Theory of Computation

Published By:

Physics Wallah

ISBN: 978-93-94342-39-2

Mobile App:Physics Wallah (Available on Play Store)

Website:

Email:

support@pw.live

Rights

All rights will be reserved by Publisher. No part of this book may be used or reproduced in any manner whatsoever without the written permission from author or publisher.

In the interest of student's community:

Circulation of soft copy of Book(s) in PDF or other equivalent format(s) through any social media channels, emails, etc. or any other channels through mobiles, laptops or desktop is a criminal offence. Anybody circulating, downloading, storing, soft copy of the book on his device(s) is in breach of Copyright Act. Further Photocopying of this book or any of its material is also illegal. Do not download or forward in case you come across any such soft copy material.

Disclaimer

A team of PW experts and faculties with an understanding of the subject has worked hard for the books.

While the author and publisher have used their best efforts in preparing these books. The content has been checked for accuracy. As the book is intended for educational purposes, the author shall not be responsible for any errors contained in the book.

The publication is designed to provide accurate and authoritative information with regard to the subject matter covered.

This book and the individual contribution contained in it are protected under copyright by the publisher.

(This Module shall only be Used for Educational Purpose.)

Theory of Computation

INDEX

1.	Basics of Theory of Computation	7.1 – 7.5
2.	Finite Automata	7.6 – 7.21
3.	Push Down Automata	7.22 – 7.29
4.	Turning Machine	7.30 – 7.39

BASICS OF THEORY OF COMPUTATION

1.1 Symbol

Symbol represents very unique in the world. Any small thing that never be broken into any other is called as symbol.


```
• We can create our own alphabet = {gate, cs, it, example the gate, c
```

1.3 String

- It is sequence of symbols defined over given alphabet.
 let ∑ = {a, b}
- Strings possible are \in , a, b, aa, bb.....
- Strings over English Alphabet: deva, gate, exam, etc.
- Strings over Binary Alphabet: 0010, 1011, 1101, 1111, etc.
- Strings over Decimal Alphabet: 3012, 2345, 5438, etc.

Note:

- Different length strings over given alphabet
 - I Zero length string \rightarrow Empty string / Null string \in or λ is used to denote empty string length of empty string. $|\epsilon| = 0$.
 - II One length string over $\Sigma = \{a, b\}$ are a, and b (2 strings).
 - III Two length strings over $\Sigma = \{a, b\}$ are da, ab, ba, and bb (4 strings).

Theory of Constraints -

1.4 Operations on Strings

There are various operations on strings:

- Unary and Binary operations
 - **1. length of a string:** Length of a string is denoted as |w| and is defined as the number of positions for the symbol in the string.

Example:

w = aba|w| = |aba| = 3

2. Reversal of a string: It will reverse or changes the order of a given string w.

```
Example: w = abb
```

```
w^{R} = bba
```

1.4.1 Concatenation of Two Strings

Given two strings w_1 and w_2 , we define the concatenation of w_1 and w_2 to be the string as w_1w_2 .

Example:

 $w_1 = a$, and $w_2 = ba$

Then $w_1w_2 = a.ba = aba$.

1.4.2 Prefix of a String

A substring with the sequence of beginning symbols of a given string is called a "prefix".

Example:

(i) w = aaaa

Prefixes = $\{ \in, a, aa, aaa, aaaa \}$

(ii) w = abcd

Prefixes = $\{ \in, a, ab, abc, abcd \}$

Note:

If |w| = n then $|w^{\text{Rev}}| = n$.

If length of w_1 is n_1 and length of w_2 is n_2 then length of $w_1w_2 = |w_1w_2| = n_1 + n_2$.

- Let w be n length string.
- (i) Number of prefixes in w = n+1
- (ii) Number of non-empty prefixes of w = n
- (iii) Number of different length prefixes of w = n + 1
- (iv) Number of different length prefixes of w excluding zero length = n

1.4.3 Suffix of a String

A substring with the sequence of ending symbols of a given string is called a "suffix".

Example:

(i) w = aaaa

Suffixes = $\{ \in, a, aa, aaa, aaaa \}$

(ii) w = abcd

Suffixes = $\{ \in, d, cd, bcd, abcd \}$

Note :

- Let w be n length string.
 - (i) Number of suffixes of w = n + 1
 - (ii) Number of non-empty suffixes of w = n
 - (iii) Number of different length suffixes of w = n + 1
 - (iv) Number of different length suffixes of w excluding zero length = n

1.4.4 Substring of a String

• Let w be n length string.

(i) Number of substrings of w (over 1 symbol)maximum = 1+ n + (n - 1) ++1 (all characters distinct) = 1 + Σn $= \Sigma n + 1$ (ii) Number of non-empty substrings of w (max)maximum = Σn

- Number of different length substrings of any given n length string =n+1
- Number of different length substrings of any given n length string excluding zero length=n.

1.5 Relation between Symbol, Alphabet, String and Language

Character	Symbol
\Downarrow	\Downarrow
Character set	Alphabet
\Downarrow	\Downarrow
Token	String
\Downarrow	\Downarrow
C Language	Language

1.5.1 Chomsky Hierarchy

• Chomsky hierarchy includes all the problems in the world classified into classes.

• Type 3 is the smallest class, and Type 0 is the biggest class.

	Туре 3	Type 2	Туре 1	Туре 0
Language:	Regular	Context free	Context sensitive	Recursively Enumerable
Automata:	Finite Automata	Push down Automata	Linear Bounded Automata	Turing Machine
Grammar:	Regular	Context free	Context Sensitive	Unrestricted

1.6 Language

- Language is set of strings defined over alphabet (Σ) .
- Let $\Sigma = \{a, b\}$. Then $\Sigma = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$

= set of all strings

 $= \{ \in, a, b, aa, ab, ba, ... \}$

- $\Sigma^2 = \Sigma^1 \cdot \Sigma^1 = \{a, b\}. \{a, b\} = \{aa, ab, ba, bb\}$
- Language: It is a subset of Σ^*
- $\therefore \quad L \subseteq \Sigma^*$
- A language is a collection of strings that must be a subset of Σ^* where Σ^* is a universal language.

