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1. Is zero a rational number? Can it be written in the form p/q, where p and q are integers
and q ≠ 0?

Solution:



Yes, zero is a rational number.

It can be written in the form of 𝑝/q, where p and q are integers and q ≠ 0 ⇒ 0 = 0/1.

2. Are the following statements true or false? Give reasons for your answers.

(i) Every whole number is a natural number.

(ii) Every whole number is a rational number.

(iii) Every integer is a rational number.

(iv) Every rational number is a whole number.

Solution:

(i) False

Natural numbers- Numbers starting from 1 to infinity (without fractions or decimals)

i.e., Natural numbers = 1, 2, 3, 4 …

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0, 1, 2,3, …

Or, we can say that whole numbers have all the elements of natural numbers and zero.

∴ Every natural number is a whole number; however, every whole number is not a natural
number.

(ii) True

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0, 1, 2, 3…

Rational numbers- All numbers in the form 𝑝/q, where p and q are integers and q ≠ 0.

i.e., Rational numbers = 0, 19/30, 2, 9/-3, -12/7 …

∴ Every whole number is a rational number; however, every rational number is not a whole
number.

(iii) True

Integers- Integers are set of numbers that contain positive, negative and 0; excluding fractional
and decimal numbers.



i.e., integers = {…-4,-3,-2,-1,0,1,2,3,4…}

Rational numbers- All numbers in the form 𝑝/q, where p and q are integers and q ≠ 0.

i.e., Rational numbers = 0, 19/30, 2, 9/-3, -12/7 …

∴ Every integer is a rational number; however, every rational number is not an integer.

(iv) False

Rational numbers- All numbers in the form p/q, where p and q are integers and q ≠ 0.

i.e., Rational numbers = 0, 19/30, 2, 9/-3, -12/7 …

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0, 1, 2, 3, …

Hence, we can say that integers include whole numbers as well as negative numbers.

∴ Every whole numbers are rational, however, every rational numbers are not whole numbers.

3. Arrange -5/9, 7/12, -2/3 and 11/18 in the ascending order of their magnitudes. Also, find
the difference between the largest and the smallest of these rational numbers. Express
this difference as a decimal fraction correct to one decimal place.

Solution:

The given numbers are: -5/9, 7/12, -2/3 and 11/18

Now, the L.C.M of 9, 12 and 18 is 36

So, the given numbers are:

-5/9, 7/12, -2/3 and 11/18

= -5×4/9×4, 7×3/12×3, -2×12/3×12 and 11×2/18×2

= -20/36, 21/36, -24/36 and 22/36

Numbers in ascending order are:

-24/36, -20/36, 21/36 and 22/36

Hence, given numbers in ascending order are

-2/3, -5/9, 7/12 and 11/18



Now, to find the difference between the largest and smallest of the above number

Difference = 11/18 – (-2/3)

= 11/18 + 2/3

= 11/18 + (2×6)/(3×6)

= 11/18 + 12/18

= (11 + 12)/18

= 23/18

Now, to express this fraction as a decimal by correcting to one decimal place

Hence, 23/18 = 1.27777777… ≈ 1.3

4. Arrange 5/8, -3/16, -1/4 and 17/32 in the descending order of their magnitudes. Also,
find the sum of the lowest and the largest of these rational numbers. Express the result
obtained as a decimal fraction correct to two decimal places.

Solution:

Given numbers are: 5/8, -3/16, -1/4 and 17/32

The L.C.M of 8, 16, 4 and 32 is 32

So, the given numbers are:

5/8, -3/16, -1/4 and 17/32

= 5×4/8×4, -3×2/16×2, -1×8/4×8 and 17×1/32×1

= 20/32, -6/32, -8/32 and 17/32

Numbers in descending order are:

20/32, 17/32, -6/32, -8/32

Hence, given numbers in descending order are

5/8, 17/32, -3/16 and -1/4

Now, to find the sum of the largest and the smallest of the above numbers

Sum = 5/8 + (-1/4)



= 5/8 – 1/4

= 5/8 – (1×2)/(4×2)

= 5/8 – 2/8

= (5 – 2)/8

= 3/8

Now, to express this fraction as a decimal by correcting to two decimal place

Hence, 3/8 = 0.375 ≈ 0.38

5. Without doing any actual division, find which of the following rational numbers have
terminating decimal representation:

(i) 7/16

(ii) 23/125

(iii) 9/14

(iv) 32/45

(v) 43/50

(vi) 17/40

(vii) 61/75

(viii) 123/250

Solution:

