

Sample Paper-05

Dropper NEET (2024)

CHEMISTRY

SECTION-A

- A solution containing 2.665 g of CrCl₃.6H₂O is passed 1. through a cation exchanger. The chloride ions obtained in solution were treated with excess of AgNO₃ to give 2.87 g of AgCl. The structure of compound is:
 - (1) $\left[\text{CrCl.} \left(\text{H}_2 \text{O} \right)_5 \right] \text{Cl}_2 . \text{H}_2 \text{O}$
 - (2) $\left[\text{CrCl.} \left(\text{H}_2 \text{O} \right)_4 \right] \text{Cl.H}_2 \text{O}$
 - (3) $\left[\text{CrCl}_2.(\text{H}_2\text{O})_4 \right] \text{Cl.H}_2\text{O}$
 - (4) $\left[\text{CrCl}_2 \cdot \left(\text{H}_2 \text{O} \right)_5 \right] \text{Cl}_2 \cdot \text{H}_2 \text{O}$
- 2. Match List-I with List-II to find out the correct option.

List-I		List-II	
(A)	O_2^-	(I)	Paramagnetic
(B)	CN-	(II)	Diamagnetic
(C)	CO	(III)	Diamagnetic
(D)	⁺ NO	(IV)	Diamagnetic

- (1) (A) (II), (B) (III), (C) (IV), (D) (I)
- (2) (A) (III), (B) (IV), (C) (II), (D) (I)
- (3) (A) (I), (B) (II), (C) (III), (D) (IV)
- (4) (A) (IV), (B) (III), (C) (II), (D) (I)
- 3. If each orbital can take maximum of three electrons, the number of elements in the third period of the periodic table will be:
 - (1) 12
- (2) 6
- (3) 8
- (4) 24
- Mole fraction of the solute in 0.5 molal aqueous 4. solution is:
 - (1) $\frac{1}{112}$ (2) $\frac{1}{56}$ (3) $\frac{1}{25}$ (4) $\frac{1}{150}$
- 5. Match the compounds given in List-I with the name reactions given by them in List-II and select the **correct** option given below:

List-I		List-II	
(A)	Phenol	(I)	Etard
(B)	Acetic acid	(II)	Cannizzaro
(C)	Formaldehyde	(III)	Reimer-Tiemann
(D)	Toluene	(IV)	Hell-Volhard-
			Zelinsky

- (1) (A) (III), (B) (I), (C) (II), (D) (IV)
- (2) (A) (III), (B) (IV), (C) (I), (D) (II)
- (3) (A) (II), (B) (I), (C) (IV), (D) (III)
- (4) (A) (III), (B) (IV), (C) (II), (D) (I)

- 6. The total number of optically active products formed by the monochlorination of 2-methylpentane is:
 - (1) 4
- (2) 5
- (3) 6
- (4) 8
- 7. Molality of aqueous solution of urea is 3 m. The mass percentage of urea in the solution is:
 - (1) 10.5%
- (2) 25.25%
- (3) 15.25%
- (4) 12.25%
- 8. Which IUPAC name is incorrect?

(1)
$$CH_3 - C = C - CH_3 : C_2H_5$$

2,3-Diethylbutene

$$HC = CH_2$$

(2) $HC \equiv C - CH - CH = CH_2$:

3-Ethynylpenta-1,4-diene

- (3) $HC \equiv C CH = CH_2$: But-1-en-3-yne
- (4) CH_3 -CH=CH-C=CH: Pent-3-en-1-yne
- $\frac{N_A}{2}$ atoms of X (g) are converted into X⁻ (g) by absorbing E₁ energy. 2N_A atoms of X (g) are converted into X⁻(g) by releasing E₂ energy. Calculate ionisation

enthalpy and electron gain enthalpy of X (g) per atom.
 (1) I.E. =
$$\frac{2E_1}{N_A}$$
, $\Delta_{eg}H = -\frac{E_2}{2N_A}$

(2) I.E. =
$$-\frac{2E_1}{2N_A}$$
, $\Delta_{eg}H = \frac{E_2}{2N_A}$

(3) I.E. =
$$\frac{2E_1}{2N_A}$$
, $\Delta_{eg}H = -\frac{E_2}{2N_A}$

(4) I.E. =
$$\frac{N_A}{2E_1}$$
, $\Delta_{eg}H = -\frac{2N_A}{E_2}$

10. **Statement-I:** There is no exchange in internal energy in a cyclic process.

> Statement-II: In a cyclic process, the system returns to original state in a number of steps.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.

- **11.** The compound, ClCH=CHCH(OH)COOH with molecular formula C₄H₅O₃Cl can exhibit :
 - (1) Geometrical, optical, position and functional isomerism.
 - (2) Geometrical, optical and functional isomerism only.
 - (3) Position and functional isomerism only.
 - (4) Geometrical and optical isomerism only.
- **12. Statement-I:** Addition of inert gases at equilibrium will support the dissociation of PCl₅ at constant temperature.