Example:

 $L = ab^* = \{a, ab, abb, \dots\}$

1.7 Types of Languages

- Finite Language
- Infinite Language
- Regular language
- DCFL (Deterministic CFL)
- CFL
- CSL
- Recursive Language
- Recursive Enumerable Language (REL)

1.8 Types of automata

- 1. Less power: It can Represent less number of languages.
- 2. More power: It can Represent more number of languages Compare to all these machines.

FINITE AUTOMATA

2.1 Introduction

- Finite Automata describes or represents a regular language.
- Finite Automata is of two types:
 - (i) Acceptor: Accepts or rejects given string.
 - (ii) Transducer: Produces output string for given input string.

Example:

1's complement of binary number: Input = 10100, Output = 01011

2.2 Finite Acceptor (Finite Automata)

• Finite Automata:

2.3 Construction of DFA

1. If epsilon belongs to L, then initial state must be final in DFA.

- 2. Dead state: It is non-final state but it never contain a path to final.
- Once we reach the dead state, there is no way to reach to the final state.
- If every state is final then every string accepted in the DFA.

3. If all states are finals in DFA then $L(DFA) = \sum *$

0, 1

4. If every state is non final in a DFA then $L(DFA) = \phi$ or $L(DFA) = \{\}$,

$\overline{L} = \sum^{*} - L$
$L \cup \overline{L} = \Sigma^*$
$L \cap \overline{L} = \phi$

- If |w| = n or $|w| \le n$, then number of states in minimum DFA = (n + 2) states
- If $|w| \ge n$ then number of states in minimum DFA = n+1 states.
- Start condition, exactly, atmost length question requires Dead state but end condition, contain substring, atleast length questions do not require dead state.

Theory of Constraints

- Over one symbol $\sum = \{a\}$. Length of string is equal to number of a's in string. $|w| = n_a(w)$.
- Let $L=\{w|w \in \{a,b\}^*, n_a(w) \text{ is divisible by } m, n_b(w) \text{ is divisible by } n\}$. Then Number of states in DFA= $m \times n$.
- Let $L=\{w \mid w \text{ belongs to } \{a, b\}^*, n^{\text{th}} \text{ symbol of } w \text{ from begin is 'a'}\}$. Then Number of states in DFA = (n + 2).
- Number of equivalence classes for any regular set L = Number of states in minimal DFA that accepts L.

2.4 Non-Deterministic Finite Automata

2.4.1 Introduction

• Finite Automata can be designed in two ways:

- All these finite state machines are equivalent. $DFA \cong . NFA$
- We can convert one finite state machine to any other finite state machine.
- For every gular language, we can design infinite equivaent DFAs or infinite equivalent NFAs but minimum DFA is uique for given regular language.
- For every regular language, one or more minimum NFAs may exist.

Note : For every regular language:

- (i) Unique minimum DFA exists.
- (ii) One or more minimum NFAs exists.

2.5 Comparison of NFA and DFA

	$ \mathbf{w} = \mathbf{n}$	$ \mathbf{w} \leq \mathbf{n}$	$ \mathbf{w} \ge \mathbf{n}$
Number of states in NFA	n + 1	n + 1	n + 1
Number of states in DFA	n + 2	n + 2	n + 1

• If every string has nth symbol from begin is 'a' over binary alphabet {a, b} then (n + 1) states in minimum NFA but (n+2) states in minimum DFA.

• If every string has n^{th} symbol from end is 'a' over binary alphabet {a, b} then 2^n states in minimum DFA and (n + 1) states in minimum NFA.

2.5.1 COMPARISON OF DFA AND NFA (NFA vs DFA)

	NFA	DFA
(1) Transition Function (δ)	$Q \times \Sigma \rightarrow 2^Q$	$\mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$
(2) Number of paths for string	For valid string: 1 path	For valid string: 1 path
	For invalid string: >=0 paths	For invalid string: 1 path

2.5.2 Number of states in DFA and NFA for Regular Languages

Language	NFA states	DFA states
$(1) \{ w \mid w \in \{a, b\}^*, w = n \}$	n + 1	n + 2
(2) {w w \in {a, b}*, w \leq n}	n + 1	n + 2
$(3) \{ w \mid w \in \{a, b\}^*, w \ge n \}$	n + 1	n + 2
(4) $\{w w \in \{a, b\}^*, w \text{ starts with } a\}$	2	3
(5) $\{w w \in \{a, b\}^*, n^{th} \text{ symbol from begin is } a\}$	n + 1	n + 2
(6) $\{w w \in \{a, b\}^*, n^{\text{th}} \text{ symbol from end is 'a'}\}$	n + 1	2 ⁿ

2.5.3 Finding number of states in DFA using NFA

NFA (n states)

 \Downarrow Subset Construction

DFA (2ⁿ sates exists)

 \Downarrow Partition algorithm

Minimum DFA ($\leq 2^n$ states) atmost 2^n states

Every DFA is NFA, but NFA need not be DFA.

2.5.4 Relation between NFA with epsilon, NFA without epsilon, and DFA

2.6 Regular language Representation

2.7 FA Classification

2.8 Moore machine and mealy machine

Moore machine	Mealy machine
Transition Function $\delta : Q \times \Sigma \rightarrow Q$ Output Function $\lambda : Q \rightarrow \Delta$ Outpput is associated with every state.	$\delta: Q \times \Sigma \to Q$ $\lambda: Q \times \Sigma \to \Delta$ Output is associated with transition.

