
TheoryTheory
of of 

ComputationComputation

Theory
of 

Computation



Published By: 

 
  Physics Wallah 

ISBN: 978-93-94342-39-2 

Mobile App: Physics Wallah (Available on Play Store) 

  

Website: www.pw.live 

Email: support@pw.live 

 

Rights 

All rights will be reserved by Publisher. No part of this book may be used or reproduced in any manner 

whatsoever without the written permission from author or publisher. 

In the interest of student's community: 

Circulation of soft copy of Book(s) in PDF or other equivalent format(s) through any social media channels, 

emails, etc. or any other channels through mobiles, laptops or desktop is a criminal offence. Anybody 

circulating, downloading, storing, soft copy of the book on his device(s) is in breach of Copyright Act. Further 

Photocopying of this book or any of its material is also illegal. Do not download or forward in case you come 

across any such soft copy material. 

 

Disclaimer 

A team of PW experts and faculties with an understanding of the subject has worked hard for the books. 

While the author and publisher have used their best efforts in preparing these books. The content has been 

checked for accuracy. As the book is intended for educational purposes, the author shall not be responsible for 

any errors contained in the book. 

The publication is designed to provide accurate and authoritative information with regard to the subject matter 

covered. 

This book and the individual contribution contained in it are protected under copyright by the publisher. 

(This Module shall only be Used for Educational Purpose.) 

http://www.pw.live/
mailto:support@pw.live


  

 

Design Against Static Load 

 

 

 

 

 

1. Basics of Theory of Computation .........................................................................................  7.1 – 7.5 

2. Finite Automata  ...................................................................................................................    7.6 – 7.21 

3. Push Down Automata  ..........................................................................................................  7.22 – 7.29 

4. Turning Machine  .................................................................................................................    7.30 – 7.39 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

INDEX 

GATE-O-PEDIA MECHANICAL ENGINEERING 

GATE-O-PEDIA COMPUTER SCIENCE & INFORMATION TECHNOLOGY 



  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 

Design Against Static Load 

7.1 

1 

BASICS OF THEORY OF 

COMPUTATION 
 

1.1 Symbol 

Symbol represents very unique in the world. Any small thing that never be broken into any other is called as symbol. 

 

1.2 Alphabet () 

It is a set of finite number of symbols. 

Example: 

• English alphabet = {a, b, ... z}  

• Binary alphabet = {0, 1}  

• Decimal alphabet = {0, 1, 2, ... 9} 

• We can create our own alphabet = {gate, cs, it, exam} 

where gate, cs, it, exam all are symbols 

 

1.3 String 

• It is sequence of symbols defined over given alphabet.  

let  = {a, b}  

• Strings possible are , a, b, aa, bb……… 

• Strings over English Alphabet: deva, gate, exam, etc. 

• Strings over Binary Alphabet: 0010, 1011, 1101, 1111, etc. 

• Strings over Decimal Alphabet: 3012, 2345, 5438, etc. 

Note: 

• Different length strings over given alphabet 

        I     Zero length string  Empty string / Null string  or  is used to denote empty string length of empty string. || = 0. 

       II    One length string over  = {a, b} are a, and b (2 strings).  

      III   Two length strings over  = {a, b} are da, ab, ba, and bb (4 strings). 

       

Symbol 

One Length string 

It is smallest one



  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 

Theory of Constraints 

 

7.2 

1.4 Operations on Strings 

There are various operations on strings:  

• Unary and Binary operations  

 1.  length of a string: Length of a string is denoted as |w| and is defined as the number of positions for the symbol in the 

string.   

   Example:  w = aba   

    |w| =|aba| = 3  

  

 2. Reversal of a string: It will reverse or changes the order of a given string w.  

   Example:  w = abb  

   wR = bba 

1.4.1 Concatenation of Two Strings  

Given two strings w1 and w2, we define the concatenation of w1 and w2 to be the string as w1w2.  

Example: 

w1 = a, and w2= ba  

Then w1w2 = a.ba = aba.  

1.4.2 Prefix of a String  

A substring with the sequence of beginning symbols of a given string is called a “prefix”. 

Example:  

(i) w = aaaa 

Prefixes = {, a, aa, aaa, aaaa}  

(ii) w = abcd 

Prefixes = {, a, ab, abc, abcd} 

Note:  

If |w| = n then |wRev| = n. 

If length of w1 is n1 and length of w2 is n2 then length of w1w2 = |w1 w2| = n1 + n2. 

• Let w be n length string.  

(i)    Number of prefixes in w = n+1  

(ii)   Number of non-empty prefixes of w = n  

(iii)  Number of different length prefixes of w = n + 1  

(iv)  Number of different length prefixes of w excluding zero length = n 

 

1.4.3 Suffix of a String  

A substring with the sequence of ending symbols of a given string is called a “suffix”. 
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Example:  

(i) w = aaaa 

Suffixes = {, a, aa, aaa, aaaa}  

(ii) w = abcd 

Suffixes = {, d, cd, bcd, abcd} 

Note :  

• Let w be n length string. 

