

Sample Paper- 04

Dropper NEET (2024)

CHEMISTRY

SECTION-A

- 1. The work to be done on 2 moles of a perfect gas at 27°C, if it is compressed reversibly and isothermally from a pressure of $1.01 \times 10^5 \ Nm^{-2}$ to $5.05 \times 10^6 \ Nm^{-2}$ is:
 - (1) $2.03 \times 10^4 \text{ J}$
- (2) $1.95 \times 10^2 \text{ J}$
- (3) $1.95 \times 10^4 \text{ J}$
- (4) $1.95 \times 10^8 \text{ J}$
- 2. The ratio of radii of first orbits of H, He⁺ and Li²⁺ is
 - (1) 1:2:3
- (2) 6:3:2
- (3) 1:4:9
- (4) 9:4:1
- **3.** The one of the product obtained on reaction of ethyl magnesium bromide with methanol is:
 - (1) Ethane
- (2) Methane
- (3) Propane
- (4) Methoxyethane
- 4. The correct order of reactivity for the addition reaction of the following carbonyl compounds with ethyl magnesium iodide is:

$$H$$
 $C = O$
 H_3C
 $C = O$

H
$$C = O$$
 $(CH_3)_3C$ $C = O$ $(CH_3)_3C$ $C = O$

- (1) I > III > II > IV (2) IV > III > II > I
- (3) I > II > IV > III (4) III > II > IV
- 5. Solids are attracted by magnetic field due to the presence of atoms, ions or molecules with unpaired electrons, called paramagnetic. Which among the following is paramagnetic?
 - (1) Cl₂O₇
- (2) Cl₂O
- (3) ClO₂
- (4) Cl₂O₅
- 6. The coordination entity formed when excess of KCN is added to an aqueous solution of CuSO₄ is :
 - (1) $[Cu(CN)_2]^+$
- (2) $[Cu(CN)_6]^{4-}$
- (3) $[Cu(CN)_4]^{2-}$
- (4) $[Cu(CN)_4]^{3+}$

- 7. Which of the following is (are) an isomer of compound (i)?
 - (i) $CH_2 CH CH_3$
 - (ii) $CH_3 CH_2 C H$

$$(iii) \ \ CH_3-C-CH_3$$

- (iv) $CH_3 CH = CH OH$
- (1) (ii)
- (2) (iv)
- (3) (ii) and (iii)
- (4) All of these
- 8. The major product of the following reaction is:

- (1) Propan-2-ol
- (2) Propanal
- (3) Acetaldehyde
- (4) Propan-1-ol
- Which of the following will undergo Cannizzaro reaction?
 - (1) Benzaldehyde
- (2) Acetaldehyde
- (3) Acetone
- (4) Pentanone
- 10. Assertion(A): Each d-block series contains ten elements.

Reason (R): The maximum capacity of d-orbitals is of ten electrons as in each series d-orbitals are gradually filled up.

- (1) Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
- (2) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
- (3) **Assertion** (A) is true and **Reason** (R) is false.
- (4) **Assertion (A)** is false and **Reason (R)** is true.

- **11.** When CH₃Cl and AlCl₃ are used in Friedel-Crafts reaction, the electrophile is :
 - (1) Cl⁺
 - (2) AlCl₄
 - (3) CH_3^+
 - (4) AlCl₂⁺
- 12. Ph $-C \equiv CH \xrightarrow{\text{HgSO}_4/\text{H}_2\text{SO}_4} (P)$

Major product (P) is:

- (1) $Ph CH_2 CH_2 OH$
- (2) $Ph CH_2 CHO$
- (3) $Ph CO CH_3$
- (4) $Ph CH_2 O CH_3$
- **13.** Which of the following compound is most reactive towards electrophilic substitution?