(i) Given number is 7/16

16 = 2 x 2 x 2 x 2 = 24 = 24 x 50

So, 16 can be expressed as 2m x 5n

Hence, 7/16 is convertible into the terminating decimal

(ii) Given number is 23/125

125 = 5 x 5 x 5 = 53 = 20 x 53

So, 125 can be expressed as 2m x 5n



Hence, 23/125 is convertible into the terminating decimal

(iii) Given number is 9/14

14 = 2 x 7 = 21 x 71

So, 14 cannot be expressed as 2m x 5n

Hence, 9/14 is not convertible into the terminating decimal

(iv) Given number is 32/45

45 = 3 x 3 x 5 = 32 x 51

So, 45 cannot be expressed as 2m x 5n

Hence, 32/45 is not convertible into the terminating decimal

(v) Given number is 43/50

50 = 2 x 5 x 5 = 21 x 52

So, 50 can be expressed as 2m x 5n

Hence, 43/50 is convertible into the terminating decimal

(vi) Given number is 17/40

40 = 2 x 2 x 2 x 5 = 23 x 51

So, 40 can be expressed as 2m x 5n

Hence, 17/40 is convertible into the terminating decimal

(vii) Given number is 61/75

75 = 3 x 5 x 5 = 31 x 52

So, 75 cannot be expressed as 2m x 5n

Hence, 61/75 is not convertible into the terminating decimal

(viii) Given number is 123/250

250 = 2 x 5 x 5 x 5 = 21 x 53

So, 250 can be expressed as 2m x 5n



Hence, 123/250 is convertible into the terminating decimal
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1. State whether the following numbers are rational or not:

(i) (𝟐 + √𝟐)𝟐

(ii) (𝟑 − √𝟑)𝟐

(iii) (𝟓 + √𝟓)(𝟓 − √𝟓)

(iv) (√𝟑 − √𝟐)𝟐

(v) (3/2√𝟐)2

(vi) (√7/6√𝟐)2

Solution:

(i) (2 + √2)2 = 22 + 2(2)(√2) + (√2)2

= 4 + 4√2 + 2

= 6 + 4√2

Therefore, it is irrational

(ii) (3 – √3)2 = (3)2 – 2(3)( √3) + (√3)2

= 9 – 6√3 + 3

= 12 – 6√3

= 6(2 – √3)

Therefore, it is irrational.

(iii) (5 + √5)(5 – √5) = (5)2 – (√5)2

= 25 – 5

= 20

Therefore, it is rational.

(iv) (√3 – √2)2 = (√3)2 – 2(√3)(√2) + (√2)2



= 3 – 2√6 + 2

= 5 – 2√6

Therefore, it is irrational.

(v) (3/2√2)2 = 32/(2√2)2

= 9/(4 x 2)

= 9/8

Therefore, it is rational.

(vi) (√7/6√2)2 = (√7)2/(6√2)2

= 7/(36 x 2)

= 7/72

Therefore, it is rational.

2. Find the square of:

(i) 3√2/5

(ii) √3 + √2

(iii) √5 – 2

(iv) 3 + 2√5

Solution:

(i) (3√2/5)2 = (3√2)2/52

= (9 x 2)/25

= 18/25

On further implication, we get

= 1⅘

(ii) (√3 + √2)2= (√3)2+ (√2)2 + 2(√3)(√2)

= 3 + 2 + 2√6



= 5 + 2√6

(iii) (√5 – 2)2 = (√5)2 + (2)2 – 2(√5)(2)

= 5 + 4 – 4√5

= 9 – 4√5

(iv) (3 + 2√5)2 = 32 + 2(3)( 2√5) + (2√5)2

= 9 + 12√5 + (4×5)

= 9 + 20 + 12√5

= 29 + 12√5

3. State, in each case, whether true or false:

(i) √𝟐 + √𝟑 = √𝟓

(ii) 2√4 + 2 = 6

(iii) 𝟑√𝟕 − 𝟐√𝟕 = √𝟕

(iv) 𝟐/7 is an irrational number.

(v) 𝟓/11 is a rational number.

(vi) All rational numbers are real numbers.

(vii) All real numbers are rational numbers.

(viii) Some real numbers are rational numbers.