(i)    Number of suffixes of w = n + 1  

(ii)   Number of non-empty suffixes of w = n  

(iii)  Number of different length suffixes of w = n + 1  

(iv)  Number of different length suffixes of w excluding zero length = n 

 

1.4.4 Substring of a String  
 

 

• Let w be n length string. 

 

 
 

• Number of different length substrings of any given n length string =n+1  

• Number of different length substrings of any given n length string excluding zero length=n. 

1.5 Relation between Symbol, Alphabet, String and Language 

Character 

 

Character set 

 

Token 

 

C Language 

Symbol 

 

Alphabet 

 

String 

 

Language 

 

 

(i) Number of substrings of w

minimum = n +1 
(over 1 symbol)

maximum = 1+ n + (n – 1) + ....+1
(all characters distinct) =1 + n

=  n +1

(ii) Number of non-empty substrings of w

minimum = n 

maximum = n
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1.5.1 Chomsky Hierarchy 

• Chomsky hierarchy includes all the problems in the world classified into classes. 



 

• Type 3 is the smallest class, and Type 0 is the biggest class. 

 Type 3 Type 2 Type 1 Type 0 

Language:  Regular Context free Context sensitive Recursively 

Enumerable  

Automata: Finite Automata Push down  

Automata 

Linear Bounded 

Automata 

Turing Machine 

Grammar: Regular Context free Context Sensitive Unrestricted 

 

1.6 Language 

• Language is set of strings defined over alphabet (). 

• Let  = {a,b}. Then  = 0 1 2  …….  

  = set of all strings 

   = universal language  

   = {, a, b, aa, ab, ba, ...} 

• 2 = 1 • 1 ={a,b}. {a,b} = {aa, ab, ba, bb}  

• Language: It is a subset of *  

   *L    

• A language is a collection of strings that must be a subset of * where * is a universal language. 

Example:  

 L = ab* = {a, ab, abb,..........} 
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1.7 Types of Languages 

• Finite Language 

• Infinite Language 

• Regular language  

• DCFL (Deterministic CFL)  

• CFL  

• CSL 

• Recursive Language 

• Recursive Enumerable Language (REL) 

1.8 Types of automata 

 

 
 

• Ralations between these machines: 



1. Less power:  It can Represent less number of languages. 

2. More power: It can Represent more number of  languages Compare to all these machines. 

 

 
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2 
FINITE AUTOMATA  

 

2.1 Introduction  

• Finite Automata describes or represents a regular language.  

• Finite Automata is of two types: 

 (i)  Acceptor: Accepts or rejects given string.  

 (ii) Transducer: Produces output string for given input string.  

 

 

Example:  

1's complement of binary number: Input = 10100, Output = 01011 

2.2 Finite Acceptor (Finite Automata) 

• Finite Automata: 

 

 

FA = (Q, , , . F)Σ δ q0

Transition function

Set of input symbols

Set of finite number of states

Set of final states

Initial state
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2.3 Construction of DFA 

1.  If epsilon belongs to L, then initial state must be final in DFA. 

 
2. Dead state: It is non-final state but it never contain a path to final. 

 
• Once we reach the dead state, there is no way to reach to the final state. 

• If every state is final then every string accepted in the DFA. 

  

3. If all states are finals in DFA then L(DFA) =  * 

 

4. If every state is non final in a DFA then L(DFA) =   or L(DFA) = {}, 

 

 L * L    

 L L *    

 L L    

• If |w| = n or |w|   n, then number of states in minimum DFA = (n + 2) states  

• If |w|   n then number of states in minimum DFA = n+ 1 states.  

• Start condition, exactly, atmost length question requires Dead state but end condition, contain substring, atleast length 

questions do not require dead state. 
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• Over one symbol   = {a}. Length of string is equal to number of a's in string. |w|= na(w). 

• Let L={w|w  {a,b}*, na(w) is divisible by m, nb(w) is divisible by n}. Then Number of states in DFA= m×n. 

• Let L={w | w belongs to {a. b}*, nth symbol of w from begin is 'a'}. Then Number of states in DFA = (n + 2). 

• Number of equivalence classes for any regular set L = Number of states in minimal DFA that accepts L. 

 

2.4 Non-Deterministic Finite Automata  

2.4.1 Introduction 

• Finite Automata can be designed in two ways: 

 

• All these finite state machines are equivalent. DFA . NFA 

• We can convert one finite state machine to any other finite state machine. 

• For every gular language, we can design infinite equivaent DFAs or infinite equivalent NFAs but minimum DFA is uique 

for given regular language. 

• For every regular language, one or more minimum NFAs may exist. 

Note : For every regular language:  

   (i)  Unique minimum DFA exists.  

          (ii)  One or more minimum NFAs exists. 

 

2.5 Comparison of NFA and DFA 

 |w| = n |w|   n |w|   n 

Number of states in 

NFA 

n + 1 n + 1 n + 1 

Number of states in 

DFA 

n + 2 n + 2 n + 1 

 

• If every string has nth symbol from begin is 'a' over binary alphabet {a, b} then (n + 1) states in minimum NFA but (n+2) 

states in minimum DFA. 

