
CompilerCompiler
DesignDesign
Compiler
Design

Published By:

 Physics Wallah

ISBN: 978-93-94342-39-2

Mobile App: Physics Wallah (Available on Play Store)

Website: www.pw.live

Email: support@pw.live

Rights

All rights will be reserved by Publisher. No part of this book may be used or reproduced in any manner

whatsoever without the written permission from author or publisher.

In the interest of student's community:

Circulation of soft copy of Book(s) in PDF or other equivalent format(s) through any social media channels,

emails, etc. or any other channels through mobiles, laptops or desktop is a criminal offence. Anybody

circulating, downloading, storing, soft copy of the book on his device(s) is in breach of Copyright Act. Further

Photocopying of this book or any of its material is also illegal. Do not download or forward in case you come

across any such soft copy material.

Disclaimer

A team of PW experts and faculties with an understanding of the subject has worked hard for the books.

While the author and publisher have used their best efforts in preparing these books. The content has been

checked for accuracy. As the book is intended for educational purposes, the author shall not be responsible for

any errors contained in the book.

The publication is designed to provide accurate and authoritative information with regard to the subject matter

covered.

This book and the individual contribution contained in it are protected under copyright by the publisher.

(This Module shall only be Used for Educational Purpose.)

http://www.pw.live/
mailto:support@pw.live

Design Against Static Load

1. Introduction and Lexical Analysis ... 8.1 – 8.2

2. Parsing ... 8.3 – 8.11

3. Lexical Analysis .. 8.12 – 8.13

4. Syntax Directed Transaction .. 8.14 – 8.16

5. Intermediate, Code Optimization .. 8.17 – 8.23

INDEX

GATE-O-PEDIA COMPUTER SCIENCE & INFORMATION TECHNOLOGY

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.1

1

INTRODUCTION AND LEXICAL

ANALYSIS

1.1 CD Introduction

1.1.1 Definition

Convert High Level Language to Low Level Language.

 High Level Language can perform more than one operation in a single Statement.

 lol Level Language can perform atmost one operation in a statement.

1.2 Analysis and Synthesis model of Compiler

 There are 6 phases of the Compiler

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.2

1. Lexical Analyzer:

 Program of DFA, it checks for spelling mistakes of program.

 Divides source code into stream of tokens.

2. Syntax Analyzer:

 Checks grammatical errors of the program (Parser).

 Parser is a DPDA.

3. Semantic Analyzer:

 Checks for meaning of the program.

Example:

 Type miss match, stack overflow

4. Intermediate Code Generation:

 This phase makes the work of next 2 phases much easier.

 Enforces reusability and portability.

5. Code optimization:

 Loop invariant construct

 Common sub expression elimination

 Strength Reduction

 Function in lining

Deadlock elimination

6. Symbol Table:

(1) Data about Data (Meta data)

(2) Data structure used by compiler and shared by all the phrase.



GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.3

2
PARSING

2.1 CD - Grammar

 In compiler we only use: Type – 2 (CFG) and Type – 3 Regular grammar.

 Compiler = Program of Grammar

 Compiler = Membership algorithm

• Every programming Language is Context Sensitive Grammar (Context Sensitive Language)

2.1.1 Parse Tree and Syntax Tree

G: E  E + T / T E  E + T  T + T  T * F + T  F * F + T  2 * F + T  2 * 3 + T  2 * 3 + F

T  T * F / F

 E  2 * 3 + 4

Parse Tree:

Syntax Tree:

 To check to priority / Associativity:

 Randomly derive till you have enough operators, then check which one is done first.

 If priority of 2 operators is same and both Left and Right associative  Ambiguous Grammar [Useless]

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.4

2.1.2 Types of Parsers in Bottom Up: [CD - Parser]

2.2 CD-Syntax Analysis / Parsing

Grammatical Errors are checked by the help of parsers.

 Parsers are basically DPDA

 All of these parsers are table driven.

2.2.1 Mathematical Model of Parser

 Parsers generate Parse Tree, for a given string by the given grammar.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.5

2.2.2 Top-Down Parser (LL (1))

 It uses LMD and is equivalent to DFS in graph.

