sign of shear force changes at the section
Or
e There is a couple at that section

4.5 Point of Contra flexure

It is the point at which sign of bending moment changes and the curvature of beam changes from sagging to hogging
or hogging to sagging.

Fig.4.19 BMD Representing Point of Contra Flexure

aaa
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BENDING STRESS IN BEAMS

5.1 Bending Stress in Beams

5.1.1 Pure bending

e A beam is under pure bending when it is subjected to constant bending moment.

5.1.2

Pure bending occurs when shear force is zero.

M M
dx
0] 0

(SFD)

M

(BMD)
Fig.5.1 Beam subjected to pure bending

Euler - Bernoulli’s Beam Theory

(A) Assumptions

Material of the beam is homogeneous and isotropic.

Young's modulus in tension and compression is same.

Stresses are within proportional limit.

The beam is under pure bending.

All the transverse sections remain plane after bending.

Beam is initially straight and bends into a circular arc.

Cross section of the beam is symmetric about the plane of loading.

All the transverse sections remain plane after bending.

M
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Bending Stress in Beams

5

Fig.5.2 Beam subjected to sagging bending moment

D
T

e Cross section of the beam is symmetric about the plane of loading.

T
A

Fig.5.3 Cross section of beam under bending

(B) Neutral Layer
Undeformed longitudinal layer.

—

Fig.5.4 Undeformed neutral axis during bending

(C) Neutral axis

e Axis about which beam bends.
» Intersection of neutral layer with the cross section.

Fig.5.5 Neutral Surface and Neutral axis
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® Bending Stress in Beams ®
A\ V\ 4
Neutral axis passes through the centroid of the section, if
e The material is homogenous.
e There is no plastic deformation.
Fig.5.6 Various cross sections of beams
c_M_E
y | R
y — vertical distance from N.A.
| - MOI about NA
R — Radius of curvature of Neutral fiber
coxcy
Fig.5.7 Bending stress distribution
(D) Section Modulus
e It is the measure of the strength of beam (maximum applicable bending moment).
z-_
Ymax
7.36
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For same cross-sectional area

Bending Stress in Beams

Z,>Z >2Z
Cross Section Y nax Ina Z
h/2
b
dr2 d
a2 2 64 32
—dg(1-K*)
dy dg T 44 _ g4
7 a 0 Y
k=Ji
do
vt
1 <<d
9 nd 3t nd °t
- 2 8 4
2h/3
all bh® bh?
h/3 3 36 o
< b &
! ! H BHY bn?
A S 2 l 2 12 12

Flexural rigidity (EI)

It is used in the design of beam based on rigidity criteria

Flexural stiffness
El
I
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Bending Stress in Beams

5

5.2 Combined Axial load and Bending Moment

P P

p-€ ....................... ﬁ.p

Pe Pe

e — +

Fig.5.8 Beam subjected to combined axial load and bending moment

P, Mymax
P Mymax
(Cmax ) =T

5.3 Beam of Uniform Strength

e Beam of uniform strength is a beam subjected to same maximum bending stress throughout the length.

e Beam of uniform strength has varying cross section.
¢ < ¢

e

{ { (
O max = 100MPa  100MPa 100 MPa
Fig.5.9 Beam of Uniform Strength

aad
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SHEAR STRESS IN BEAMS

6.1 Shear Stress in Beams

S
Tavg ZZ

NI,

(Cross-Section)

Fig.6.1 Shear stress in Beams

__s(AY)
Ib

b — width of layer X-X

(A?/) — First moment of area above / below x-x about NA.
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6.1.1 Rectangular Section

Shear Stress in Beams

3
T =—=T
Tinax max 2 avg

Fig.6.2 Shear stress distribution for rectangular cross section

6.1.2 Circular Section

= T = 4 T
T max — 3 “avg

Fig.6.3 Shear stress distribution for circular cross section

6.1.3 Triangular Section

3
| Tmax =5‘Eavg
Tmax
4
—/ 1 =—=T.,.
TNA NA 3 ave

Fig.6.4 Shear stress distribution for triangular cross section
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6.1.4 Diamond Section

Shear Stress in Beams

Fig.6.5 Shear stress distribution for diamond cross section

6.1.5 I Section

ol

AN Taa =T

max

w

Fig.6.6 Shear stress distribution for I section beam

6.1.6 T Section

Fig.6.7 Shear stress distribution for T section beam

6.2 Shear Flow

In thin walled members (I section, T section) shear flow is the shear force per unit length.
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Shear Stress in Beams O

5

— — — —

—_ = — —
2
<

[ - <« «|

Fig.6.8 Shear flow in I section

6.3 Shear Centre

It is the point on the beam section at which the transverse load can be applied without causing twisting.