Solution:

(i) False

(ii) True

(iii) True

(iv) False

(v) True

(vi) True



(vii) False

(viii) True

4. Given universal set is {-6, -5¾, -√4, -3/5, -3/8, 0, 4/5, 1, 1⅔, √8, 3.01, π, 8.47}

From the given set, find:

(i) Set of Rational numbers

(ii) Set of irrational numbers

(iii) Set of integers

(iv) Set of non-negative integers

Solution:

(i) First find the set of rational numbers

Rational numbers are numbers of the form p/q, where q ≠ 0

U = {-6, -5¾, -√4, -3/5, -3/8, 0, 4/5, 1, 1⅔, √8, 3.01, π, 8.47}

Here, -5¾, -3/5, -3/8, 4/5 and 1⅔ are of the from p/q

Therefore, they are rational numbers

The set of integers is a subset of rational numbers, -6, 0 and 1 are also rational numbers

Here, decimal numbers 3.01 and 8.47 are also rational numbers as they are terminating
decimals

Also, -√4 = -2 as square root of 4 is 2

Thus, -2 belongs to the set of integers

From the above set, the set of rational numbers is Q,

Q = {-6, -5¾, -√4, -3/5, -3/8, 0, 4/5, 1, 1⅔, 3.01, 8.47}

(ii) First find the set of irrational numbers

Irrational numbers are numbers which are not rational

From the above subpart, we know that the set of rational numbers is Q,

Q = {-6, -5¾, -√4, -3/5, -3/8, 0, 4/5, 1, 1⅔, 3.01, 8.47}



Here the set of irrational numbers is the set of complement of the rational numbers over real
numbers

The set of irrational numbers is U – Q = {√8, π}

(iii) First find the set of integers

Set of integers consists of zero, the natural numbers and their additive inverses

Set of integers is Z

Z = {…, -3, -2, -1, 0, 1, 2, 3, …}

Here, the set of integers is U ⋂ Z = {-6, -√4, 0, 1}

(iv) First find the set of non-negative integers

Set of non-negative integers consists of zero and the natural numbers

Set of non-negative integers is Z+ and

Z+ = {0, 1, 2, 3, …}

Set of integers is U ⋂ Z+ = {0, 1}

5. Use method of contradiction to show that √𝟑 and √𝟓 are irrational.

Solution:

Consider √3 and √5 as rational numbers

√3 = a/b and √5 = x/y (where a, b, x, y ∈ Z and b, y ≠ 0)

By squaring on both sides, we have

3 = a2/b2 , 5 = x2/y2

3b2 = a2 , 5y2 = x2 …. (a)

Here,

a2 and x2 are odd as 3b2 and 5y2 are odd.

a and x are odd …. (1)

Take a = 3c, x = 5z

By squaring on both sides



a2 = 9c2, x2 = 25z2

Using equation (a)

3b2 = 9c2, 5y2 = 25z2

By further simplification

b2 = 3c2, y2 = 5z2

Here,

B2 and y2 are odd as 3c2 and 5z2 are odd.

b and y are odd …… (2)

Using equation (1) and (2) we know that a, b, x, y are odd integers.

a, b and x, y have common factors 3 and 5 which contradicts our assumption that a/b and x/y
are rational

a, b and x, y do not have any common factors

a/b and x/y is not rational

√3 and √5 are irrational.

6. Prove that each of the following numbers is irrational:

(i) √3 + √2

(ii) 3 − √2

(iii) √5 – 2

Solution:

(i) √3 + √2

Consider √3 + √2 be a rational number.

√3 + √2 = x

By squaring on both sides

(√3 + √2)2 = x2

(√3)2 + (√2)2 + 2(√3)(√2) = x2



3 + 2 + 2√6 = x2

5 + 2√6 = x2

2√6 = x2 – 5

√6 = (x2 – 5)/2

Now,

x is a rational number.

x2 is a rational number.

x2 – 5 is a rational number.

(x2 – 5)/2 is also a rational number.

Considering the equation, (x2 – 5)/2 = √6

√6 is an irrational number

But, (x2 – 5)/2 is a rational number

So, x2 – 5 has to be an irrational number.

Then, x2 should also be an irrational number.

Also, x must be an irrational number.

We assumed that x is a rational number

So, we arrive at a contradiction.

Hence, our assumption that √3 + √2 is a rational number is wrong.

Therefore, √3 + √2 is an irrational number.

(ii) 3 − √2

Consider 3 − √2 as a rational number.

3 − √2 = x

By squaring on both sides, we get

(3 – √2)2 = x2



(3)2 + (√2)2 – 2(3)(√2) = x2

9 + 2 – 6√2 = x2

11 – 6√2 = x2

6√2 = 11 – x2

√2 = (11 – x2)/6

Now,

x is a rational number.

x2 is a rational number.

11 – x2 is a rational number.

(11 – x2)/6 is also a rational number.