14. Match **List-I** with **List-II** to find out the **correct** option.

	T T	34100		
List-I		List-II		
(A)	A pair of functional isomers	(I)	$H \stackrel{A_3C}{\searrow} C = C \stackrel{CH_3}{\searrow} H \stackrel{H_3C}{\searrow} C = C \stackrel{H}{\searrow} C \stackrel{CH_3}{\searrow} C \stackrel{H}{\Longrightarrow} C \stackrel{CH_3}{\Longrightarrow} C \stackrel{H}{\Longrightarrow} C$	
(B)	A pair of geometrical isomers	(II)	C ₂ H ₅ CHO; CH ₃ COCH ₃	
(C)	A pair of metamers	(III)	CH ₃ OC ₃ H ₇ ; C ₂ H ₅ OC ₂ H ₅	
(D)	A pair of tautomers	(IV)	H ₂ C = CHOH; CH ₃ CHO	

- (1) (A) (I), (B) (II), (C) (III), (D) (IV)
- (2) (A) (II), (B) (I), (C) (III), (D) (IV)
- (3) (A) (III), (B) (I), (C) (II), (D) (IV)
- (4) (A) (IV), (B) (III), (C) (I), (D) (II)

15. Match **List-I** with **List-II** to find out the **correct** option.

List-I		List-II	
(Molecule)		(Number of lone pairs on central atom)	
(A)	NH ₃	(I)	Two
(B)	H ₂ O	(II)	Three
(C)	XeF ₂	(III)	Zero
(D)	CH ₄	(IV)	Four
		(V)	One

- (1) (A) (V), (B) (I), (C) (III), (D) (II)
- (2) (A) (III), (B) (I), (C) (II), (D) (V)
- (3) (A) (V), (B) (I), (C) (II), (D) (III)
- $(4) \quad (A)-(I), \, (B)-(V), \, (C)-(III), \, (D)-(IV)$
- **16.** Oxidation states of N in HCN, HN_3 and NO respectively are :
 - (1) +1, +3 and -2
 - (2) -3, +3 and +2
 - (3) -3, $-\frac{1}{3}$ and +2
 - (4) +2, $-\frac{1}{3}$ and +2
- **17. Statement-I:** Photoelectric effect is easily pronounced by caesium metal.

Statement-II: Photoelectric effect is easily pronounced by the metals having high ionization energy.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **18.** 20 g of an impure sample of calcium carbonate decomposes on heating to give 8.4 g of calcium oxide. What is the percentage purity of calcium carbonate sample?

[Atomic weight of Ca is 40 u]

- (1) 85 %
- (2) 50 %
- (3) 95 %
- (4) 75 %
- 19. In laboratory, the presence of nitrate ion in a solution is confirmed by the formation of a coloured ring. What is the colour of the ring formed?
 - (1) Blue
- (2) Red
- (3) Orange
- (4) Brown

20. Which one of the following compound is most basic?

21. Which will undergo reaction with ammoniacal AgNO₃?

- (2) CH₃–CH=CH–C≡CH
- (3) CH₃-CH₂-CH=CH-CH₂-CH₃
- $(4) \quad CH_2 = CH CH_2 CH_3$
- **22. Statement-I**: In octahedral complexes, the three orbitals (d_{xy}, d_{yz}, d_{zx}) are stable and of low energy while the two orbitals $(d_x^2-y^2, d_z^2)$ are unstable and have high energy.

Statement-II: In octahedral complexes, the three d-orbitals(d_{xy} , d_{yz} , d_{zx}) experience less repulsion from the ligands while two d-orbitals ($d_x^2 - y^2$, d_z^2) experience more repulsion from the ligands due to their shapes.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is
- (4) Statement I and Statement II both are incorrect.
- **23.** The ions from among the following which are colourless are :
 - $(i) \quad Ti^{4+} \,, \quad (ii) \; Cu^{+1}, \quad (iii) \; Co^{3+} \,, \quad (iv) \; Fe^{2+} \\$
 - (1) (i) and (ii) only (2) (i), (ii) and (iii)
 - (3) (iii) and (iv) (4) (ii) and (iii)