Finite Automata 

DFA NFA (NDFA)

without 
- moves

with
- moves
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• If every string has nth symbol from end is 'a' over binary alphabet {a, b} then 2n states in minimum DFA and (n + 1) states 

in minimum NFA. 

2.5.1 COMPARISON OF DFA AND NFA (NFA vs DFA) 
 

 NFA  DFA 

(1) Transition Function ( )  Q ×  → 2Q Q ×   →  Q  

(2) Number of paths for string For valid string: 1 path  

For invalid string: >=0 paths 

For valid string: 1 path  

For invalid string: 1 path  

 

2.5.2 Number of states in DFA and NFA for Regular Languages 

Language NFA states DFA states 

(1) {w | w  {a, b}*, |w| = n} n + 1  n + 2  

(2) {w | w  {a, b}*, |w|  n} n + 1 n + 2 

(3) {w | w  {a, b}*, |w|  n} n + 1 n + 2 

(4) {w |w  {a, b}*, w starts with a} 2 3 

(5) {w| w {a, b}*, nth symbol from begin is a} n + 1 n + 2 

(6) {w| w  {a, b}*, nth symbol from end is 'a'} n + 1 2n  

 

 

2.5.3 Finding number of states in DFA using NFA  

 NFA (n states) 

 Subset Construction  

DFA (2n sates exists) 

 Partition algorithm 

Minimum DFA ( 2n states) atmost 2n states 

• Every DFA is NFA, but NFA need not be DFA. 

2.5.4 Relation between NFA with epsilon, NFA without epsilon, and DFA  
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2.6 Regular language Representation  

 

2.7 FA Classification  

 

2.8 Moore machine and mealy machine 

Moore machine  Mealy machine  

Transition Function  : Q ×  Q 

Output Function  : Q    

Outpput is asociated with every state. 

 : Q ×  Q 

 : Q ×    

Output is associated with 

transition. 

 

  

Regular Language

FA Regular Expression Regular Grammar 

DFA NFA 

without 
moves

with
moves
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2.8.1 Example for Moore machine and Mealy machine 

Moore Mealy 

 
 

Q = {A, B} 

 = {0, 1} 

 = {x, y} 

Outpput is asociated with state. 

 
• Extra one output is produced other than desired 

output. 

• So, we can ignore this extra output as this is the 

machine property. 

 
Q = {A, B} 

 = {0, 1} 

 = {x, y} 

Output is associated with transition. 

 
• No extra output is produced.  

• For 3 length input, we are getting the 3 length 

output. 

2.9 Difference between Moore machine and  Mealy machine 

 Moore machine  Mealy machine  

1.  Q ×  Q Q ×  Q 

 

2. 

 Q    Q ×    

3. 

 

Length of O/p 

 

 

If n length I/P (assume 1 length O/P 

symbol is taken at each state) then  

O/P length is (n+1). 

 

If n length input (assume 1 length 

O/P symbol is taken at each 

transition) is given then O/P length 

is n. 

4. By default  DFA no final state. DFA no final state. 

2.10 Constuction of FA with output 

 



Moore Machine 

Mealy Machine 
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Note :  

           For every problem, if moore machine exists the we can also construct equivalent mealy machine. 

Example: 

 

2.11 Classification of Finite State Machine (FSM) 

 

 

2.12 Regular Expression 

Definition:  

o Regular expression represents a regular language.  

o It describes a regular set.  

o L (regular expression) is regular set. 

o It is a kind of declarative way to represents a regular language. 

o Regular expression generates a regular set.  

o It uses 4 operators to represent a regular language. 

 

 

 

Sum of present bit and previous bit. 

Mealy Machine

0/00

0/01
1/10

1/01

Previous bit ‘0’ Previous bit ‘1’


Moore Machine 

Mealy Machine 
Bzoth are equivalent 

Operators Operandas 
(Regular expression)

Regular Expression

Unary Binary
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2.13 Operators of Regular Expression 

1. OR ( )
Binary Operator

2. Concatenation(.)

 



 

3. Kleenestar ( )*
Unary Operator

4. Kleenestar (+)





 

            

Regular Expression  Equivalent Regular Set 

a + b L(a + b) = {a, b} 

a + a = a  L(a + a) = {a}  

a +  = a L(a + ) = {a}  

a +  =   + a L(a + ) = {a, }  

 +  =  L(+) = {}  

 +  = ϕ  L( + ) = {} 

a  b = ab  L (a  b) = {ab} 

a   = a  L (a  ) = {a} 

   =  L() = {}  

   = ϕ  L(  ) = {} 

a  a = aa = a2 L (a  a) = aa = {a2} 

2.14 Kleene star/ kleene closure / closure  

R* ( Kleene closure of R): 

R* = R° +R1+ R2 +R3 + … =  + R + RR + RRR+ …. 

  

Example:  

 a* = {a0, a1, a2, a3 , ...} =  {, a , aa, aaa, …} = Set of all strings over a. 