2.8.1 Example for Moore machine and Mealy machine

Moore	Mealy
$ \xrightarrow{0} (A, X) \xrightarrow{0} (B, y) \xrightarrow{0} (A, X) \xrightarrow{0} (A, X) \xrightarrow{0} (B, y) 0$	$\longrightarrow \underbrace{E}_{1/y}^{0/x}$
$Q = \{A, B\}$ $\sum = \{0, 1\}$ $\Delta = \{x, y\}$ Outpput is associated with state. $I/P \longrightarrow O/P \bigoplus xyx$ Ignore $A \longrightarrow A \longrightarrow B \longrightarrow A$ $x \qquad y \qquad x$ This is not expected.	$Q = \{A, B\}$ $\Sigma = \{0, 1\}$ $\Delta = \{x, y\}$ Output is associated with transition. $I/P \qquad O/P \qquad xyy$ $E \xrightarrow{0} E \xrightarrow{1} F \xrightarrow{1} F$ No output is produced
 Extra one output is produced other than desired output. So, we can ignore this extra output as this is the machine property. 	 For 3 length input, we are getting the 3 length output.

2.9 Difference between Moore machine and Mealy machine

		Moore machine	Mealy machine
1.	δ	$Q \times \Sigma \rightarrow Q$	$Q \times \Sigma \rightarrow Q$
	λ	$Q \rightarrow \Delta$	$Q \times \Sigma \to \Delta$
2.			
3.	Length of O/p	If n length I/P (assume 1 length O/P symbol is taken at each state) then O/P length is (n+1).	If n length input (assume 1 length O/P symbol is taken at each transition) is given then O/P length is n.
4.	By default	DFA no final state.	DFA no final state.

2.10 Constuction of FA with output

Note

For every problem, if moore machine exists the we can also construct equivalent mealy machine.

Example:

Sum of present bit and previous bit. Mealy Machine

2.11 Classification of Finite State Machine (FSM)

2.12 Regular Expression

Definition:

- Regular expression represents a regular language.
- It describes a regular set.
- L (regular expression) is regular set.
- It is a kind of declarative way to represents a regular language.
- Regular expression generates a regular set.
- It uses 4 operators to represent a regular language.

2.13 Operators of Regular Expression

1. OR (+)

Binary Operator 2. Concatenation(.)

- 3. Kleenestar (*)
 4. Kleenestar (+)

Regular Expression	Equivalent Regular Set
a + b	$L(a+b) = \{a, b\}$
a + a = a	$L(a + a) = \{a\}$
$a + \phi = a$	$L(a + \phi) = \{a\}$
$a + \in = \in + a$	$L(a + \epsilon) = \{a, \epsilon\}$
$\epsilon + \epsilon = \epsilon$	$L(\in +\in) = \{\in\}$
$\phi + \phi = \phi$	$L(\phi + \phi) = \{ \}$
$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b}$	$L(a \cdot b) = \{ab\}$
$a \cdot \in = a$	$L(a \cdot \in) = \{a\}$
$\epsilon \cdot \epsilon = \epsilon$	$L(\in \cdot \in) = \{\in\}$
$\phi \cdot \phi = \phi$	$L(\phi \cdot \phi) = \{\phi\}$
$\mathbf{a} \cdot \mathbf{a} = \mathbf{a}\mathbf{a} = \mathbf{a}^2$	$L(a \cdot a) = aa = \{a^2\}$

2.14 Kleene star/ kleene closure / closure

R* (Kleene closure of R):

$$R^* = R^\circ + R^1 + R^2 + R^3 + \ldots = \epsilon + R + RR + RRR + \ldots$$

Example:

 $a^* = \{a^0, a^1, a^2, a^3, ...\} = \{\epsilon, a, aa, aaa, ...\} = \text{Set of all strings over a.}$ $\phi^* = \phi^0 + \phi^1 + \phi^2 + \phi^3 + = \epsilon + \phi + \phi + \phi + \dots = \epsilon + \phi = \epsilon$

2.15 Positive Closure (Kleeme Plus)

(1) $a^+ = \{a, aa, aaa, \ldots\} = \{a^n \mid n \ge 1\}$

 $(2) \in^+ = \in = \in^*$

(3) $\phi^+ = \phi$

R⁺ (**Positive Closure of R**):

 $R^{+}=R^{1}+R^{2}+R^{3}+....$ $R^* = R^{\ge 0}$ i.e. repeart R any number of time $R^+ = R^{\ge 1}$ i.e. repeat R at least 1 time. $\mathbf{R}^* = \mathbf{R}^+ + \mathbf{R}^0$ **Example:**

Properties :

		OR	Concatenation
1.	Identity	ф	E
2.	Associative	Yes	Yes
3.	Commutative	Yes	No
4.	Annihilatior	\sum^*	φ

2.16 Identification of Regular Languages

= Regular language

- 14. L= { a^{Prime} } over $\Sigma = {a}$
 - = Non regular language

15. L={
$$a^{n^2} | n \ge 0$$
} over $\Sigma = \{a\}$

L={epsilon, a, aaaa, a⁹, a¹⁶...}, FA Not possible for L. So, it's Non-Regular language.