Considering the equation, √2 = (11 – x2)/6

√2 is an irrational number

But, (11 – x2)/2 is a rational number

So, 11 – x2 has to be an irrational number.

Then, x2 should also be an irrational number.

Also, x must be an irrational number.

We assumed that x is a rational number

So, we arrive at a contradiction.

Hence, our assumption that 3 − √2 is a rational number is wrong.

Therefore, 3 − √2 is an irrational number.

(iii) √5 – 2

Consider √5 – 2 as a rational number.

√5 – 2 = x

By squaring on both sides



(√5 – 2)2 = x2

(√5)2 + (2)2 – 2(√5)(2) = x2

5 + 4 – 4√5 = x2

9 – 4√5 = x2

4√5 = 9 – x2

√5 = (9 – x2)/4

Now,

x is a rational number.

x2 is a rational number.

9 – x2 is a rational number.

(9 – x2)/4 is also a rational number.

Considering the equation, √5 = (9 – x2)/4

√5 is an irrational number

But, (9 – x2)/4 is a rational number

So, 9 – x2 has to be an irrational number.

Then, x2 should also be an irrational number.

Also, x must be an irrational number.

We assumed that x is a rational number

So, we arrive at a contradiction.

Hence, our assumption that √5 – 2 is a rational number is wrong.

Therefore, √5 – 2 is an irrational number.

7. Write a pair of irrational numbers whose sum is irrational.

Solution:

√3 + 5 and √5 – 3 are irrational numbers whose sum is irrational.



Here,

Sum = (√3 + 5) + (√5 – 3)

= √3 + √5 + 2

Hence, the resultant is irrational.

8. Write a pair of irrational numbers whose sum is rational.

Solution:

√3 + 5 and 4 – √3 are irrational numbers whose sum is rational.

Here,

Sum = (√3 + 5) + (4 – √3)

= √3 – √3 + 9

= 9

Hence, the resultant is rational.

9. Write a pair of irrational numbers whose difference is irrational.

Solution:

√3 + 2 and √2 – 3 are irrational numbers whose sum is irrational.

Here,

Difference = (√3 + 2) – (√2 – 3)

= √3 – √2 + 2 + 3

= √3 – √2 + 5

Hence, the resultant is irrational.

10. Write a pair of irrational numbers whose difference is rational.

Solution:

√5 – 3 and √5 + 3 are irrational numbers whose sum is irrational.

Here,



Difference = (√5 – 3) – (√5 + 3)

= √5 – √5 – 3 – 3

= -6

Hence, the resultant is rational.

11. Write a pair of irrational numbers whose product is irrational.

Solution:

Let us take two irrational numbers (5 + √2) and (√5 – 2)

Here the product = (5 + √2) × (√5 – 2)

By further calculation

= 5 √5 – 10 + √10 – 2√2 which is irrational.

12. Write a pair of irrational numbers whose product is rational.

Solution:

Let us consider two irrational numbers (2√3 – 3 √2) and (2√3 + 3√2)

Here, the product = (2√3 – 3 √2) × (2√3 + 3√2)

By further calculation, we get

= (3√2)2 – (2√3)2

= 18 – 12

= 6

Therefore, the resultant is rational.

13. Write in ascending order:



Solution:

(i) 3√5 = √(32 x 5) = √(9 x 5) = √45

4√3 = √(42 x 3) = √(16 x 3) √48

We know that, 45 < 48

So, √45 < √48

Therefore, 3√5 < 4√3

(ii) 2∛5 =∛(23 x 5) = ∛40

3∛2 = ∛(33 x 2) = ∛54

We know that, 40 < 54

So, ∛40 < ∛54

Therefore, 2∛5 < 3∛2

(iii) 6√5 = √(62 x 5) = √(36 x 5) = √180

7√3 = √(72 x 3) = √(49 x 3) = √147

8√2 = √(82 x 2) = √(128 x 2) = √128

We know that, 128 < 147 < 180

So, √128 < √147 < √180

Therefore, 8√2 < 7√3 < 6√5

14. Write in descending order:

(i) 2∜6 and 3∜2

(ii) 7√3 and 3√7

Solution:

(i) It can be written as

2∜6 = ∜(24 x 6) = ∜96

3∜2 = ∜(34 x 2) = ∜162



Here, 162 > 96

So, ∜162 > ∜96

Therefore, 3∜2 > 2∜6

(ii) It can be written as

7√3 = √(72 x 3) = √(49 x 3) = √141

3√7 = √(32 x 7) = √(9 x 7) = √63

Here, 141 > 63

So, √141 > √63

Thus, 7√3 > 3√7

15. Compare:

Solution:

(i)

(ii) √24 = (24)1/2 and ∛35 = (35)1/3

In order to make the powers ½ and 1/3 same,

We find L.C.M. of 2 and 3 i.e., 6



½ x 3/3 = 3/6 and 1/3 x 2/2 = 2/6

Now,

(24)1/2 = (24)3/6 = (243)1/6 = (13824)1/6

(35)1/3 = (35)2/6 = (352)1/6 = (1225)1/6

On comparing,

13824 > 1225

So, (13824)1/6 > (1225)1/6

Therefore,

√24 > ∛35

16. Insert two irrational numbers between 5 and 6.

Solution:

Let’s write 5 and 6 as square root

Then, 5 = √25 and 6 = √36

Now, take the numbers

√25 < √26 < √27 < √28 < √29 < √30 < √31 < √32 < √33 < √34 < √35 < √36

Hence, any two irrational numbers between 5 and 6 is √29 and √30

17. Insert five irrational numbers between 2√5 and 3√3.

Solution:

Here, 2√5 = √(22 x 5) = √(4 x 5) = √20 and

3√3 = √(32 x 3) = √(9 x 3) = √27

Now, take the numbers

√20 < √21 < √22 < √23 < √24 < √25 < √26 < √27

Hence, any five irrational numbers between 2√5 and 3√3 are:

√21, √22, √23, √24 and √26



18. Write two rational numbers between √2 and√3.

Solution:

Let us take any two rational numbers between 2 and 3 which are perfect squares

For example, let us consider 2.25 and 2.56

Now, we have

√2.25 = 1.5 and √2.56 = 1.6

Now,

√2 < √2.25 < √2.56 √3

√2 < 1.5 < 1.6 < √3

√2 < 15/10 < 16/10 < √3

√2 < 3/2 < 8/5 < √3

Hence, any two rational numbers between √2 and √3 are: 3/2 and 8/5

19. Write three rational numbers between √3 and √5.

Solution:

Let us take any two rational numbers between 3 and 5 which are perfect squares

For example, let us consider 3.24, 3.61, 4, 4.41 and 4.84

Now, we have

√3.24 = 1.8, √3.61 = 1.9, √4 = 2, √4.41 = 2.1 and √4.84 = 2.2

Now,

√3 < √3.24 < √3.61 <√4 < √4.41 < √4.84 <√5

√3 < 1.8 < 1.9 < 2 < 2.1 < 2.2 < √5

√3 < 18/10 < 19/10 < 2 < 21/10 < 22/10 < √5

√3 < 9/5 < 19/10 < 2 < 21/10 < 11/5 < √5

Hence, any three rational numbers between √3 and √5 are: 9/5, 21/10 and 11/5



20. Simplify each of the following:

Solution:

(i) It can be rewritten as 161/5 x 21/5

By further simplification, we have

= (24)1/5 x 21/5

= 24/5 x 21/5

= 24/5 + 1/5

= 21

= 2

(ii) It can be rewritten as ∜35/∜3

By further simplification, we have

= (3)1/4 x 5/(3)1/4

= 35/4/31/4

= (3)5/4 – ¼

= (3)4/4

= 31

= 3

(iii) (3 + √2) (4 + √7)

By further calculation,

= 3 × 4 + 3 × √7 + 4 × √2 + √2 × √7



So, we get

= 12 + 3√7 + 4√2 + √14

(iv) (√3 – √2)2

It can be written as

= (√3)2 + (√2)2 – 2 × √3 × √2

By further calculation, we get

= 3 + 2 – 2 √6

= 5 – 2√6

Exercise 1(C) PAGE: 21

1. State, with reason, which of the following are surds and which are not:

Solution:

(i) √180 = √(2 x 2 x 5 x 3 x 3) = 6√5

It is irrational

Therefore, √180 is a surd.

(ii) ∜27 = ∜(3 x 3 x 3)

It is irrational

Therefore, ∜27 is a surd

(iii)



(iv) ∛64 = ∛(4 x 4 x 4) = 4

It is rational

Therefore, ∛64 is not a surd

(v) ∛25. ∛40 = ∛(25 x 40) = ∛(5 x 5 x 2 x 2 x 5 x 2) = 2 x 5 = 10

It is rational

Therefore, ∛23. ∛40 is not a surd

(vi) ∛-125 = ∛(-5 x -5 x -5) = -5

It is rational

Therefore, ∛-125 is not a surd

(vii) π is irrational.

Therefore, √π is not a surd.