 * = 0 + 1 + 2 + 3 + …. =  +  +  +  + …. =  +    =  

2.15 Positive Closure (Kleeme Plus) 

R+ (Positive Closure of R): 

   

R+= R1 + R2 + R3 + …..  

 

 

R* = R 0 i.e. repeart R any number of time 

R+ = R1 i.e.  repeat R atleast 1 time. 

R* = R+ + R0  

Example: 

(1)  a + = {a, aa, aaa, …} = {an | n  1} 

(2) + =  = *  

(3) + =   
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Properties : 

 OR Concatenation 

1. Identity    

2. Associative  Yes  Yes  

3. Commutative  Yes  No 

4. Annihilatior *  

2.16 Identification of Regular Languages  

 

1. L={anbm |n, m  0} = a*b*  (Regular language) 

2. L= {anbm|m<n<10} (Finite Set, Regular language) 

3. L={anbm |m > n > 10} (Non Regular language) 

4. L= {anbm |m = n, m < 10} (Regular language) 

5. L={ anbm |m = n, m > 10} (Non Regular language) 

6. L={ambn | gcd (m, n) = 1} (Non Regular language) 

7. L={ambn |LCM (m, n) = 1} (Regular language) 

8. L= {anbn | n >= 0} (Non Regular language) 

9. L={anb2n |n  0} (Non Regular language) 

10.  L={ambn | m=even, n =odd}  (Regular language) 

11.  L={ambn | m = n = even} (Non Regular language) 

  OR  

 L = {a2nb2n | n = even} 

12. L={a*} over  = {a} 

   = Regular language 

13. L={a2n | n >= 0} over  = {a}. 

 L= a2n=(aa)*  

   = Regular language 



  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 

Theory of Constraints 

 

7.15 

14. L= {aPrime} over  = {a} 

   = Non regular language 

15. L={ 
2

n
a | n  0} over  = {a} 

 L={epsilon, a, aaaa, a9, a16...}, FA Not possible for L. So, it's Non-Regular language. 

16. L= { 
2

n

a | n > 0}over  = {a} 

 Non Regular language 

17.  L= {
2

n

a | n  10} 

    = Regular language  

18.  L={an! | n  100} over S = {a} 

   = Non Regular language  

19.  L={
n

n
a |n  10} over  = {a} 

   = Non Regular language 

20. L = {aPrime}* over  ={a} 

 L = complement of {a} = *– {a} ={, a2, a3 a4 ,a5, a6, a7,...}= Regular language 

21.  L = {aprime | prime <100} is finite language (regular) 

 

22. L = {w # w | w  a*}  

  

    = Non Regular language  

23. L = {w # w | w  (a+b)*}  

   = Non Regular language  

24. L = {w # wR | w  a*} is non regular 

  

25. L = {w x w  | w  {a, b}*, x  {a, b}+} 

 Put w = , and x = (a + b)+  

 L = (a + b) + 

     = Regular language  

26. L = {x w w | w  {a, b}* x  {a, b}+}  

L = {a  # 
n n

a }

dependency 

L = {a  # 
n n

a }
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 L = (a + b)+ 

   = Regular language  

27. L = {w wR x | w  {a, b}*, x  {a, b}+}  

 L = (a + b)+ 

    = Regular language  

28. L = {w x wR |w  (a + b)*, x  {a, b}+}  

 L = (a + b) + 

    = Regular language  

29. L = {x w wR | w  {a, b}*, x  {a, b}+}  

 L = (a + b)+ 

2.17 Closure Properties of Regular Languages 

1. Closure properties for finite languages: 

 

 

2.18 Table for FINITE sets 

 Finite sets Closed/Not Closed 

(1) Union () F1  F2  Finite           

(2) Intersection () F1  F2  Finite           

(3) Complement ( L ) F   NOT finite           

(4) L1 – L2 F1 – F2  Finite            

(5) L1. L2 F1  F2  Finite            

(6) L* ,  L+ 
F*, F+  May or may not be finite                                            

(7) Subset (L) Subset (Finite set)  Finite                                 

 

 

2.18.1 Table for Infinite sets 

Union 

Intersection 

Complement 

Difference 

Concatenation 

Reversal 

Kleene closure

Subset 
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 Infinite sets 

(1) Union () Infinite  Infinite  Infinite 

(2) Intersection () Infinite  Infinite  Need not be infinite 

(3) Complement ( L ) Complement of Infinite  May or may not be 

infinite 

(4) L1 – L2 Need not be infinite 

(5) L1 . L2 Infinite 

(6) L*, L+ Infinite 

(7) Subset (L) Need not be infinite 

 

2.19 Closure Properties of Regulars 

Li→ Regular 

1.  2.  