Fig.6.9 Shear center for thin-walled sections

(A) Sections with two axes of symmetry

S

G — centroid
O — shear center
Fig.6.10 Shear center when there are two axes of symmetry
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o Shear Stress in Beams )
A\ VvV 4
(B) Sections with one axis of symmetry
10 W .
I e
: Rl
¢ |G s
i A
1 e
: /'
i e
i 50 |
1 ’,
+ ,
: e
R T g [ Y Vi Sy Sy R S —
O G

Fig.6.11 Shear center when there is one axes of symmetry

aaa
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DEFLECTION OF BEAMS

7.1 Deflection of Beams

Deflection represents linear deviation of a point and the slope represents the angular deviation of the point on the
longitudinal axis of the beam

Fig.7.1 Deflection of Beam

Methods to find slope and deflection of beams
¢ Double Integration and Macaulay's method
e Moment — Area method

e Strain Energy method

7.2 Double Integration Method

2
EI%zMX
Elﬂzjlvlﬁcl ...... (1)
dx
Ely=[[M,+Cix+Cp ... 2)

From equation 1 and 2 slope and deflection can be determined at any location of the beam.
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Deflection of Beams O

5

7.3 Macaulay’s Method or Modified double integration method

SkN 7 kN 9 kN

A 1m B 2m C 3m D

|
IS

X

Fig.7.2 Macaulay’s method for beam subjected to multiple loads

2
E|Z—§=—5x—7(x—1)—9(x—3)
X
2 _ 2 _ 2
£ dy _ 5x _7(x=1)" 9(x-3) .,
a2 2 2

This method is preferred for simply supported beam unsymmetric loading and cantilever beam subjected to multiple
loads. Here the terms within the bracket are known as Macaulay function and they are integrated as whole.

7.4 Moment - Area Method

7.4.1 Mohr’s 15t Theorem

The change in slope between any two points A and B on the elastic curve is equal to the area of the bending moment
diagram between A and B divided by EI.

A
0p—0g =—22
A B El

(BMD)

Fig.7.3 Slope calculation from Mohr’s 1°' Theorem

7.4.2 Mohr’s 2" Theorem

The vertical deviation of any point A on the elastic curve from the tangent of a point B on the elastic curve is equal

to the first moment of area of bending moment diagram between A and B about point A divided by EI.
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Deflection of Beams O

. l :

5

(= Ayp XA
AB =
Tap El
|
Fig.7.4 Deflection calculation from Mohr’s 2" Theorem
7.5 Strain Energy due to Bending
W
X I s
U =J-M dx
2FI

0

Fig.7.5 Strain energy due to bending
Mag =-Wx (x=0tol)
Mgc = -Wx - 2W(x - 1) (x=1to 2I)

7.6 Castigliano’s Theorem

The partial derivative of the total strain energy in a structure with respect to any force at a point is equal to the
deflection at that point in the direction of the force.
PA PB

M M B C

Fig.7.6 Castigliano’s Theorem

U= Total S.E.
u_,
op, A
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The partial derivative of the total strain energy in a structure with respect to a moment at a point is equal to the slope
at that point.

Deflection of Beams

ou

ﬁ_yB

oJ

=0
M,

7.7 Slope and Deflection of standard case

Loading 0, .
w
| : w? w?
L 2 2EI 3El
W
f i w
1 E 6EI 8EI
w
W& wi® wi4
E 24EI 30EI
I El 2El
M
W
l wiz wi3
n&7 l/2 ljz 77Q77 16EI 48E|
W
AR TAARAY we '’
! Py 24E| 384El
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O Deflection of Beams O
A\ V4

7.8 Principle of Superposition

/4 w

_

(j; / E_A ! E+A !