Statement-II: The addition of inert gas at constant volume will not affect the equilibrium.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **13.** Following reaction is :

$$H_3C$$
 \xrightarrow{H} Br $\xrightarrow{\Theta}$ H_3C \xrightarrow{H} H_3C $(CH_2)_5CH_3$ $(CH_2)_5CH_3$

- (1) E_1
- (2) $S_N 1$
- (3) E_2
- (4) $S_N 2$
- 14. The major product obtained in the following is:

$$(3) \qquad \bigcirc \\ \text{Br} \\ \text{NH-C} \\ \bigcirc \\ \bigcirc \\ \text{S}$$

$$(4) \quad \bigcirc \longrightarrow NH-C \longrightarrow \bigcirc \\ B$$

- **15.** Select the correct order of the strength of acids given below:
 - (1) $HClO_4 < HClO_3 < HClO < HClO_2$
 - (2) $HClO_4 < HClO_3 < HClO_2 < HClO$
 - (3) $HCIO < HCIO_2 < HCIO_3 < HCIO_4$
 - (4) None of these
- **16.** The correct statement in respect of protein haemoglobin is that it:
 - (1) Functions as a catalyst for biological reactions.
 - (2) Maintains blood sugar level.
 - (3) Act as an oxygen carrier in the blood.
 - (4) Forms antibodies and offers resistance to diseases.
- **17.** Which of the following halides is most acidic?
 - (1) PCl₃
 - (2) SbCl₃
 - (3) BiCl₃
 - (4) CCl₄
- **18. Assertion** (**A**): The spin only magnetic moment of Sc³⁺ is 1.73 B.M.

Reason (**R**): The spin only magnetic moment of an ion is equal to $\sqrt{n(n+2)}$; where n is the number of unpaired electrons in the ion.

- (1) Both **Assertion** (**A**) and **Reason** (**R**) are true and **Reason** (**R**) is a correct explanation of **Assertion** (**A**).
- (2) Both **Assertion** (A) and **Reason** (R) are true but **Reason** (R) is not a correct explanation of **Assertion** (A).
- (3) **Assertion (A)** is true and **Reason (R)** is false.
- (4) Assertion (A) is false and Reason (R) is true.
- **19.** Among the three types of orbitals p, d and f:
 - (1) Both p and f-orbitals have center of symmetry.
 - (2) Both p and d-orbitals have center of symmetry.
 - (3) Only d-orbitals have center of symmetry.
 - (4) f-orbitals alone have center of symmetry.
- **20.** Which one of the following is a free radical?
 - (1) CO
- (2) CN⁻
- (3) NO
- (4) OH⁻

- **21.** The concentration of a reactant decreases linearly with time. What is the order of the reaction?
 - (1) 0
- (2) 1
- (3) 2
- (4) 3
- **22.** A reversible process is that which always :
 - (1) takes infinite time for completion.
 - (2) satisfies $\Delta S = 0$ for universe.
 - (3) satisfies $\Delta G = 0$.
 - (4) gives minimum work.
- **23.** Reaction of phenyl benzoate with an excess of methyl magnesium bromide gives a mixture of :
 - (1) Trimethyl methanol and phenol
 - (2) 2-phenylpropan-2-ol and phenol
 - (3) Acetophenone and toluene
 - (4) 2-phenylbenzoic acid and toluene
- **24.** The major product formed in the reaction of 2-methylbut-3-en-2-ol with HBr is :

- **25.** The monomer of biopolymer DNA is:
 - (1) Nucleotide
- (2) Amino acid
- (3) Disaccharide
- (4) Fatty acid
- **26.** Natural sugar and amino acids are respectively:
 - (1) D and L
- (2) D and D
- (3) L and D
- (4) L and L
- **27.** Addition of BH₃ to a carbon-carbon double bond is :
 - (1) Anti-Markovnikov syn addition
 - (2) Anti-Markovnikov anti addition
 - (3) Markovnikov syn addition
 - (4) Markovnikov anti addition
- **28. Statement-I:** Dextro-isomers rotate the plane of polarised light towards right.

Statement-II: Dextro-isomers are represented by putting (D) before their name.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.

- **29.** There is $p\pi$ -d π multiple bonding in :
 - (1) NO
 - (2) CO₂
 - (3) NO₂
 - (4) CS_2
- **30.** If hexan-3-one is treated with NaBH₄ followed by hydrolysis with D₂O, the product will be:
 - (1) $CH_3CH_2CH(OD)CH_2CH_2CH_3$
 - (2) CH₃CH₂CD(OH)CH₂CH₂CH₃
 - (3) CH₃CH₂CH(OH)CH₂CH₂CH₃
 - (4) CH₃CH₂CD(OD)CH₂CH₂CH₃
- **31.** The correct order of acidity of the following compounds is:

(C)

- $(1) \quad B > C > A$
- (2) C > B > A
- $(3) \quad A > C > B$
- (4) A > B > C
- **32.** Consider the following cell reaction :

$$Cd(s) + Hg_2SO_4(s) + H_2O(l) \rightarrow CdSO_4 + H_2O(s) + 2Hg(l)$$

The value of E_{Cell}^{o} is 4.315 V at 25°C.