3. L  4. 
1 2

L L  

5. 
1 2

L L  6. Re v
L  

7. L


 8. L


 

9. Subset (L) is not closed for regular languages 10. Prefix (L) 

11. Suffix (L) 12. Substring (L) 

    

13. Substitution (L) 14. Homomorphism (L) 

15. -free homomorphism (L) 16. h–1 (L) (Inverse homomorphism (L)) 

17. L1/L2 (Quotient) 18. Symmetric difference 

19. Half (L)  20. Second half (L) 

21. One-third (L) [1/3 (L)] 22. Middle 1/3 (L) 

23. Last 1/3 (L) 24. 
New   11 2 2

, Suff )ix(L L L L


   

25. Finite Union 26. Finite Intersection 

27. Finite Difference 28. Finite Concatenation 
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 Out of the given 36 closure properties, how many are closed for regular languages? 

Subset operation, and 6 infinite operations are not closed, remaining all are closed for regular languages. 

 Out of 36 operations total 7 operations are not closed. 

 

2.19.1 Operations over regular languages 
Examples: 

 (1) 

*

*1

1 2+

2

L = a
L  L = a

L =
 .

 a
 






 

 (2) 
1

1 2 2

2

L
L + L = L

L Any

 


 
 

 (3) 

*

* *1

1 2*

2

L = a
L + L = a + b

L = b






 

 (4) 
* *

1 1 2

1
2

L L L
L

L Any language over same 

    
 

 

 

   

 (5)    

* *

1 2*

1 *

*

2

L + L = a b
L a

a,b         a + b
L = b        



  
 

   
 

 

 

Note :  

           1. 
1

1 2

2

L
L L

L Any







 



 

          2.     

*

1

1 2 2

2

L
L + L = L

L Any

 


 

 

 

2.19.2 Properties of regular languages 

I. If both L1 and L2 are regular sets then 
1 2

L L  is Regular. 

II. IF 
1 2

L L  is regular set then   

 L1 “need not be regular” 

29. Finite Subset 30. Finite Substitution 

31. Infinite Union 32. Infinite  

33. Infinite Difference 34. Infinite Concatenation 

35. Infinite Subset 36. Infinite Substitution 



  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 

Theory of Constraints 

 

7.19 

    L2 “need not be regular”. 

III. If L is regular then L  is regular. 

IV.  If L  is regular then L is regular. 

V. L is regular iff L  is regular 

VI. L is not regular iff  L  is not regular. 

Example: 

 
n n

a b  is not regular and  
n n

a b  is not regular. 

 

2.19.3 Arden’s Lemma and Kleene Method  
Arden’s Lemma: 

 If R = Q + RP and P does not contain  then 
*

R = QP  

  R = Q + RP    ...(1) 

      = Q + (Q + RP) P = Q + QP + RP2 ...(2) 

  Substitute R one more time in equation (2) 

  R = Q + QP + QP2 + RP3 

 If we do repetitive substitution infinite time, we will get 
*

R = QP  

Kleene Method: 

  

  
*

1 1 1 1k k k k k

ij ij ik kk kj
R R R R R

   
   

  
 

LLG RLG 

Each production in LLG follows 

V → VT* 

OR 

V→T* 

Each production in RLG follows 

V→T*V 

OR 

V→T* 

2.20 Identify the Language Generated by Regular Grammar 

 Regular Grammar Regular Language 

1. S →  L = {} 

2.  S → |a L = {, a} 

3. S → aa | abc | d L = {aa, abc, d} 
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4. S → Aa  

A → b 

By default S is a start symbol here. 

L = {ba} 

5. S → Aa Useless production. It has no meaning.  

L = {} =  

6. 

Useless

Ab |S b


  L = {b} 

7.   

Look from bottom to top 

L = {aa, bb} 

8. 
  

  

Regular Language Regular Grammar 

a* 
(I)   S → Sa |  

       OR 

(II)  S → aS |  

a+ (I)   S → Sa | a 

       OR  

(II)  S → aS | a 

(a + b)* 
(I)   S → Sa | Sb |  

       OR 

(II)   S → aS | bS |  

(a + b)+ (I)   S → Sa | Sb | a | b 

       OR 

(II)   S → aS | bS | a | b 

(ab)* 
(I)   S → Sab |  

       OR 

(II)   S → abS |  

2.21 Pumping-Lemma (PL) 

2.21.1 Pumping Lemma for Regular Languages 
 

 

2.21.2 Pumping Lemma for Non-Regular Languages using contradiction 
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2.21.3 Proof for Regular Languages 

 If L is Regular language, then how pumping lemma proves it as regular? 

 
 

2.22 Equivalence Classes  

(1) L is regular iff L has finite number of equivalence classes. 

(2) L is not regular iff L has infinite equivalence classes. 

 




 
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3 
PUSH DOWN AUTOMATA   

 

3.1 Context Free Grammar 

CFG: It represents a Context Free Language. 

 

 

 Rule of each production in P: 

 V → (V  T)* 

 V = only 1 variable in LHS 

 To derive a string, following derivations can be used.  