2.2.3 Algorithm to construct Parsing Table

1. Remove Left Recursion if any.

2. Left Factor [Remove Common Prefix]

3. Find first and follow set

4. Construct the table.

 If we increase the look ahead symbol:

2.2.4 Removal of common Prefix: (Left Factor)

1. S  a | a b | a A S  a Y

 Y   |b| A

2. A  a b A | a A | b

 A  a  | b A  a  | b

 X  b A | A X  b A | a x | b

 A  a X | b

 X  a X | b

 Y Y  A | 

2.2.5 First and Follow

 First Set  extreme Left terminal from which the string of that variable starts.

  it never contains variable, but may contain ‘’.

  we can always find the first of any variable.

 Follow set  Follow set contains terminals and $.

It can never contain variable and ‘’.

How to find follow set?

1. Include $ in follow of start variable.

2. If production is of type 

A  B   strings of grammar symbol].

follow (B) = first ().

If,   , i.e. A  B, then follow(B) = follow(A).

 Productions like: A  A gives no follow set.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.6

 First Follow

E C, id $,)

E’ +,  $,)

T C, id +, $,)

T’ *,  +, $,)

F C, id *, +, $,)

2.2.6 Example of first and follow set

1. S  AB | CD

 A  aA | a

B  bB | b

C  cC | c

D  dD | d

2.2.7 Entity into Table: Top Down

1. No of Rows = number of unique variable in Grammar.

2. No of columns = [Terminals + $]

3. For a Variable (Row) fill the column (Terminal) if its P, there in its first with the production required.

4. If  is in first put V   under $ and its follow.

 If any cell has multiple items, then its not possible to have LL (1) Parser, since that will be ambiguous.

 In top down we do: Derivation

In Bottom up we do: Production.

Question: Construct LL (1) Parsing Table for the given Grammar: E  E + T | T; T  T * F | F; F  (E) | id;  G0

 Removing Left Recursion:

E  TE’

E’ + TE’ | 

T  FT’ G1

T’ *FT’| 

F  (E) | id

 Left Factoring not Required:

 Construction of Table: [LL (1)]

 + * () id $

E Error Error ETE’ Error ETE’ Error

E’ E’TE’ Error Error E’ Error E’

T Error Error TFT’ Error TFT’ error

T’ T’ T’*FT’ Error T’ Error T’

F Error Error F() Error Fid error

 Since for G1, Table constructed with no multiple entries. Hence successfully completed. Hence G 1 is LL (1)

Question: Construct LL (1) Parsing Table for the following Grammar:

S  L = R | R; L  * R | id; R  L  G0

Solution: Left Factoring:

 First Follow

S a, c $

A a b

B b $

C c D

D D $

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.7

Construction of Table:

 * = Id $

S SLX Error SL

X

Error

L L*R Error Lid Error

R RL Error RL Error

 Error X = R Error X

 G1 is a LL (1) Grammar.

2.2.8 Hierarchy of Parsers: [for - free Grammar]

 For  - producing grammars every LL (1) may not be LALR (1).

Example:

 G: S  a S a | b S b | a | b (Unambiguous but no parser) L(G) = (a + b)  R

(Odd palindrome)

 Every RG is not LL (1) as it may be ambiguous, or Recursive or Common Prefix.

 Parsers exists only for the grammar if its Language is DCFL.

 There are some grammars whose Language is DCFL but no parser is possible for it.

Note:

 We can’t construct any parser for ambiguous grammar. Except: Operator precedence, parser possible for some

 ambiguous grammar.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.8

2.4.9 Operator Precedence Grammar

Format: (1) No 2 or more variable side by side

 (2) No  production.

Example:

2.2.10 Checking LL (1) without Table

A 1|1|1 then  A 1|2|3|


first (1)  first (2) =  first (1)  first (2) = 

first (1)  first (3) =  first (1)  first (3) = 

first (2)  first (3) =  first (2)  first (3) = 

 follow (A)  first (1) = 

 follow (A)  first (2) = 

 follow (A)  first (3) = 

2.2.11 Bottom-UP Parser

 It uses RMD in reverse and has no problem with:

(a) Left recursion (b) Common Prefix

 LR (1) = LR(0) +1 Lookahead

 No parser possible for ambiguous grammar.