(viii) 3 + √2 is irrational

2. Write the lowest rationalizing factor of:

(i) 5√2

(ii) √24

(iii) √5 – 3



(iv) 7 – √7

(v) √18 – √50

(vi) √5 – √2

(vii) √13 + 3

(viii) 15 – 3√2

(ix) 3√2 + 2√3

Solution:

(i) 5√2

It can be written as

5√2 × √2 = 5 × 2 = 10

It is rational.

Therefore, lowest rationalizing factor is √2.

(ii) √24

It can be written as

√24 = √(2 x 2 x 2 x 3) = 2√6

Therefore, lowest rationalizing factor is √6.

(iii) √5 – 3

It can be written as

(√5 – 3) (√5 + 3) = (√5)2 – 32 = 5 – 9 = – 4

Therefore, lowest rationalizing factor is (√5 + 3).

(iv) 7 – √7

It can be written as

(7 – √7) (7 + √7) = 49 – 7 = 42

Therefore, lowest rationalizing factor is (7 + √7).



(v) √18 – √50

It can be written as

√18 – √50 = √(2 x 3 x 3) – √(5 x 5 x 2)

= 3√2 – 5√2

= -2√2

Therefore, lowest rationalizing factor is √2.

(vi) √5 – √2

It can be written as

(√5 – √2) (√5 + √2) = (√5)2 – (√2)2 = 3

Therefore, lowest rationalizing factor is √5 + √2.

(vii) √13 + 3

It can be written as

(√13 + 3) (√13 – 3) = (√13)2 – 32 = 13 – 9 = 4

Therefore, lowest rationalizing factor is √13 – 3.

(viii) 15 – 3√2

It can be written as

15 – 3√2 = 3 (5 – √2)

By further simplification

= 3 (5 – √2) (5 + √2)

= 3 [52 – (√2)2]

So, we get

= 3 × [25 – 2]

= 3 × 23

= 69



Therefore, lowest rationalizing factor is (5 + √2).

(ix) 3√2 + 2√3

It can be written as

3√2 + 2√3 = (3√2 + 2√3) (3√2 – 2√3)

By further calculation

= (3√2)2 – (2√3)2

So, we get

= 9 × 2 – 4 × 3

= 18 – 12

= 6

Therefore, lowest rationalizing factor is 3√2 – 2√3.

3. Rationalize the denominators of:

Solution:

(i) (3/√5) x (√5/√5) = 3√5/5

(ii) (2√3/√5) x (√5/√5) = 2√15/5

(iii)



(iv)

(v)

(vi)

(vii)



= 5 – 2√6

(viii)

(ix)

4. Find the values of ‘a’ and ‘b’ in each of the following:

Solution:

(i)

(ii)



(iii)

(iv)

5. Simplify:

Solution:

(i)



(ii)

6. If x = and y = ; Find:

(i) x2

(ii) y2

(iii) xy

(iv) x2 + y2 = xy

Solution:

(i)

(ii)



(iii) We know that

(iv) x2 + y2 = xy

By substituting the values

= 161 – 72√5 + 161 + 72√5 + 1

So, we get

= 322 + 1

= 323

7. If m = 1/(3 – 2√2) and n = 1/(3 + 2√2), find:

(i) m2

(ii) n2

(iii) mn

Solution:

(i)



(ii)

(iii) We know that

mn = (3 + √2)(3 – √2)

By further calculation, we get

mn = 32 – (2√2)2

So, we get

= 9 – 8

= 1



8. If x = 2√3 + 2√2, find:

(i) 1/x

(ii) x + 1/x

(iii) (x + 1/x)2

Solution:

(i)

(ii)

(iii)

9. If x = 1 − √2, find the value of (x + 1/x)3.



Solution:

It is given that

x = 1 − √2

We should find the value of (x + 1/x)3

So, x = 1 − √2, we get

Using the formula (a – b) (a + b) = a2 – b2

Here

(x – 1/x) = (1 – √2) – (-(1 + √2))

= 1 – √2 + 1 + √2

= 2

By cubing on both sides, we get

(x – 1/x)3 = 23

= 8

10. If x = 5 − 2√6, find: x2 + 1/x2

Solution:

It is given that



x = 5 − 2√6

We should find the value of (x2 + 1/x2)

So, x = 5 − 2√6, we get

Using the formula (a – b) (a + b) = a2 – b2

Here,

(x – 1/x) = (5 – 2√6) – (5 + 2√6)

= 5 – 2√6 – 5 – 2√6

= -4√6 … (2)

Now,

Consider (x – 1/x)2

Using the equation (a – b)2 = a2 + b2 – 2ab

(x – 1/x)2 = x2 + 1/x2 – 2(x)(1/x)

(x – 1/x)2 = x2 + 1/x2 – 2

(x – 1/x)2 + 2 = x2 + 1/x2 … (3)

From equations (2) and (3), we get

x2 + 1/x2= (-4√6)2 + 2



= 96 + 2

= 98

11. Show that:

Solution:

Consider



It can be written as



Using the formula a2 – b2 = (a + b) (a – b)



So, we get

= 3 + √8 – √8 – √7 + √7 + √6 – √6 – √5 + √5 + 2

= 3 + 2

= 5

= R.H.S.