1. Linear Derivation: Linear derivation is two types 

       (a) Left Most Derivation (LMD) 

       (b) Right Most Derivation (RMD) 

2.  Non- linear Derivation: Non- linear Derivation OR Parse Tree OR Derivation Tree   

3.2 Types of Context Free Grammars 

There are two types of CFG: 

1. Ambiguous CFG:  At least one string has more than one derivation. 

2. Unambiguous CFG:  Every string (w) generated by CFG has exactly one derivation. 

 

3.3 Pushdown Automata (PDA) 

PDA accepts context free language (CFL). PDA also called as NPDA. 
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3.4 PDA acceptance mechanisms 

  PDA acceptance mechanisms are three types:  

 1. PDA acceptance using final state. 

 2. PDA acceptance using empty stack. 

 3. PDA acceptance using both final state and Empty stack. 

  All PDA acceptance mechanisms are equivalent. 

  DPDA acceptance mechanism are two types:  

1.  DPDA using final stack. 

2. DPDA using both final state and empty stack.  

 

3.5 PDA configuration 

PDA = (Q, ∑,  , q0, F, Z0, ). 

  where Q = Set of states 

   ∑ = input alphabet 

     = Transition Function (PDA/NPDA  : Q∑ 2Q  *) 

   F = Set of Final state  

   Z0 = Bottom symbol or initially TOS 

    = Stack Alphabet 

  DPDA transition Function is [ : Q∑  Q  *] 

 Difference between DPDA and PDA  

  

DPDA PDA 

[1]  :Q∑ Q*  :Q∑ 2Q  * 

[2] Every DPDA is PDA Every PDA need not be DPDA 

[3] DPDA acceptance with 

      (a) Final state mechanism 

      (b) Both Final and empty stack 

PDA acceptance with 

(a) Final state mechanism 

(b) Empty stack mechanism  

(c) Both Empty stack and Final 

state 

 

 Relation between Regular, DCFL and CFL. 

 

 

   Regular languages ……(FA) 

   DCFLs (DPDA) 

   CFLs (PDA or NPDA) 
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I If L is regular language, then it is also DCFL and CFL. 

II Every DCFL is CFL, but it need not be regular. 

3.6 Closure Properties of CFLs 

  

•  Operation Closed / Not Closed 

Union (L1  L2)  

Intersection (L1 L2)  

Complement ( L )  

Set difference (L1-L2)  

Concatenation (L1.L2)  

Reversal (LRev)  

Kleene Closure (L)  

Kleene Plus (L)  

Subset (L)  

Prefix (L)  

Suffix (L)  

Substring (L)  

Substitution (L)  

Homomorphism (L)  

 - free Homomorphism h(L)  

Inverse Homomorphism h-1 (L)  

quotient (L1, L2) = L1/L2   

Symmetric difference (L1, L2)  

Finite Union  

 Finite Intersection   

Finite difference  

Finite concatenation  

Finite subset  

Finite substitution  

Infinite Union  

Infinite intersection  

Infinite difference  

Infinite concatenation  

Infinite Subset  

Infinite Substitution  

Union with Regular (L U Regular)  

L U Regular  

L – Reg  

Reg – L  
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Note :(i)     CFL  CFL = Need not be CFL 

          (ii)    CFL  Regular = CFL (Need not be DCFL) 

          (iii)   CFL  DCFL = May or may not be CFL  

          (iv)   CFL  Finite = Finite 

          (v)   CFL  infinite = Need not be CFL 

3.7 Closure Properties of DCFLs  

•  Operation Closed / Not Closed 

Union (L1  L2)   

Intersection (L1 L2)  

Complement ( L )  

Set difference (L1-L2)  

Concatenation (L1.L2)  

Reversal (LRev)     

Kleene Closure (L) = L*    

Kleene Plus (L) = L+  

Subset (L)   

Prefix (L)    

Suffix (L)  

Substring (L)  

Substitution (L)  

Homomorphism (L)   

 - free Homomorphism h(L)  

Inverse Homomorphism h-1 (L)    

quotient (L1, L2)  

Symmetric difference (L1, L2)  

  Finite Union   

Finite Intersection  

Finite difference    

Finite concatenation  

Finite subset   

Finite substitution  

Infinite Union   

Infinite intersection  

Infinite difference  

Infinite concatenation   

Infinite Subset    

Infinite Substitution    

Union with Regular (L U Regular)  

L U Regular  

L – Regular  

Regular – L   
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Note : 

          DCFL  Regular  : DCFL 

          DCFL  Regular  : DCFL 

          DCFL - Regular  : DCFL 

          Regular - DCFL  : DCFL 

          DCFL  CFL  : CFL (need not be DCFL) 

          DCFL  CFL  : Need not be CFL 

          DCFL - CFL   : Need not be CFL 

          CFL - DCFL   : Need not be CFL 

          DCFL  Finite : DCFL 

          DCFL   Finite  : Finite 

          DCFL – Finite  : DCFL 

          Finite - DCFL    : Finite 

 

 

3.8 Comparison of Regular Grammars and CFGs 

 CFL and CFG both are equivalent. CFL CFG 

 LLG: Left Linear Grammar, RLG: Right Linear Grammar, RG: Regular Grammar, LG: Linear Grammar, CFG: Context 

Free Grammar.  