16. L= {
$$a^{2^n} | n > 0$$
 } over $\Sigma = \{a\}$

Non Regular language

17. L= {
$$a^{2^n} \mid n \le 10$$
 }

= Regular language

18. L={ $a^{n!} | n \ge 100$ } over S = {a}

= Non Regular language

19. L={ $a^{n^n} | n \ge 10$ } over $\Sigma = \{a\}$

= Non Regular language

20. $L = \{a^{Prime}\}^*$ over $\sum = \{a\}$

L = complement of $\{a\} = \sum^* - \{a\} = \{\in, a^2, a^3 a^4, a^5, a^6, a^7, ...\} =$ Regular language

- 21. $L = \{a^{prime} | prime < 100\}$ is finite language (regular)
- 22. $L = \{w \# w \mid w \in a^*\}$

$$L = \{a^n \# a^n\}$$

dependency

= Non Regular language

23. L = {w # w | w \in (a+b)*}

= Non Regular language

24. $L = \{w \# w^R | w \in a^*\}$ is non regular

$$\mathbf{L} = \{\mathbf{a}^n \, \# \, \mathbf{a}^n\}$$

25. $L = \{w \ x \ w \ | \ w \in \{a, b\}^*, x \in \{a, b\}^+\}$

Put $w = \in$, and $x = (a + b)^+$

$$L = (a + b)^+$$

= Regular language

26. $L = \{x \ w \ w \mid w \in \{a, b\}^* \ x \in \{a, b\}^+\}$

 $L = (a + b)^{+}$

= Regular language

27.
$$L = \{w \ w^R x \mid w \in \{a, b\}^*, x \in \{a, b\}^+\}$$

$$\mathbf{L} = (\mathbf{a} + \mathbf{b})^+$$

= Regular language

28.
$$L = \{w \ x \ w^R \ | w \in (a+b)^*, \ x \in \{a, b\}^+ \}$$

$$L = (a + b)^+$$

= Regular language

29.
$$L = \{x \ w \ w^R \mid w \in \{a, b\}^*, x \in \{a, b\}^+\}$$

 $L = (a + b)^{+}$

2.17 Closure Properties of Regular Languages

1. Closure properties for finite languages:

2.18 Table for FINITE sets

		Finite sets	Closed/Not Closed
(1)	Union (\cup)	$F_1 \cup F_2 \Rightarrow$ Finite	\checkmark
(2)	Intersection (\cap)	$F_1 \cap F_2 \Rightarrow Finite$	\checkmark
(3)	Complement (\overline{L})	$\overline{F} \Rightarrow NOT \text{ finite}$	×
(4)	$L_1 - L_2$	$F_1 - F_2 \Rightarrow Finite$	\checkmark
(5)	L ₁ . L ₂	$F_1 \cdot F_2 \Rightarrow$ Finite	\checkmark
(6)	L^*, L^+	$F^*, F^+ \Rightarrow$ May or may not be finite	×
(7)	Subset (L)	Subset (Finite set) \Rightarrow Finite	\checkmark

2.18.1 Table for Infinite sets

		Infinite sets
(1)	Union (\cup)	Infinite \cup Infinite \Rightarrow Infinite
(2)	Intersection (\cap)	Infinite \cap Infinite \Rightarrow Need not be infinite
(3)	Complement (\overline{L})	Complement of Infinite \Rightarrow May or may not be infinite
(4)	$L_1 - L_2$	Need not be infinite
(5)	L ₁ . L ₂	Infinite
(6)	L*, L+	Infinite
(7)	Subset (L)	Need not be infinite

2.19 Closure Properties of Regulars

$L_i {\rightarrow} Regular$

1.	U	2.	\cap
3.	Ē	4.	$L_{1} - L_{2}$
5.	$L_1 \cdot L_2$	6.	$L^{\operatorname{Re} u}$
7.	L^{+}	8.	L^{+}
9.	Subset (L) is not closed for regular languages	10.	Prefix (L)
11.	Suffix (L)	12.	Substring (L)
13.	Substitution (L)	14.	Homomorphism (L)
15.	∈-free homomorphism (L)	16.	h ⁻¹ (L) (Inverse homomorphism (L))
17.	L_1/L_2 (Quotient)	18.	Symmetric difference
19.	Half (L)	20.	Second half (L)
21.	One-third (L) [1/3 (L)]	22.	Middle 1/3 (L)
23.	Last 1/3 (L)	24.	New $(L_1, L_2) = $ Suffix $(L_1 \cup L_2^+)$
25.	Finite Union	26.	Finite Intersection
27.	Finite Difference	28.	Finite Concatenation

PW

29.	Finite Subset	30.	Finite Substitution
31.	Infinite Union	32.	Infinite \cap
33.	Infinite Difference	34.	Infinite Concatenation
35.	Infinite Subset	36.	Infinite Substitution

• Out of the given 36 closure properties, how many are closed for regular languages?

Subset operation, and 6 infinite operations are not closed, remaining all are closed for regular languages.

Out of 36 operations total 7 operations are not closed.

2.19.1 Operations over regular languages

Examples:

(1)	$ \begin{array}{c} L_1 = a^* \\ L_2 = a^+ \end{array} \} \Longrightarrow L_1 \cdot L_2 = a^* $	
(2)	$ \begin{array}{c} \mathbf{L}_{1} = \phi \\ \mathbf{L}_{2} = \mathbf{Any} \end{array} \} \Longrightarrow \mathbf{L}_{1} + \mathbf{L}_{2} = \mathbf{L}_{2} $	
(3)	$ \begin{array}{c} \mathbf{L}_{1} = \mathbf{a}^{*} \\ \mathbf{L}_{2} = \mathbf{b}^{*} \end{array} \right\} \Longrightarrow \mathbf{L}_{1} + \mathbf{L}_{2} = \mathbf{a}^{*} + \mathbf{b}^{*} $	
(4)	$L_1 = \Sigma^*$ $L_2 = \text{Any language over same } \Sigma$	$\begin{array}{c} L_1 + L_2 = \Sigma^* \\ = L_1 \end{array}$

(5)
$$\begin{array}{c} L_1 = a\Sigma^* \\ L_2 = b\Sigma^* \end{array} \Sigma = \{a, b\} \end{array} \qquad \begin{array}{c} L_1 + L_2 = a\Sigma^* + b\Sigma^* \\ = (a + b)\Sigma^* \\ = \Sigma^+ \end{array}$$

Note :