 There are some unambiguous grammars for which, there are no Parser.

2.2.12 Basic Algorithm for Construction

 Augment the grammar and expand it, and give numbers to it

 Construct LR (0) or LR (1) item set.

 From that fill the entries in the Table Accordingly.

SLR (1) LR (0)

LR (0) items

CLR (1) LR (1)

LALR (1) items

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

8.9

2.2.13 Types of Entries

(1) Shift Entries: Transitions or Terminals

Entry:

 a

I0 S1

 a Terminal I0, I1: Item sets.



 Shift entries are some for all Bottom – up Parser.

(2) State Entry: Transition or non – terminal (variable)

 A  Variable

Entry:

 A

I0 1

 Same for all Bottom-up Parser.

(3) Reduce Entity: done for each separate production in the item set of type:

 i > ×  

 where, i  Production Number

 ×  Producing Variable

   Grammar String

(a) LR (0) Parser:

 Put Ri in every cell of the set-in action table (ALL).

(b) SLR (1) Parser:

 Put Ri only in the follow(x) form the Grammar. (Follow(x))

(c) LALR (1) and CLR (1):

 Put Ri only in the look ahead of the production (Lookaheads)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.10

Compiler Design

2.2.14 Conflicts

LR (0) Parser:

 SR: Shift Reduce Conflict

 S  X    t then SR

 R  Y  δ  conflict

 RR: Reduce Reduce conflict

 R  X    then RR

 R  X   

SLR (1) Parser:

 SR:

t  follow (Y)

 RR:

 

 Follow (x)n follow (y) 

LALR (1) and CLR (1): Same as SLR (1), but instead

SR:

 T  L2

RR:

 L1  L2  




2.4.15 Inadequate Static

A static having ANY conflict is called a conflicting state or independent state.

 The only difference between CLR (1) and LALR (1) is that, the states with the similar items, but different Lookaheads are

merged together to Reduce space.

Important Points

1. If CLR (1) doesn’t have any conflict, then conflict may or may not arise after merging in LALR (1).

2. If LALR (1) has SR – conflict, then we can conclude that CLR (1) also has SR – Conflict.

3. LALR (1) has SR – conflict if and only if CLR (1) also has SR.

Note:

 The state S’  S. or S'  S.,$ is accepted state, and this is not a reduction.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.11

Compiler Design

• We can construct parser for every unambiguous regular grammar: [CLR (1) Parser].

S

Simple

L

L to R

Scan

R

Using

Reverse

RMD

(1)

Lookahead

L

Look

A

Ahead

L

L to R

Scan

R

Revers

RMD

(1)

Lookahead

C

Canonical

L

L to R

Scan

R

reverse

RMD

(1)

Lookahead

Very Important Point:

 LALR (1) Parser can Parse non LALR (1) grammar, when only non-SR – Conflict by favouring shift over reduce.

Example: E  E + E | E * E | id | 2 + 3 * 5  E + E  * 5



GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.12

Compiler Design

3
LEXICAL ANALYSIS

3.1 Lexical Analysis

3.1.1 Definition

Scan the whole program, char by char and produces the corresponding token.

 Also produces /Lexical Errors (if any).

 Functions of Lexical Analyzer.

(1) Scans all the character of the program.

(2) Token recognizer.

(3) Ignores the comment & spaces.

(4) Maximal Munch Rule [Longest Prefix Match].

 Lexeme  smallest unit of program or Logic.

 Token  internal representation of Lexeme.

3.1.2 Types of Token

(1) Identifier

(2) Keywords

(3) Operators

(4) Literals/Constants

(5) Special Symbol

Note:

 The Lexical Analyser uses, the Regular Expression.

 Prioritization of Rules.

 Longest Prefix match .

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.13

Compiler Design

3.1.3 Token Separation

(1) Spaces

(2) Punctuation

3.1.4 Implementation

 LEX tool  Lex.yy.e

 All identifiers will have entry in symbol Table/ LA, gives entries into the symbol Table.