 Every LLG is RG 

 Every RLG is RG 

 Every RG is LG 

 Every RG is CFG 

 Every LG is CFG 

 Every RG need not be RLG 

 Every RG need not be LLG 

 Every LG need not be RG 

 Every CFG need not be RLG 

 Every CFG need not be LG 
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3.9 Context Free Languages and DCFLs 

I. Comparison of various languages 

 

 

II. Identification of Regulars, DCFLs, and CFLs 
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 [1] L = {anbnck n, m, k  0} 

     = a*b*c* 

     = Regular 

 

 [2] L = {anbn n  0} 

  L = DCFL but not regular 

  S → aSb    

 

 [3] L = {anb2n n  0} 

  L = DCFL but not regular 

  S → aSbb     

                

 [4] L = {a2nbn n  0}      

  L = DCFL 

  S → aaSb    

 

 [5] L = {a2nb2n n  0} 

  L = DCFL 

  S → aaSbb    

 

 [6] L = { anbnc*} Assume always n  0 in all examples 

  OR 

    = { ambnc*  m = n} 

  DCFL but not regular 

 [7] L = { anb*cn} DCFL 

 [8] L = { a*bncn}  DCFL 

 

 [9] L = { ambnc* m  n } 

  DCFL 

 

 [10] L = { ambnc* m < n } 

  DCFL 

   

 [11] L = { ambnc* m > n } 

  DCFL 

 

 [12] L = { ambnc* c n } 

  DCFL 

 

 [13] L = { ambnc* m   n } 

  DCFL 

 

 [14] L = { ambncm+n m, n 0 } is DCFL 
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 [15] L = { am+nbn+kck+m m, n 0 } is CFL 

 

 [16] L = { wwr w belongs to {a, b}* } is CFL but not DCFL 

       

  

 


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4 
TURNING MACHINE 

4.1 Classification of Languages 

 
1. All languages which are not RELs 

2. All not recursive languages 

3. All not CSLs 

4. All not CFLs 

5. All not DCFLs 

6. All not regulars 

7. All recursive languages which are not DCFLs 

8. All RELs which are not DCFLs  

4.2 There are Two types of TM 
(a) DTM (Deterministic TM) 

(b) NTM (Non- Deterministic TM) 

 

DTM 

  :QQ
Left Right

,L R
 

  
 
  

 

NTM 

  

  : Q    2Q{ L, R} 
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4.3 Unrestricted Grammar (UG) and Context Sensitive Grammar (CSG) 
Unrestricted grammar (UG) also called as   

  RE grammar 

  Phase structure grammar 

Context sensitive grammar (CSG) is also called as  

  Non contracting grammar 

 Bound restricted grammar 

4.4 Grammars 

Left Linear Grammar (LLG):  V VT*  T* 

Right Linear Grammar (RLG):  V T*V  T* 

Linear Grammar (LG):  V T*VT*  T* 

Context Free Grammar (CFG):  LHS  RHS,  LHS RHS   

Unrestricted Grammar (UG):  LHS  RHS 

4.5 Equivalence of various TMs 

TM  Single tape TM 

TM  One-way infinite tape TM 

TM  Two-way infinite tape TM 

TM  Multi tape and multi head TM 

TM  Universal TM 

TM  Two stack PDA 

TM  Multi stack PDA 

TM  FA with  two stacks 

TM  FA + R/W tape + Bidirectional head 

 

4.6 Restrictions on TM 

(1) If TM tape is read only tape, this TM accepts regular. 

 TM  FA (TM with read only tape) 

(2) If TM head is unidirectional then L(TM) = Regular. 

(3) If TM tape is read only and unidirectional head then L(TM) = Regular. 

(4) If TM always halts then L(TM) is recursive language. 

(5) If TM always halts and uses linear bound tape then L(TM) is CSL. 
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4.7 LBA, HTM and TM 

HTM: It is a TM that always halts for every input. 

TM:  It halts for every valid string and for invalid strings either halts at “non final state” or “never halts”. 

LBA: It is HTM but length of the tape we use linearly bounded. 

 LBA accepts CSL languages. 

 HTM accepts recursive languages. 

 TM accepts Recursive Enumerable (RE) languages. 

4.8 Recursively Enumerable Language 

It is also called as: 

 Enumerable language 

 TM recognizable language 

 TM Enumerable language 

 Partially decidable language 

 Semi-decidable language 

4.9 Recursive Language 

 Recursive language is acceptable by HTM, and hence acceptable by TM. 

 Recursive also called as decidable language. 

 Recursive also called as Turing decidable language. 

If TM always halts, then TM is called as HTM. 