M M
Fig.7.7 Principle of Superposition
Wiz M
e e E—
2El EI
w2 M2
=t
3El  2El

TRt

A

Ya

7.9 Maxwell’s Reciprocal Theorem

W Wg

| s
A E B
Y4

T

Fig.7.8 Maxwell’s Reciprocal Theorem

Wa.ya=Wg.Yg

Special Case in Cantilever Beams

Fig.7.9 Elastic curve becomes straight line (AB)
0,=03 (Since elastic curve becomes straight line)
ya=Yg +0g5.AB (This equation is valid only when elastic curve becomes straight line)

/4

0, =" Wa

J/BZ?
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o Deflection of Beams O
A\ V4
7.10 Statically Indeterminate Beams
(1) Inthis case, deflection at A is zero.
Compatibility equation
w
A l B

R, =7
Fig.7.10 Propped cantilever beam reaction calculation
ya=0
Ly, duetow+ Ty duetoRa=0

8ElI  3EI
3wl
g

(2) In this case deflection at point A in the beam is equal to the deflection in the spring

lW

Fig.7.11 Spring support at one end of cantilever beam

YA = Yspring

Ly duetow+ TypduetoRs= 4 Yopring
w® _Rsl® _Rs

3El 3EI K

RS = 7
FBD
w

|
TRS

i

Fig.7.12 Free body diagram

GATE WALLAH MECHANICAL HANDBOOK 7.49



Deflection of Beams O

5

(3) Inthis case, deflection at point B and C will be same

Fig.7.13 Two cantilever beam attached at their free ends

Y =Yc
0g #0c
Y =Yc

Ly, duetow+ TygduetoR

=Ly, tow+ {y, duetoR
aaa
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COMPLEX STRESS

8.1 Complex Stress

G,
T
»
':yz/
Txy
Ty
—> ()'x
T, T

GZ

8.2 Plane Stress

AN\ Y V.

Xy

Fig.8.2 Point is subjected to biaxial state of stress

8.3 Stresses on Oblique Planes

AN

b

Fig.8.3 Stresses on oblique planes
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Complex Stress

o, +0 o, — O
Y it St A P (et S C0520 + 1, 5in 20
2 2

.8

Oy, —0O
= —(ujsin 20+ 1, €05 20
2

Sign Convention

@ o:
< Fve — — -ve —
Fig.8.4 Normal stress sign convention
(b) ©
> —
l +ve T T i l
WUINTGE —
Fig.8.5 Shear stress sign convention
(c) o:
g tve =ve y :
ACW gy

Fig.8.6 Sign convention for 0 (location of oblique plane)

8.4 Mohr’s Circle

5

>
5
>

v (0,.7y)

h— (Gy,—’txy )

Fig.8.7 Mohr’s circle for biaxial state of stress
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[ Complex Stress °
A\ V' 4
8.5 Principal Planes
%
S S TJ‘)
6,1 s,
90°
2
I

Fig.8.8 Location of Principal Planes

2t
Op = Stan 1| Y
EAp) Oy —Oy

sz Zepl +900

8.6 Principal Stresses

O

wf

)

Fig.8.9 Principal stresses in complex state of stress

2
GX+Gy GX—Gy 2
0'1’2: + +7 Xy
2 2

61+02=GX +C

y

0103 =0y Oy~ T, 2
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Complex Stress

5

8.7 Maximum Shear Stress

Fig.8.10 Mohr’s circle for triaxial state of stress

2
Gy —Oy
(Tmax )in-plane :\/( 2 ] +Txy2

or

=

c51—C52|
2 |

03—01|

AT

62—03|
2 |

m
Tax = Max" of

8.8 Combined Bending & Twisting

cmaxzﬁ[lvl +\/M2+T2}
nd?

.16
max TCd3

Meq =%[M +\/M2+T2}
Teq =VM 2 +T2

M2 4+T?2

(|
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COMPLEX STRAIN

9.1 Complex Strain

Strain analysis is similar to the stress analysis, just replace normal stress by normal strain and shear stress by half of
the shear strain

c—¢
1
2
e
Tz L T
2 v 2 Ty
Yo 2
2 il
]—) AiEY7R
¥Yax 2
&, e
2

Fig.9.1 Point is subjected to triaxial state of strain

9.2 Plane Strain

4
Vo
—_

2 ~ -

€y Yo
2
SX
’ny
2 &y
h_

Fig.9.2 Point is subjected to biaxial state of strain
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Complex Strain

5

9.3 Strains on Oblique Planes

»

v

Fig.9.3 Strains on oblique planes

€y t€ €y —¢&
g =| X0 T EXTEY oos20 1+ Y sin 20
2 2 2

ey — &
Yo _ | 575y l6inog+ 1Y cos 20
2 2 2

9.4 Mohr’s Circle

Mo [=

D |[ex 8y
b5

Fig.9.4 Mohr’s circle for biaxial state of strain

9.5 Principal Planes

Fig.9.5 Location of Principal Planes
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[ Complex Strain °

A\ V' 4

Op = Stant| Y

12 Ex — &y

9p2 = epl + 900

9.6 Principal Strains
E\y Y,\"}
—

Fig.9.6 Principal strain for biaxial state of strain

5 b

81+82=8X + &

y

2
Txy
€1.€9 =8X.8y - 7

9.7 Maximum Shear Strain

(Vmax )in—plane =(e1-2,)

Ymax = max ™ of |81—82|,|82 —83|,|83 —81|

9.8 Strain Rosette

Combination of three strain gauges arranged in three different directions.