Regular Expression  DFA  Lexical Analyzer

3.1.5 Find number of Tokens

(1) void main () {

 Printf(“gate”);

 }

 {11 Tokens}

(2) int x, *P;

 x = 10; p = &x; x++;

 [18 Tokens]

 (3) int x;

 x = y;

 x == y;

 [11 Tokens]

(4) int 1x23; [Lexical Error]

(5) char ch = ‘A’;

 [5 Token]

(6) char ch = ‘A;

 Lexical Error.

(7) char *p = “gate”;

 [6 Tokens]

(8) char * p = “gate;

 Error.

(9) int x = 10;

 /* comment x = x + 1; ERROR

 x = x + 1; [11 Tokens]



GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.14

Compiler Design

4

SYNTAX
DIRECTED TRANSACTION

4.1 Syntax Directed Transaction

 SDT: CFG + Transition → 1) Meaning 2) Semantic

4.1.1 Application of SDTL

(1) Used to perform Semantic Analysis.

(2) Produce Parse Tree.

(3) Produce intermediate representation.

(4) Evaluate an expression.

(5) Convert infix to prefix or postfix.

Example: S  S1S2 [S.count = S1.count + S2.count]

 S  (S1) [S.count = S1.count + 1]

 S   [S.count = 0]

 Count is an attribute for non–terminal

4.1.2 Attributes

(1) Inherited Attribute

(2) Synthesized Attribute

(1) Inherited Attribute: (RHS)

 The computation at any node (non-terminal) depends on parent or siblings (S).

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.15

Compiler Design

 In above Example, x is inherited attribute.

(2) Synthesized Attribute: (LHS)

x is synthesized attribute.

The computation at any node (non-terminal) depends on children.

4.1.3 Identifying Attribute Type

 Always check every Translation.

4.1.4 Syntax Directed Definitions (SDDs): (Attribute Grammar)

(1) L-Attributed Grammar

 Attribute is synthesized or restricted inherited. (1) Parent 2) Left sibling only).

 Translation can be appended anywhere is RHS of production.

 Example: S  AB {A.x = S.x + 2}

 or, S  AB {B.x = f (A.x | S.x)}

 or, S  AB {S.x = f (A.x | B.x)}

 Evaluation: In Order (Topological).

(2) S-Attributed Grammar:

 Attribute is synthesized only.

 The transaction is placed only at the end of production.

 Example: S  AB {S.x = f (Ax | Bx)}.

 Evaluation: Reverse RMD (Bottom-Up Parsing).

1) D  T : L ; {L.Type = T.Type} inherited

L  L1, id ; {L1.Type = L.Type} inherited

L  id

T  integer {T.Type = int} synthezised

Type is neither inherited

nor synthesized

2)

E  E1 + T {E.val = E1.val + T.val} synthesized

E  T {E.val = T.val} Synthesized

T  T1 – F {T.val = T1.val – F.val} Synthesized

F  id {F.val = id.val} synthesized

Val is

synthesized attribute

3)

S  AB {Aa = B.x; S.y = A.x} x is inherited | y is

synthesized

A  a {A.y = a} y is synthesized

B  b {B.y = a.y} y is synthesized

x  inherited

y  synthesized

4) D  T L {L.in = T.type} inherited(in)

T  int {T.type = int} /synthesized

L  id {Add type(id.entry,L.in)}

in  inherited

type  synthesized

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.16

Compiler Design

4.1.5 Identify SDD

(1) E  E1 + E2 {E.type = if (E1.type = = int & & E.type = = int) then int} Synthesizer else type – error.

 E  id {E.type = Lookup (id.entry)} synthesizer.

 type is synthesized, hence S-attribute and also L-attributed Grammar.

 Every S-attributed Grammar is also L-attributed Grammar.

 For L-attributed Evaluation, use the In-order of annotated Parser Tree.

 For S-attributed, reverse of RMD is used.

 find RMD Order.

 Consider its reverse.





GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.17

Compiler Design

5

INTERMEDIATE, CODE

OPTIMIZATION

5.1 Introduction

Example Expression:

 Syntax Tree 

 DAG 

3-address Code: Code in which, at most 3 addresses. [including LHS]

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.18

Compiler Design

 3AC done using operator precedence.