1.
$$\begin{array}{c} \mathbf{L}_{1} = \phi \\ \mathbf{L}_{2} = \mathbf{Any} \end{array} \Rightarrow \mathbf{L}_{1} \cdot \mathbf{L}_{2} = \phi$$

2.
$$\begin{array}{c} \mathbf{L}_{1} = \Sigma^{*} \\ \mathbf{L}_{2} = \mathbf{Any} \end{array} \Rightarrow \mathbf{L}_{1} + \mathbf{L}_{2} = \mathbf{L}_{2}$$

2.19.2 Properties of regular languages

- I. If both L_1 and L_2 are regular sets then $L_1 \cap L_2$ is Regular.
- II. IF $L_1 \cap L_2$ is regular set then
 - L₁ "need not be regular"

- L_2 "need not be regular".
- III. If L is regular then \overline{L} is regular.
- IV. If \overline{L} is regular then L is regular.
- V. L is regular iff \overline{L} is regular

VI. L is not regular iff \overline{L} is not regular.

Example:

 $a^n b^n$ is not regular and $\overline{a^n b^n}$ is not regular.

2.19.3 Arden's Lemma and Kleene Method Arden's Lemma: If R = Q + RP and P does not contain \in then $|R = QP^*$ R = Q + RP...(1) $= \mathbf{Q} + (\mathbf{Q} + \mathbf{RP}) \mathbf{P} = \mathbf{Q} + \mathbf{QP} + \mathbf{RP}^2$...(2) Substitute R one more time in equation (2) $\mathbf{R} = \mathbf{O} + \mathbf{OP} + \mathbf{OP}^2 + \mathbf{RP}^3$ If we do repetitive substitution infinite time, we will get $|\mathbf{R} = \mathbf{QP}^*$ **Kleene Method: Kleene Method** \rightarrow Dynamic programming O(n³) \mathbf{R}_{ii}^{k} where *i* is the initial state, *j* is the final state k represents number of states $R_{ii}^{k} = R_{ii}^{k-1} + R_{ik}^{k-1} \left(R_{kk}^{k-1} \right)^{T} R_{ki}^{k-1}$

Regular Grammar

 \longrightarrow It represents a regular set

→ It can be either left linear grammar (LLG) or right linear grammar (RLG)

LLG	RLG
Each production in LLG follows	Each production in RLG follows
$V \rightarrow VT^*$	$V \rightarrow T^* V$
OR	OR
$V \rightarrow T^*$	$V \rightarrow T^*$

2.20 Identify the Language Generated by Regular Grammar

	Regular Grammar	Regular Language
1.	$S \rightarrow \in$	$L = \{ \in \}$
2.	$S \rightarrow \in a $	$L = \{ \in, a \}$
3.	$S \rightarrow aa \mid abc \mid d$	$\mathbf{L} = \{aa, abc, d\}$

Theory of Constraints -

4.	$S \rightarrow Aa$	By default S is a start symbol here.
	$A \rightarrow b$	$L = {ba}$
5.	$S \rightarrow Aa$	Useless production. It has no meaning.
		$L = \{ \} = \phi$
6.	$S \rightarrow Ab \mid b$	$L = \{b\}$
	\rightarrow	
	Useless	
7.	$\uparrow S \rightarrow Aa \mid Ba$	$\mathbf{L} = \{aa, bb\}$
	$A \rightarrow a$	
	$B \rightarrow b$	
	Look from bottom to top	
8.	$\uparrow S \rightarrow Aa$	$L(A) = \{ \in, b \}$
	$A \rightarrow \in b $	$\mathbf{L} = \mathbf{L}(\mathbf{S}) = \mathbf{L}(\mathbf{A}) \cdot \mathbf{a}$
		$= \{a, ba\}$

Regular Language	Regular Grammar
a*	(I) $S \rightarrow Sa \mid \in$
	OR
	(II) $S \rightarrow aS \mid \in$
a ⁺	(I) $S \rightarrow Sa \mid a$
	OR
	(II) $S \rightarrow aS \mid a$
$(a + b)^*$	(I) $S \rightarrow Sa \mid Sb \mid \in$
	OR
	$(II) S \to aS \mid bS \mid \in$
$(a + b)^+$	(I) $S \rightarrow Sa \mid Sb \mid a \mid b$
	OR
	(II) $S \rightarrow aS \mid bS \mid a \mid b$
(ab)*	(I) $S \rightarrow Sab \mid \in$
	OR
	(II) $S \rightarrow abS \mid \in$

2.21 Pumping-Lemma (PL)

2.21.1 Pumping Lemma for Regular Languages

2.21.2 Pumping Lemma for Non-Regular Languages using contradiction

2.22 Equivalence Classes

- (1) L is regular iff L has finite number of equivalence classes.
- (2) L is not regular iff L has infinite equivalence classes.

PUSH DOWN AUTOMATA

3.1 Context Free Grammar

CFG: It represents a Context Free Language.

- Rule of each production in P: $V \rightarrow (V \cup T)^*$
 - V = only 1 variable in LHS
- To derive a string, following derivations can be used.
- 1. Linear Derivation: Linear derivation is two types
 - (a) Left Most Derivation (LMD)
 - (b) Right Most Derivation (RMD)
- 2. Non- linear Derivation: Non- linear Derivation OR Parse Tree OR Derivation Tree

3.2 Types of Context Free Grammars

There are two types of CFG:

- 1. Ambiguous CFG: At least one string has more than one derivation.
- 2. Unambiguous CFG: Every string (w) generated by CFG has exactly one derivation.

3.3 Pushdown Automata (PDA)

PDA accepts context free language (CFL). PDA also called as NPDA.