12. Rationalize the denominator of:

Solution:

We know that,



Using the formula a2 – b2 = (a + b) (a – b)

Using the formula (a – b)2 = a2 + b2 – 2ab

It can be written as

Using the formula a2 – b2 = (a + b) (a – b)



So, we get

13. If √2 = 1.4 and √3 = 1.7, find the value of each of the following, correct to

one decimal place:

(i) 1/(√3 – √2)

(ii) 1/(3 + 2√2)

(iii) (2 – √3)/√3

Solution:

(i)

It can be written as

So, we get

= √3 + √2

= 1.7 + 1.4



= 3.1

(ii)

It can be written as

So, we get

= 3 – 2√2

= 3 – 2(1.4)

= 3 – 2.8

= 0.2

(iii)

It can be written as



By further calculation

So, we get

(3.4 – 3)/3 = 0.4/3

= 0.133333…

≈ 0.1

14. Evaluate:

(4 – √5)/(4 + √5) + (4 + √5)/(4 – √5)

Solution:

We have,

Using the formula (a2 – b2) = (a + b) (a – b)



By further calculation

15. If (2 + √5)/(2 – √5) = x and (2 – √5)/(2 + √5) = y; find the value of x2 – y2.

Solution:

We have,

Using the formula a2 – b2 = (a + b) (a – b)

So, we get



Similarly,

Using the formula a2 – b2 = (a + b) (a – b)

By further calculation

Here,

x2 – y2 = (-9 – 4√5)2 – (-9 + 4√5)2

Expanding using the formula, we get

= 81 + 72√5 + 80 – (81 – 72√5 + 80)

= 81 + 72√5 + 80 – 81 + 72√5 – 80

= 144√5
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1. Simplify:

Solution:

We have,

It can be written as

So, we get

2. Simplify:



Solution:

We have,

It can be written as

Using the formula, a2 – b2 = (a + b) (a – b)

So, we get

= x2/y2

3. Evaluate, correct to one place of decimal. The expression 5/(√20 – √10), if √5 = 2.2 and
√10 = 3.2.

Solution:



We have,

It can be written as

= 5/(2√5 – √10)

= 5/[(2 x 2.2) – 3.2)]

So, we get

= 5/(4.4 – 3.2)

= 5/1.2

= 4.2

[Note: In textual answer, the value of √20 has been directly taken, which is 4.5. Hence the
answer 3.8!]

4. If x = √3 − √2. Find the value of:

(i) x + 1/x

(ii) x2 + 1/x2

(iii) x3 + 1/x3

(iv) x3 + 1/x3 – 3(x2 + 1/x2) + x + 1/x

Solution:

(i) We have,

x + 1/x

= (√3 – √2) + 1/(√3 – √2)



= 6√3 – 2√18 + 6√2 – 2√12

= 6√3 – 2√(9 x 2) + 6√2 – 2√(4 x 3)

= 6√3 – 2 x 3√2 + 6√2 – 2 x 2√3

= 6√3 – 6√2 + 6√2 – 4√3

= 6√3 – 4√3

= 2√3

(ii) x2 + 1/x2

We have,

= (√3 – √2)2 + 1/(√3 – √2)2

(iii) We have,

x3 + 1/x3

= (√3 – √2)3 + 1/(√3 – √2)3

We know that, (a – b)3 = a3 – b3 – 3ab(a – b)

(√3 – √2)3 = (√3)3 – (√2)3 – 3(√3)(√2)(√3 – √2)

= 3√3 – 2√2 – 3√6(√3 – √2)



= 3√3 – 2√2 – 3√18 + 3√12

= 3√3 – 2√2 – 3√(32 x 2) + 3√(22 x 3)

= 3√3 – 2√2 – 3 x 3√2 + 3 x 2√3

= 3√3 – 2√2 – 9√2 + 6√3

= 9√3 – 11√2

Now, (9√3 – 11√2) + 1/(9√3 – 11√2) = (9√3 – 11√2) + (9√3 + 11√2)

= 9√3 – 11√2 + 9√3 + 11√2

= 9√3 + 9√3

= 18√3

(iv) x3 + 1/x3 – 3(x2 + 1/x2) + x + 1/x

According to the results obtained in (i), (ii) and (iii), we get

x3 + 1/x3 – 3(x2 + 1/x2) + x + 1/x = 18√3 – 3(10) + 2√3

= 20√3 – 30



= 10(2√3 – 3)

5. Show that:

(i) Negative of an irrational number is irrational.