Find minimum number of variables required in equivalent 3AC:

1.

u u t u t z

v u * u z w * v

w v w

    
 

 
 
   

  5 variables only

 Evaluating the expression:

 a  c + b  d – b + b  b + c – b + b

  b + a + d – b + b

  b + b + c + d – b + b

  b + b + c + d

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.19

Compiler Design

 Minimum:

b b b

c b c

a c d

  
 

  
   

  only 3 variables [most optimal]

5.1.1 Static Single Assignment Code: (SSA Code)

Every variable (address) in the code has single assignment [single meaning] + 3AC.

1.

 [u, t, v, w, z] are already assigned so we can’t use them.

 Equivalent SSA Code:

 x = u – t y = x * v

 p = y + w

 q = t – x

 r = p * q

 in use: x, y, p, q, r  additional

  Total Variable  10.

2.

  [a, b, c, u, v] are already assigned,

 Equivalent SSA Code:

 p = a – b

 q = p * c

 p1 = v * u

 q2 = p1 + q

 in use: p, q, p1, q2

 Total Variable = 9

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.20

Compiler Design

5.1.2 Control Flow Graphs

 CFG contain group of basic blocks and controls. CFG has nodes and edges to define basic blocks and controls.

 Basic Blocks: Sequence of 3-address code statements, in which control enters only from 1st statement (called as leader),

and leaves from last statement.

Example:

5.2 Code Optimization

Saves space / time. (Basic Objective)

5.2.1 Optimization Methods

1. Constant folding

2. Copy propagation

3. Strength Reduction

4. Dead code elimination

5. Common sub expression elimination.

6. Loop Optimization

7. Peephole Optimization

1. i = 1 LB1

2. j = 1 LB2

3. t1 = 5 * i

4. t2 = t1 + 5

5. t3 = 4*t2

6. t4 = t3

7. a[t4] = 1

8. j = j + 1

9. if j ≤ 5 goto 3 LB4

10. i = i + 1 LB5

11. if i < 5 goto 2 LB6

LB3

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.21

Compiler Design

1. Constant Folding

 (i) x = 2 * 3 + y  x = 6 + y

 Folding

 ii) x = 2 + y * 3} can’t fold the constant

2. Copy Propagation

 i) Variable Propagation:

 x = y;

 z = y + 2;

  z = x + 2;

 ii) Constant Propagation:

 x = 3

 z = 3 + a;

  z = x + a

3. Strength Reduction:

 Replace expensive statement / instruction with cheaper one.

(i) x = 2 * y costly  x = y + y; Cheap

(ii) x = 2 * y  x = y < < 1; Much Cheaper

(iii) x = y / 8  x = y > > 3;

4. Dead Code Elimination:

• Hence, above dead code never executes during execution. We can always delete such code.

5. Common Sub Expression Elimination:

 DAG is used to eliminate common sub expression.

Example: x = (a + b) + (a + b) + c;

  t1 = a + b

 x = t1 + t1 + c





GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

8.22

Compiler Design

6. Loop Optimization:

(i) Code Motion – Frequency Reduction:

Move the loop invariant code outside of loop.

(ii) Induction Variable elimination:

(iii) Loop Merging / Combining: (Loop Jamming)

(iv) Loop Unrolling:

1) for (i = 0; i < 3; i++)

printf(“CD”);

printf(“CD”);

printf(“CD”);

printf(“CD”);

 3  3 + 2 = 11 Statements 3 statements

2)

for (i = 0; i < 2n; i ++) {

printf(“CD”);

}

for (i = 0; i < n; i++) {

printf(“CD”);

printf(“CD”);

}

 (2  3n + 2) = 6n + 2 (4n + 2)

7. Peephole Optimization:

Examines a short sequence of target instructions in a window (peephole) and replaces the instructions by a faster and/or

shorter sequence when possible.

• Applied to intermediate code or target code

• Following Optimizations can be used:

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Compiler Design

5.23

• Redundant instruction elimination

• Flow-of-control optimizations

• Algebraic simplifications

• Use of machine idioms





 