If $W \in L$ at least one path halts at final state

3.4 PDA acceptance mechanisms

- PDA acceptance mechanisms are three types:
 - 1. PDA acceptance using final state.
 - 2. PDA acceptance using empty stack.
 - 3. PDA acceptance using both final state and Empty stack. All PDA acceptance mechanisms are equivalent.
- DPDA acceptance mechanism are two types:
 - 1. DPDA using final stack.
 - 2. DPDA using both final state and empty stack.

3.5 PDA configuration

PDA = (Q, Σ , δ , q₀, F, Z₀, Γ).

- where Q = Set of states
 - \sum = input alphabet
 - δ = Transition Function (PDA/NPDA $\delta : Q \times \sum \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$)
 - F = Set of Final state
 - $Z_0 = Bottom symbol or initially TOS$
 - Γ = Stack Alphabet
- DPDA transition Function is $[\delta : Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma^*]$
- Difference between DPDA and PDA

DPDA	PDA
$[1] \ \delta : Q \times \Sigma \times \Gamma \to Q \times \Gamma^*$	$\delta: \mathbb{Q} \times \Sigma \times \Gamma \to 2^{\mathbb{Q} \times \Gamma^*}$
[2] Every DPDA is PDA	Every PDA need not be DPDA
[3] DPDA acceptance with	PDA acceptance with
(a) Final state mechanism	(a) Final state mechanism
(b) Both Final and empty stack	(b) Empty stack mechanism
	(c) Both Empty stack and Final
	state

• Relation between Regular, DCFL and CFL.

_

- I If L is regular language, then it is also DCFL and CFL.
- II Every DCFL is CFL, but it need not be regular.

3.6 Closure Properties of CFLs

Operation	Closed / Not Closed
Union $(L_1 \cup L_2)$	√
Intersection $(L_1 \cap L_2)$	×
Complement (\overline{L})	×
Set difference (L_1-L_2)	×
Concatenation $(L_1.L_2)$	\checkmark
Reversal (L ^{Rev})	\checkmark
Kleene Closure (L)	\checkmark
Kleene Plus (L [•])	1
Subset (L)	×
Prefix (L)	1
Suffix (L)	✓
Substring (L)	✓
Substitution (L)	√
Homomorphism (L)	✓
\in - free Homomorphism h(L)	✓
Inverse Homomorphism h ⁻¹ (L)	✓
quotient $(L_1, L_2) = L_1/L_2$	×
Symmetric difference (L_1, L_2)	×
Finite Union	\checkmark
Finite Intersection	×
Finite difference	×
Finite concatenation	\checkmark
Finite subset	√
Finite substitution	\checkmark
Infinite Union	×
Infinite intersection	×
Infinite difference	×
Infinite concatenation	×
Infinite Subset	×
Infinite Substitution	×
Union with Regular (L U Regular)	\checkmark
L U Regular	\checkmark
L – Reg	\checkmark
Reg – L	*

Note :(i) $CFL \cap CFL =$ Need not be CFL

- (ii) $CFL \cap Regular = CFL$ (Need not be DCFL)
- (iii) $CFL \cap DCFL$ = May or may not be CFL
- (iv) $CFL \cap Finite = Finite$
- (v) $CFL \cap infinite = Need not be CFL$

3.7 Closure Properties of DCFLs

Operation	Closed / Not Closed
Union ($L_1 \cup L_2$)	×
Intersection $(L_1 \cap L_2)$	×
Complement (\overline{L})	√
Set difference (L ₁ -L ₂)	×
Concatenation $(L_1.L_2)$	×
Reversal (L ^{Rev})	×
Kleene Closure (L) = L^*	×
Kleene Plus (L) = L^+	×
Subset (L)	×
Prefix (L)	✓
Suffix (L)	×
Substring (L)	×
Substitution (L)	×
Homomorphism (L)	×
\in - free Homomorphism h(L)	×
Inverse Homomorphism $h^{-1}(L)$	\checkmark
quotient (L ₁ , L ₂)	×
Symmetric difference (L ₁ , L ₂)	×
Finite Union	×
Finite Intersection	×
Finite difference	×
Finite concatenation	×
Finite subset	\checkmark
Finite substitution	×
Infinite Union	×
Infinite intersection	×
Infinite difference	×
Infinite concatenation	×
Infinite Subset	×
Infinite Substitution	×
Union with Regular (L U Regular)	\checkmark
L U Regular	\checkmark
L – Regular	✓
Regular – L	✓

Theory of Constraints –

$DCFL \cup Regular$: DCFL
$DCFL \cap Regular$: DCFL
DCFL - Regular	: DCFL
Regular - DCFL	: DCFL
$\text{DCFL} \cup \text{CFL}$: CFL (need not be DCFL)
$\text{DCFL} \cap \text{CFL}$: Need not be CFL
DCFL - CFL	: Need not be CFL
CFL - DCFL	: Need not be CFL
$DCFL \cup Finite$: DCFL
DCFL \cap Finite	: Finite
DCFL – Finite	: DCFL
Finite - DCFL	: Finite

3.8 Comparison of Regular Grammars and CFGs

- CFL and CFG both are equivalent. $CFL \cong CFG$
- LLG: Left Linear Grammar, RLG: Right Linear Grammar, RG: Regular Grammar, LG: Linear Grammar, CFG: Context Free Grammar.
- Every LLG is RG
- Every RLG is RG
- Every RG is LG
- Every RG is CFG
- Every LG is CFG
- Every RG need not be RLG
- Every RG need not be LLG
- Every LG need not be RG
- Every CFG need not be RLG
- Every CFG need not be LG