Solution:

Let the irrational number be √2

Considering the negative of √2, we get -√2

We know that -√2 is an irrational number

Hence, negative of an irrational number is irrational

(ii) The product of a non-zero rational number and an irrational number is an irrational
number.

Solution:

Let the non-zero rational number be 3

Let the irrational number be √5

Then, according to the question

3 × √5 = 3√5 = 3 × 2.2 = 6.6, which is irrational

6. Draw a line segment of length √5 cm.

Solution:

We know that, √5 = √(22 + 12)

Which relates to: Hypotenuse = √[(side 1)2 + (side 2)2] … [Pythagoras theorem]

Hence, considering

Side 1 = 2 and Side 2 = 1,

We get a right-angled triangle such that:

∠𝐴 = 90°, AB = 2 cm and AC = 1 cm



7. Draw a line segment of length √𝟑 cm.

Solution:

We know that, √3 = √(22 – 12)

Which relates to: Hypotenuse= √[(side 1)2 + (side 2)2] … [Pythagoras theorem]

Hypotenuse2– Side 12= Side 22

Hence, considering Hypotenuse = 2 cm and Side 1 = 1 cm,

We get a right-angled triangle OAB such that:

∠O = 90°, OB = 2 cm and AB = 1 cm



8. Draw a line segment of length √8 cm.

Solution:

We know that, √8 = √(32 – 12)

Which relates to: Hypotenuse = √[(side 1)2 + (side 2)2] … (Pythagoras theorem)

Hypotenuse2– (Side 1)2 = (Side 2)2

Hence, considering Hypotenuse = 3 cm and Side 1 =1 cm,

We get a right-angled triangle OAB such that:

∠A = 90°, OB = 3 cm and AB=1 cm



9. Show that:

Solution:

We have,



10. Show that:

(i) x3 + 1/x3 = 52, if x = 2 + √3

(ii) x2 + 1/x2 = 34, if x = 3 + 2√2

Solution:

(i) We know that, (a + b)3 = a3 + b3 + 3ab(a + b)

x3 + 1/x3 = (2 + √3)3 + 1/(2 + √3)3

Here, taking

(2 + √3)3 = 23 + (√3)3 + 3(2)(√3)( 2 + √3)

= 8 + 3√3 + 6√3(2 + √3)

= 8 + 3√3 + 12√3 + 6(√3)2

= 8 + 3√3 + 12√3 + (6 x 3)

= 8 + 15√3 + 18

= 26 + 15√3



– Hence, proved.

(ii) We know that, (a + b)2 = a2 + b2 + 2ab

x2 + 1/x2 = (3 + 2√2)2 + 1/(3 + 2√2)2

= (9 + 8 + 2 x 3 x 2√2) + 1/(9 + 8 + 2 x 3 x 2√2)

= (17 + 12√2) + 1/(17 + 12√2)



– Hence, proved.

(iii) We have,

– Hence, proved.

11. Show that x is rational if:

(i) x2= 6



(ii) x2= 0.009

(iii) x2= 27

Solution:

(i) x2= 6

𝑥 = √6 = 2.449 … which is irrational.

(ii) x2= 0.009

𝑥 = √0.009 = 0.0948 … which is irrational.

(iii) x2= 27

𝑥 = √27 = 5.1961 … which is irrational.

12. Show that x is rational if:

(i) x2= 16

(ii) x2= 0.0004

Solution:

(i) x2= 16

𝑥 = √16 = 4, which is rational.

(ii) x2 = 0.0004

𝑥 = √0.0004 = 0.02, which is rational.

(iii)



13. Using the following figure, show that BD = √x.

Solution:

Let’s assume AB = x, BC = 1 and AC = x + 1

Here, AC is diameter and O is the centre

OA = OC = OD = radius = (x + 1)/2

And,

OB = OC – BC

= (x + 1)/2 – 1



= (x + 1 – 2)/2

= (x – 1)/2

Now, using Pythagoras theorem, we have

OD2 = OB2 + BD2

= 4x/x

= x

∴ BD = √x

– Hence, proved.
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