 

4.10 Difference between Recursive and REL 

 All Recursive languages are RE languages. 
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Note :  

             1.   Union: 

  REL  Finite  REL 

  REL  Regular  REL 

  REL  CFL  REL 

  REL  Recursive  REL 

  REL1  REL2  REL 

2.   Intersection: 

  REL  Finite  REL (Finite) 

  REL  CFL  REL 

  REL  Rec  REL 

            REL1  REL2  REL 

4.11 Closure Properties of Recursive languages 

I. The following operations are not closed for recursive languages: 

 Subset 

 Substitution 

 Homomorphism 

 Finite substitution 

 Infinite union 

 Infinite intersection 

 Infinite concatenation 

 Infinite difference 

 Infinite substitution  

II. The following operations are closed for recursive languages: 

 Complement 

 Difference 

 Finite difference 

 Infinite followed by , , -, , , f 

 Remember not closed operations 

4.12 Complement of Recursive Vs Complement of REL 
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 Complement of Recursive set is Recursive. 

 Complement of REL is either Recursive or non-REL. 

 Complement of REL never be “REL which is not recursive”. 

4.13 Decidable and Undecidable 

 

4.14 Decidable Vs Undecidable, RE Vs Not RE, Countable Vs Uncountable 

 

 [1] Decidable    and  Undecidable 

 

 

HTM exist     HTM not exist 

(Rec language)    (not Rec language) 

 

 [2] RE    and  Not RE 

 

   

       TM exist     TM not exist 

  

 [3] Countable set  and  Uncountable set 

 

 

  X is countable set    (X is not countable set) 

  iff 

  Xf(X) is bijective where f(X) is known countable set.  
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Note :  

 If problem p is decidable then p  is also decidable. 

 If problem p is Undecidable then p  is also UD. 

 If problem p is RE but not recursive then p  is not RE. 

 If problem p is not RE then p  is either “Not RE” or “RE but not Recursive”. 

 

  

4.15 Decision Properties Table 

 D: Decidable 

 UD: Undecidable 

 

 FA     DPDA PDA LBA/HTM TM 

H (Halting) D D D D UD 

M 

(Membership) 

D D D D UD 

Em 

(Emptiness) 

D D D UD UD 

F (Finiteness) D D D UD UD 
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T (Totality) D D UD UD UD 

Eq 

(Equivalence) 

D D UD UD UD 

D (Disjoint) D UD UD UD UD 

S (Set 

Containment) 

D UD UD UD UD 

 

4.16 Decidable problem for DFA / NFA/ FA/ Regular  

(1) Halting problem for FA / Reg/ DFA / NFA is decidable. 

(2) Non-halting problem for FA / Reg/ DFA / NFA is decidable. 

(3) Membership problem for FA / Reg/ DFA / NFA is decidable. 

(4) Non-membership problem for FA / Reg/ DFA / NFA is decidable. 

(5) Emptiness for FA / Reg/ DFA / NFA is decidable. 

(6) Non-emptiness problem for FA / Reg/ DFA / NFA is decidable. 

(7) Fitness problem for FA / Reg/ DFA / NFA is decidable. 

(8) Non-fitness problem for FA / Reg/ DFA / NFA is decidable. 

(9) Totality problem for FA / Reg/ DFA / NFA is decidable. 

(10) Non-totality problem for FA / Reg/ DFA / NFA is decidable. 

(11) Equivalence problem for FA / Reg/ DFA / NFA is decidable. 

(12) Non-equivalence problem for FA / Reg/ DFA / NFA is decidable. 

(13) Disjointness problem is decidable for FA / Reg/ DFA / NFA. 

(14) N0n-disjointness problem is decidable for FA / Reg/ DFA / NFA. 

(15) Set containment problem for FA / Reg/ DFA / NFA is decidable 

(16) Non-set containment problem for FA / Reg/ DFA / NFA is decidable. 

4.17 Decidable problems for CFLs/DCFLs 
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4.18 Decidability problems for Recursive languages 

 

 Problems Recursive  

1. Halting D 

2. Non-Halting D 

3. Membership D 

4. Non-membership D 

5. Emptiness UD [Not REL] 

6. Non-emptiness UD [RE but not Rec] [SD but UD] 

7. Finiteness UD [Not RE] 

8. Non-finiteness UD [Not RE] 

9. Totality UD [Not RE] 

10. Non-totality UD [RE but not Rec] [SD but UD] 

11. Equivalence UD [Not RE] 

12. Non-equivalence UD [RE but not Rec]  

13. Disjointness UD [Not RE] 

14. Non-disjointness UD [RE but not Rec] 

15. Set containment UD [Not RE] 

16. Non-set containment UD [RE but not Rec] 
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4.19 Classification of Languages based on Decidability 

All RE languages can be classified into 3 important classes. 

 

4.19.1 Decidability Vs Turing Machine 
 

 
 

4.20 Decidable languages 

(1) Finite set  Decidable 

(2) ∑ = {a, b}  Decidable  

(3) ∑  Set of finite number of symbols  Decidable 

(4) ∑* over alphabet ∑ = {a, b}  Decidable 

(5) {M  M is DFA, M accepts ab}  Decidable 
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(6) {TM  Number of states in TM= 2}  Decidable 

(7) {TM  TM reaches state q within 100 steps}  Decidable 

(8) { TM  TM accepts REL}  Decidable 

 

 

 