If $\Delta H^{\circ} = -825.2 \text{ kJ mol}^{-1}$, the standard entropy change, ΔS° in J K⁻¹ is :

[Given: Faraday's constant = 96487 C mol^{-1}]

- (1) 25
- (2) 30
- (3) 35
- (4) 15
- **33.** Solid crystalline PCl₅ has structure which of the following?
 - (1) Bipyramidal moieties
 - (2) Octahedral and tetrahedral ions
 - (3) Square pyramidal moieties
 - (4) Pentagonal moieties

- At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. 1 mol of A and 2 mol of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is _____kPa.
 - (1) 22
- (2) 19
- (3) 17
- (4) None of these
- **35.** The equilibrium;

$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$
,

is followed to set-up at 127°C in a closed vessel. The total pressure at equilibrium was 20 atm. The K_c for the reaction is:

- (1) 0.092 M^2
- (2) 0.085 M^2
- (3) 3.045 M^2
- (4) None of these

SECTION-B

- 36. EDTA⁴⁻ is ethylenediaminetetraacetate ion. The total number of N-Co-O bond angles in [Co(EDTA)]1complex ion is:
 - (1) 4
- (2) 10
- (3) 12
- (4) 8
- $\left[\text{Co}(\text{NH}_3)_4 (\text{NO}_2)_2 \right]$ Cl exhibits : **37.**
 - (1) ionisation isomerism, geometrical isomerism and optical isomerism.
 - (2) linkage isomerism, geometrical isomerism and optical isomerism.
 - (3) linkage isomerism, ionisation isomerism and optical isomerism.
 - (4) linkage isomerism, geometrical isomerism and ionisation isomerism.
- Molten sodium chloride conducts electricity due to the 38. presence of :
 - (1) Na atom
- (2) Cl atom
- (3) Ions
- (4) Free electrons
- **39.** At 100°C the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm. If $K_b = 0.52$, the boiling point of this solution will be:
 - (1) 102°C
- (2) 103°C
- (3) 101°C
- (4) 100°C
- 40. In the given transformation, which of the following is the most appropriate reagent?

$$\begin{array}{c} \text{CH=CHCOCH}_3 \\ \text{HO} \end{array} \begin{array}{c} \text{CH=CHCH}_2\text{CH}_3 \\ \end{array}$$

- (1) $\operatorname{Zn}(\operatorname{Hg}) \operatorname{HCl}$ (2) Na, liq. NH₃
- (3) NaBH₄
- (4) NH₂NH₂, OH⁻

- 41. Vitamin B_6 is known as :
 - (1) pyridoxine
- (2) thiamine
- (3) tocopherol
- (4) riboflavin
- 42. Which of the following contains secondary amino group?
 - (1) Leucine
- (2) Glycine
- (3) Proline
- (4) None of these
- 43. What is the relationship between benzyl acetate and phenyl acetate?
 - (1) Isomers
- (2) Rotamers
- (3) Metamers
- (4) None of these
- 44. What is the energy in eV required to excite the electron from n = 1 to n = 2 state in hydrogen atom? (n = principal quantum number)
 - (1) 13.6
- (2) 3.4
- (3) 17
- (4) 10.2
- Assertion: In methane, ammonia and water, the 45. respective central atoms are sp³ hybridised.

Reason: All the three are having same bond angle.

- (1) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
- (2) Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
- (3) **Assertion (A)** is true and **Reason (R)** is false.
- (4) **Assertion (A)** is false and **Reason (R)** is true.
- In view of the signs of $\Delta_r G^o < 0$ for the following 46. reactions:

$$PbO_2 + Pb \rightarrow 2PbO, \Delta_r G^o < 0$$

$$SnO_2 + Sn \rightarrow 2SnO, \Delta_rG^o > 0$$

Which oxidation states are more characteristics for lead and tin?

- (1) For lead +2, for tin +2
- (2) For lead +4, for tin +4
- (3) For lead +2. for tin +4
- (4) For lead +4, for tin +2
- 47. pOH of H₂O is 7 at 298 K. If water is heated to 350 K, which of the following statement should be true?
 - (1) pOH will decrease.
 - (2) pH will increase.
 - (3) pOH will remain 7.
 - (4) Both (1) and (2).

- **48.** If 1.5 moles of oxygen combine with Al to form Al_2O_3 , the weight of Al used in the reaction is :
 - (1) 27 g
- (2) 40.5 g
- (3) 54 g
- (4) 81 g
- **49.** For a gaseous reaction, following data is given:

$$A \rightarrow B, k_1 = 10^{15}.e^{-2000/T}$$

$$C \rightarrow D, k_2 = 10^{14}.e^{-1000/T}$$

The temperature at which $k_1 = k_2$ is :

- (1) 1000 K
- (2) 2000 K
- (3) 868.82 K
- (4) 434.2 K

- **50.** Bond angles of NH₃, PH₃, AsH₃ and SbH₃ are in the order:
 - (1) $PH_3 > AsH_3 > SbH_3 > NH_3$
 - (2) $SbH_3 > AsH_3 > PH_3 > NH_3$
 - (3) $SbH_3 > AsH_3 > NH_3 > PH_3$
 - (4) $NH_3 > PH_3 > AsH_3 > SbH_3$

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if