Fig.9.7 Strain rosette
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Complex Strain

€y t€ €y — &
= |4 2 00526A+yﬂsin26A
2 2 2
ey tE& €y —¢&
gp=| — |+ =— coszebJrYﬂsinzeB
2 2 2

Ex tEy €y —Ey Txy .
= + €c0s20,~ +—=5sin20

9.8.1 Rectangular Strain Rosette

OA = 00
0g =45°
C o
|:] B 90 = 90
Ex =€p
45°
2] Exre— SC
45 — y
I_IA Tay =268 —(ea+2c)
Fig.9.8 Rectangular strain rosette
9.8.2 Delta Strain Rosette
¢ B 60°
SV PO 60%
[ -
s
A

Fig.9.9 Delta strain rosette

9.8.3 Star Strain Rosette

o
120°0N20° ——
—
120°

Fig.9.10 Star strain rosette
aaa
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PRESSURE VESSELS

10.1 Pressure Vessels

Pressure Vessel

|
! I
Thin l!

l‘Si lf>i
20 20

Fig.10.1 Pressure vessel

10.2 Thin Cylinder

Jt

D

P — internal pressure

sl
I€ 2

/

Fig.10.2 Thin Cylindrical Pressure Vessel

Fig.10.3 Various stresses on thin cylindrical pressure vessel
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° Pressure Vessels °
A\ V4
10.2.1 Longitudinal Stress
_Fd
't
10.2.2 Circumferential/Hoop Stress
(e} — ﬂ
R
G1=0G;,0p =0
S Pd
max 2t
_Pd
(Tmax )in plane ~ gt
- Pd
T 4t
= G]
2 U )
Fig.10.4 Mohr’s circle for biaxial state of stress of thin cylindrical pressure vessel subjected to internal pressure
10.2.3 Longitudinal Strain
T
E E
g =91 o)A
4tE |
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Pressure Vessels O

5

10.2.4 Circumferential/Hoop Strain

Sczﬁ_vﬂ
E 'E
Pd Ad
L PR )
=g (27V)=7

10.2.5 Volumetric Strain
e, =¢g +2¢,

Pd AV
L A
=g )=

10.3 Thin Sphere

d P — internal pressure

le
I€

Fig.10.5 Thin spherical pressure vessel

10.3.1 Circumferential/Hoop Stress

Fig.10.6 Cross sectional view of thin spherical pressure vessel
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Fig.10.7 Mohr’s circle for biaxial state of stress of thin spherical pressure vessel subjected to internal pressure

01 = 02 = GC
Pd

G max ZE

(Tmax)in plane -

Pd

T =g

10.3.2 Circumferential /Hoop Strain

e =% _yTc
E E
Pd Ad
=8 (1-y)=2d
4tE d

10.3.2 Volumetric Strain

Pressure Vessels

p

g, =3¢,

3Pd Av

Tt
ooa

v

qe
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COLUMNS

11.1 Columns

Column is a structural member used to support axial compressive loads.
P

N

E
~/’i/_|

Fig.11.1 Columns

If Px < kx.| — Stable

If Px > kx.| — Unstable
If Px = kx.I — Critical
Per =kl
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Columns O

Y
1
1
X - X
)
1
B
Y
Fig.11.2 Euler’s theory of Buckling for column
2
n“El
P, = I2mm
e
Imin = min™ of Ix, Iy
le —» effective length
(a) One fix end, (b) Both ends (¢) One fixed end, (d) Both ends
one free end pinned one pinned end fixed
lP lP lP lP
A
A r 3
A - Y \umy
L
L.=0.7L
B B L,=2L Le=L L.=05L
i |
L _ v
\

Fig.11.3 Various end conditions for column
1

oC —
r
£

Pe
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@ O Columns
A\ V4

End Conditions Effective length Ie

(1) One end fixed, other free

2 Both ends hinged

3 One end fixed, other hinged

4) Both ends fixed

N — =N
ST

11.3 Limitation of Euler’s theory of Buckling

| )
A = —& = Slenderness ratio

min

aaa
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