24. Which one of the following compounds will give (d)- and (ℓ)- form in S_N1 reaction (as major product)?

25. Statement-I: Elevation in boiling point will be high if the molal elevation constant of solvent is high.

Statement-II: Elevation in boiling point is a colligative property.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- 26. If excess of AgNO₃ solution is added to 100 mL of a 0.024 M solution of dichlorobis (ethylenediamine)cobalt (III) chloride, how many moles of AgCl be precipitated?
 - (1) 0.0012 (2) 0.0016 (3) 0.0024 (4) 0.0048
- **27.** Which of the following pairs is (are) correctly matched?
 - (1) α -D-(+)-glucose and β -D-(+)-glucose \rightarrow C-2 epimers
 - (2) Glucose and fructose \rightarrow C-3 epimers
 - (3) Glucose \rightarrow Furanose ring
 - (4) Sucrose \rightarrow Glucose + fructose
- **28.** When ethyne is passed through a red hot iron tube, then formation of benzene takes place.

$$\Delta H_{f(C_2H_2)(g)}^{\circ} = 230 \text{ kJ mol}^{-1}$$

 $\Delta H_{f(C_6H_6)(g)}^{\circ} = 85 \text{ kJ mol}^{-1}$

Calculate the standard heat of trimerisation of ethyne to benzene.

$$3C_2H_2(g) \longrightarrow C_6H_6(g)$$

- (1) 205 kJ mol^{-1} (2) 605 kJ mol^{-1}
- (3) -605 kJ mol^{-1} (4) -205 kJ mol^{-1}

29. The compound (B) formed in the following sequence of reactions,

 $CH_3CH_2CH_2OH \xrightarrow{PCl_5} (A) \xrightarrow{Alc. KOH} (B)$ is:

- (1) propene
- (2) propyne
- (3) propane
- (4) propanal
- **30.** Which of the following has maximum weight?
 - (1) 40 g iron
 - (2) 1.2 g atom of N
 - (3) 1×10^{23} atoms of C
 - (4) 1.12 liter of O₂ at STP
- 31. The half-life of second order reaction is:
 - (1) Inversely proportional to the square of the initial concentration of the reactants.
 - (2) Inversely proportional initial concentration of reactants.
 - (3) Proportional to the initial concentration of reactants.
 - (4) Independent of the initial concentration of reactants.
- **32. Assertion (A):** Reduction of fructose with sodium borohydride forms two products differing in configuration.

Reason (R): A chiral carbon is formed due to reduction of keto group at C_2 .

- (1) Assertion (A) is correct, Reason (R) is correct and Reason (R) is a correct explanation for Assertion (A).
- (2) Assertion (A) is correct, Reason (R) is correct but Reason (R) is not a correct explanation for Assertion (A).
- (3) Assertion (A) is correct but Reason (R) is incorrect.
- (4) Assertion (A) is incorrect but Reason (R) is correct.
- **33.** Ge (II) compounds are powerful reducing agents whereas Pb (IV) compounds are strong oxidants. It can be due to:
 - (1) Pb is more electronegative than Ge.
 - (2) Ionization potential of lead is less than that of Ge.
 - (3) Ionic radii of Pb²⁺ and Pb⁴⁺ are larger than those of Ge²⁺ and Ge⁴⁺.
 - (4) More pronounced inert pair effect in lead than in Ge.

- 34. The specific conductivity of N/10 KCl solution at 20°C is 0.0212 ohm⁻¹ cm⁻¹ and the resistance of the cell containing this solution at 20°C is 55 ohm. The cell constant is:
 - (1) 4.616 cm⁻¹
- (2) 1.166 cm⁻¹
- $(3) 2.173 \text{ cm}^{-1}$
- (4) 3.324 cm⁻¹
- For which of the following sparingly soluble salt, **35.** the solubility (S) and solubility product (K_{sp}) are related by the expression:

$$S = \left[\frac{K_{sp}}{4}\right]^{1/3}$$

- (1) $BaSO_4$ (2) $Ca_3(PO_4)_2$
- (3) Hg₂Cl₂ (4) Ag₃PO₄

SECTION-B

- 36. The element with atomic number 35 belongs to:
 - (1) d-block
- (2) f-block
- (3) p-block
- (4) s-block
- 37. The correct order of ionic radii of Ce, La, Pm and Yb in +3 oxidation state is:
 - (1) $La^{3+} < Pm^{3+} < Ce^{3+} < Yb^{3+}$
 - (2) $La^{3+} < Ce^{3+} < Pm^{3+} < Yb^{3+}$
 - (3) $Yb^{3+} < Ce^{3+} < Pm^{3+} < La^{3+}$
 - (4) $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$
- 38. Using phenolphthalein as an indicator, which of the following titration is possible?
 - (1) Acetic acid with pyridine.
 - (2) Oxalic acid and sodium hydroxide.
 - (3) Hydrochloric acid with aniline.
 - (4) Sulphuric acid with aqueous ammonia.
- **39.** The IUPAC name for the compound given below is:

- (1) (E)-5-ethylhept-5-en-2-one
- (2) (Z)-5-ethylhept-5en-2-one
- (3) (E)-3-ethylhept-2-en-6-one
- (4) (Z)-3-ethylhept-2-en-6-one

40. The most suitable reagent for the following transformation is:

- (1) NaBH₄
- (2) B_2H_6
- (3) Zn-Hg/HCl
- (4) NH₂NH₂/HCl
- **41.** Acetophenone can be converted to phenol by reaction with :
 - (1) m-CPBA followed by base catalysed hydrolysis.
 - (2) Conc. nitric acid.
 - (3) Iodine and NaOH.
 - (4) Singlet oxygen followed by base catalysed hydrolysis.
- **42.** Among dimethylcyclobutanes, which one exhibit optical activity?
 - (1) cis-1,2-dimethylcyclobutane
 - (2) trans-1,2-dimethylcyclobutane
 - (3) cis-1,3-dimethylcyclobutane
 - (4) trans-1,3-dimethylcyclobutane
- **43.** The decreasing order of stability of the free radicals A, B and C is:

- (1) ABC
- (2) CAB
- (3) BAC
- (4) ACB
- **44.** Bond dissociation enthalpies of H₂(g) and N₂(g) are 436.0 kJ mol⁻¹ and 941.8 kJ mol⁻¹ respectively and enthalpy of formation of NH₃(g) is -46 kJ mol⁻¹. What is enthalpy of atomization of NH₃(g)?
 - (1) $390.3 \text{ kJ mol}^{-1}$
- (2) $1170.9 \text{ kJ mol}^{-1}$
- (3) 590 kJ mol^{-1}
- (4) 720 kJ mol^{-1}

45. The configuration at the two stereocenters in the compound given below are :

- (1) 1R, 4R
- (2) 1R, 4S
- (3) 1S, 4R
- (4) 1S, 4S
- **46.** The molecule with highest number of lone pairs and has a linear shape based on the VSEPR theory is:
 - (1) Carbon dioxide
 - (2) Triiodide anion
 - (3) Nitrogen dioxide
 - (4) Nitrogen dioxide cation
- 47. Find out the value of K_c for the following equilibria from the value of K_p :

2NOCl(g)
$$\rightleftharpoons$$
 2NO(g) + Cl₂(g); $K_p = 1.8 \times 10^{-2}$ atm at 500 K.

- (1) 4.38×10^{-6}
- (2) 2.19×10^{-4}
- (3) 4.38×10^{-4}
- (4) 2.19×10^{-6}
- **48.** On monochlorination of 2-methylbutane, the total number of chiral compounds is :
 - (1) 2
- (2) 4
- (3) 6
- (4) 8
- **49.** RCOOH + N₃H $\xrightarrow{\text{H}_2\text{SO}_4(\text{conc.})}$ RNH₂ + CO₂ + N₂

The above reaction is called:

- (1) HVZ reaction
- (2) Hunsdiecker reaction
- (3) Schmidt reaction
- (4) Decarboxylation reaction
- **50.** Which has a maximum pK_a value?
 - (1) H_2O
- (2) H_2S
- (3) H₂Se
- (4) H_2Te