3.9 Context Free Languages and DCFLs

I. Comparison of various languages

II. Identification of Regulars, DCFLs, and CFLs

- [1] $L = \{a^n b^n c^k | n, m, k \ge 0\}$ = $a^* b^* c^*$
 - = Regular
- $\begin{array}{ll} [2] & L = \{a^n b^n \mid n \geq 0\} \\ & L = DCFL \mbox{ but not regular} \\ & S \rightarrow aSb \mid \in \end{array}$
- [3] $L = \{a^n b^{2n} | n \ge 0\}$ L = DCFL but not regular $S \rightarrow aSbb | \in$
- $\begin{array}{ll} [4] \quad L = \{a^{2n}b^n \mid n \geq 0\} \\ L = DCFL \\ S \rightarrow aaSb \mid \in \end{array}$
- $\begin{array}{ll} [5] & L = \{a^{2n}b^{2n} \mid n \geq 0\} \\ & L = DCFL \\ & S \rightarrow aaSbb \mid \in \end{array}$
- [6] $L = \{ a^{n}b^{n}c^{*} \}$ Assume always $n \ge 0$ in all examples OR $= \{ a^{m}b^{n}c^{*} | m = n \}$ DCFL but not regular [7] $L = \{ a^{n}b^{*}c^{n} \}$ DCFL [8] $L = \{ a^{*}b^{n}c^{n} \}$ DCFL
- [9] $L = \{ a^m b^n c^* | m \neq n \}$ DCFL
- [10] L = { $a^m b^n c^* |m < n$ } DCFL
- [11] L = { $a^m b^n c^* |m > n$ } DCFL
- $\begin{array}{l} \mbox{[12]} \ L = \left\{ \begin{array}{l} a^m b^n c^* \ | c \leq n \end{array} \right\} \\ DCFL \end{array}$
- $[13] \ L = \{ \ a^m b^n c^* \ | m \ge n \ \} \\ DCFL$

```
[14] L = { a^m b^n c^{m+n} | m, n \ge 0 } is DCFL
```


[15] L = { $a^{m+n}b^{n+k}c^{k+m} | m, n \ge 0$ } is CFL

[16] L = { ww^r |w belongs to $\{a, b\}^*$ } is CFL but not DCFL

TURNING MACHINE

4.1 Classification of Languages

- 1. All languages which are not RELs
- 2. All not recursive languages
- 3. All not CSLs
- 4. All not CFLs
- 5. All not DCFLs
- 6. All not regulars
- 7. All recursive languages which are not DCFLs
- 8. All RELs which are not DCFLs

4.2 There are Two types of TM

- (a) DTM (Deterministic TM)
- (b) NTM (Non- Deterministic TM)

DTM

$$\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \left\{ \underbrace{L}_{\substack{\downarrow \\ \mathsf{Left} \\ \mathsf{Right}}} \right\}$$

NTM

$$\delta: \mathbf{O} \times \Gamma \to 2^{\mathbb{Q} \times \Gamma \times \{ \mathrm{L}, \mathrm{R} \}}$$

4.3 Unrestricted Grammar (UG) and Context Sensitive Grammar (CSG)

Unrestricted grammar (UG) also called as

- RE grammar
- Phase structure grammar

Context sensitive grammar (CSG) is also called as

- Non contracting grammar
- Bound restricted grammar

4.4 Grammars

Left Linear Grammar (LLG): $V \rightarrow VT^* | T^*$ Right Linear Grammar (RLG): $V \rightarrow T^*V | T^*$ Linear Grammar (LG): $V \rightarrow T^*VT^* | T^*$

Context Free Grammar (CFG): LHS \rightarrow RHS, $|LHS| \leq |RHS|$

Unrestricted Grammar (UG): LHS \rightarrow RHS

4.5 Equivalence of various TMs

TM \cong Single tape TM

- TM \cong One-way infinite tape TM
- $TM \cong Two-way infinite tape TM$
- $TM \cong Multi tape and multi head TM$
- $TM \cong Universal TM$
- TM \cong Two stack PDA
- TM \cong Multi stack PDA
- TM \cong FA with two stacks
- $TM \cong FA + R/W$ tape + Bidirectional head

4.6 Restrictions on TM

(1) If TM tape is read only tape, this TM accepts regular.

TM \cong FA (TM with read only tape)

- (2) If TM head is unidirectional then L(TM) = Regular.
- (3) If TM tape is read only and unidirectional head then L(TM) = Regular.
- (4) If TM always halts then L(TM) is recursive language.
- (5) If TM always halts and uses linear bound tape then L(TM) is CSL.

Theory of Constraints

4.7 LBA, HTM and TM

HTM: It is a TM that always halts for every input.

TM: It halts for every valid string and for invalid strings either halts at "non final state" or "never halts".

LBA: It is HTM but length of the tape we use linearly bounded.

- LBA accepts CSL languages.
- HTM accepts recursive languages.
- TM accepts Recursive Enumerable (RE) languages.

4.8 Recursively Enumerable Language

It is also called as:

- Enumerable language
- TM recognizable language
- TM Enumerable language
- Partially decidable language
- Semi-decidable language

4.9 Recursive Language

- Recursive language is acceptable by HTM, and hence acceptable by TM.
- Recursive also called as decidable language.
- Recursive also called as Turing decidable language. If TM always halts, then TM is called as HTM.

4.10 Difference between Recursive and REL

• All Recursive languages are RE languages.

Not RE languages

- 1. Union:
 - non: REL \cup Finite \Rightarrow REL REL \cup Regular \Rightarrow REL REL \cup CFL \Rightarrow REL REL \cup Recursive \Rightarrow REL REL₁ \cup REL₂ \Rightarrow REL
 - 2. Intersection:
 - $\operatorname{REL} \cap \operatorname{Finite} \Rightarrow \operatorname{REL} (\operatorname{Finite})$

 $\mathsf{REL} \cap \mathsf{CFL} \Rightarrow \mathsf{REL}$

 $\begin{array}{l} \text{REL} \cap \text{Rec} \Rightarrow \text{REL} \\ \text{REL}_1 \cap \text{REL}_2 \Rightarrow \text{REL} \end{array}$

4.11 Closure Properties of Recursive languages

- I. The following operations are not closed for recursive languages:
- Subset
- Substitution
- Homomorphism
- Finite substitution
- Infinite union
- Infinite intersection
- Infinite concatenation
- Infinite difference
- Infinite substitution
- II. The following operations are closed for recursive languages:
- Complement
- Difference
- Finite difference
- Infinite followed by \cup , \cap , -, •, \subseteq , f
- Remember not closed operations

4.12 Complement of Recursive Vs Complement of REL

- Complement of Recursive set is Recursive.
- Complement of REL is either Recursive or non-REL.
- Complement of REL never be "REL which is not recursive".

4.13 Decidable and Undecidable

4.14 Decidable Vs Undecidable, RE Vs Not RE, Countable Vs Uncountable

[1] Decidable	and	Undecidable
Ļ		\downarrow
HTM exist		HTM not exist
(Rec language)		(not Rec language)
[2] RE	and	Not RE
↓		l l
TM exist		TM not exist
[3] Countable set	and	Uncountable set
Ļ		
X is countable set iff		(X is not countable set)
$X \rightarrow f(X)$ is bijective	where f()	K) is known countable set.

Note :

- If problem p is decidable then \overline{p} is also decidable.
- If problem p is Undecidable then \overline{p} is also UD.
- If problem p is RE but not recursive then \overline{p} is not RE.
- If problem p is not RE then \overline{p} is either "Not RE" or "RE but not Recursive".

4.15 Decision Properties Table

- D: Decidable
- UD: Undecidable

	FA	DPDA	PDA	LBA/HTM	TM
H (Halting)	D	D	D	D	UD
М	D	D	D	D	UD
(Membership)					
Em	D	D	D	UD	UD
(Emptiness)					
F (Finiteness)	D	D	D	UD	UD

Theory of Constraints

T (Totality)	D	D	UD	UD	UD
Eq	D	D	UD	UD	UD
(Equivalence)					
D (Disjoint)	D	UD	UD	UD	UD
S (Set	D	UD	UD	UD	UD
Containment)					

4.16 Decidable problem for DFA / NFA/ FA/ Regular

- (1) Halting problem for FA / Reg/ DFA / NFA is decidable.
- (2) Non-halting problem for FA / Reg/ DFA / NFA is decidable.
- (3) Membership problem for FA / Reg/ DFA / NFA is decidable.
- (4) Non-membership problem for FA / Reg/ DFA / NFA is decidable.
- (5) Emptiness for FA / Reg/ DFA / NFA is decidable.
- (6) Non-emptiness problem for FA / Reg/ DFA / NFA is decidable.
- (7) Fitness problem for FA / Reg/ DFA / NFA is decidable.
- (8) Non-fitness problem for FA / Reg/ DFA / NFA is decidable.
- (9) Totality problem for FA / Reg/ DFA / NFA is decidable.
- (10) Non-totality problem for FA / Reg/ DFA / NFA is decidable.
- (11) Equivalence problem for FA / Reg/ DFA / NFA is decidable.
- (12) Non-equivalence problem for FA / Reg/ DFA / NFA is decidable.
- (13) Disjointness problem is decidable for FA / Reg/ DFA / NFA.
- (14) N0n-disjointness problem is decidable for FA / Reg/ DFA / NFA.
- (15) Set containment problem for FA / Reg/ DFA / NFA is decidable
- (16) Non-set containment problem for FA / Reg/ DFA / NFA is decidable.

4.17 Decidable problems for CFLs/DCFLs

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

1		
"	Ρ	
	TI	T.
1	V	

	Problems	DCFLs	CFLs
	Halting	D	D
	Non-Halting	D	D
CVK algo	Membership	D	D
	Non-membership	D	D
Simplification \int	Emptiness	D	D
algo	Non-emptiness	D	D
∫ Derenderer ∫	Finiteness	D	D
oraph	Non-finiteness	D	D
Bruph	Totality	D	UD
	Non-totality	D	UD
	Equivalence	D	UD
	Disjointness	UD	UD
	Non-disjointness	UD	UD
	Set containment	UD	UD
	Non-set containment	UD	UD

4.18 Decidability problems for Recursive languages

	Problems	Recursive
1.	Halting	D
2.	Non-Halting	D
3.	Membership	D
4.	Non-membership	D
5.	Emptiness	UD [Not REL]
6.	Non-emptiness	UD [RE but not Rec] [SD but UD]
7.	Finiteness	UD [Not RE]
8.	Non-finiteness	UD [Not RE]
9.	Totality	UD [Not RE]
10.	Non-totality	UD [RE but not Rec] [SD but UD]
11.	Equivalence	UD [Not RE]
12.	Non-equivalence	UD [RE but not Rec]
13.	Disjointness	UD [Not RE]
14.	Non-disjointness	UD [RE but not Rec]
15.	Set containment	UD [Not RE]
16.	Non-set containment	UD [RE but not Rec]

4.19 Classification of Languages based on Decidability

All RE languages can be classified into 3 important classes.

Every decidable is semi decidable (SD)

4.19.1 Decidability Vs Turing Machine

4.20 Decidable languages

- (1) Finite set \Rightarrow Decidable
- (2) $\sum = \{a, b\} \Longrightarrow$ Decidable
- (3) $\sum \cong$ Set of finite number of symbols \Rightarrow Decidable
- (4) \sum^* over alphabet $\sum = \{a, b\} \Longrightarrow$ Decidable
- (5) $\{M \mid M \text{ is DFA, } M \text{ accepts ab}\} \Rightarrow \text{Decidable}$

- (6) $\{TM \mid Number \text{ of states in } TM=2\} \Rightarrow Decidable$
- (7) {TM | TM reaches state q within 100 steps} \Rightarrow Decidable
- (8) { TM | TM accepts REL} \Rightarrow Decidable

