

Date: 03/11/2024 Time: 3 Hours

Number of Questions: 6 Max Marks: 102

Answers & Solutions for RMO – 2024-25

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- All questions carry equal marks. Maximum marks: 102.
- No marks will be awarded for stating an answer without justification.
- Answer all the questions.
- All questions carry equal marks.
- Answer to each question should start on a new page. Clearly indicate the question number.

- 1. Let n > 1 be a positive integer. Call a rearrangement $a_1, a_2, ..., a_n$ of 1, 2, ..., n nice if for every k = 2, 3, ..., n, we have that $a_1 + a_2 + ... + a_k$ is not divisible by k.
 - (a) If n > 1 is odd, prove that there is no nice rearrangement of 1, 2, ..., n.
 - (b) If *n* is even, find a nice rearrangement of 1, 2, ..., *n*.

Sol.

(a)

Let *n* be 2k + 1 for some k > 1, $k \in \mathbb{Z}$

Then for an arrangement to be nice

$$n \mid (a_1 + a_2 + ... + a_n)$$

But
$$a_1 + + a_n = \frac{n(n+1)}{2} = \frac{(2k+1)(2k+2)}{2} = (k+1)(2k+1) = (k+1)n$$

$$\Rightarrow n | n(k+1) \Rightarrow \left| \sum_{i=1}^{n} a_{i} \right|$$

Therefore, no nice rearrangement exists for $n \in \text{odd}$

(b)

Let *n* be 2k for some $k \ge 1$, $k \in \mathbb{Z}$,

Then lets see through some examples

For n = 2

- \Rightarrow arrangement of $\{1, 2\}$ such that $2|\Pi(arrangement)$
- ⇒ 1 at unit place
- \Rightarrow {2, 1} is such rearrangement

For n = 4

arrangement of {1, 2, 3, 4}

such that $2/(a_1 + a_2) \Rightarrow \{2, 1\}$

$$3/(a_1+a_2+a_3) \Rightarrow \{2,1,4\}$$

And $4 / (a_1 + a_2 + a_3 + a_4) \rightarrow$ this clearly satisfies as 4 / 10

- ⇒ (2, 1, 4, 3) is such rearrangement
- \Rightarrow 2, 1, 4, 3, 6, 5 ... will be the nice arrangement

$$\{a_i\} \Rightarrow a_i = \begin{cases} i+1, i \in \text{odd} \\ i-1, i \in \text{even} \end{cases}$$

 $\Rightarrow \sum_{i=1}^{k} (a_i)$ should not be divisible by k then

It would lead to nice rearrangement

For even n,

Let, k = 2m + 1, where $m \in I^+$

$$\sum_{i=1}^{k} a_{k} = \sum_{i=1}^{2m+1} a_{i} = (a_{1} + a_{2} + \dots + a_{2m} + a_{2m+1})$$

$$= (2+1)+(4+3)+\dots+(2m+2m-1)+(2m+2m-1)+(2m+2)$$

$$=$$

$$= \frac{(2m)(2m+1)}{2}+2(m+1)$$

$$= 2m^{2}+m+2m+2=(2m^{2}+3m+1)+1$$

$$= (2m+1)(m+1)+1$$

Clearly,
$$(2m+1)[(2m+1)(m+1)+1, m \in I^+] \Rightarrow k \int_{i=1}^k a_i$$

Now let k = 2m, where $m \in F$

$$\sum_{i=1}^{k} = \sum_{i=1}^{2m} a_i = (a_1 + a_2) + (a_3 + a_4) + \dots + (a_{2m-1} + a_{2m})$$

$$= 1 + 2 + ... + (2m-1) + (2m)$$

$$=\frac{(2m)(2m+1)}{2}=n(2m+1)$$

 $2n \mid 2m^2$ but $2m \mid m$ for $n \in P$

$$\Rightarrow$$
 2m $\int (2m^2 + m) = m(2m + 1)$

- \Rightarrow {a_i} leads to nice rearrangement.
- 2. For a positive integer n, let R(n) be the sum of the remainders when n is divided by 1, 2, ..., n. For example R(4) = 0 + 0 + 1 + 0 = 1, R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0 = 8. Find all positive integers n such that R(n) = n 1.

Sol.

For observation

$$R(1) = 0$$

$$R(2) = 0 + 0 = 0$$

$$R(3) = 0 + 1 + 0 = 1$$

$$R(4) = 0 + 0 + 1 + 0 = 1$$

$$R(5) = 0 + 1 + 2 + 1 + 0 = 4$$

$$R(6) = 0 + 0 + 0 + 2 + 1 + 0 = 3$$

$$R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0 = 8$$

$$R(8) = 0 + 0 + 2 + 0 + 3 + 2 + 1 + 0 = 8$$

$$R(9) = 0 + 1 + 0 + 1 + 4 + 3 + 2 + 1 + 0 = 12$$

So, for R(even) and R(odd) there is a pattern for second half. Now assuming

Case-I:

 $n \in even$

$$R(n) \ge 1 + 2 + ... + \left(\frac{n}{2} - 1\right) = \frac{n(n-2)}{8}$$

$$n-1\geq \frac{n(n-2)}{8}$$

$$\Rightarrow$$
 $n^2 - 10n + 8 \le 0$

$$\Rightarrow$$
 $n \in (0, 9]$

But we can see that for n = 2, 4, 6, 8 will not satisfy the given relation.

Case-II:

 $n \in \text{odd}$

$$R(n) \ge 0 + 1 + 2 + 3 + \dots + \left(\frac{n-1}{2}\right) = \frac{\left(\frac{n-1}{2}\right)\left(\frac{n-1}{2} + 1\right)}{2} = \frac{n^2 - 1}{8}$$

$$n-1\geq \frac{n^2-1}{8}$$

$$n^2 - 8n + 7 \le 0$$

$$(n-1)(n-7) \le 0$$

$$n \in [1, 7]$$

$$\Rightarrow$$
 $n \in 1, 3, 5, 7.$

- \therefore Only n = 1 and 5 satisfies.
- ∴ Positive set of integers {1, 5}
- .. Only two integral values satisfies the given statement.
- 3. Let ABC be an acute triangle with AB = AC. Let D be the point on BC such that AD is perpendicular to BC. Let O, H, G be the circumcenter, orthocenter and centroid of triangle ABC respectively. Suppose that $2 \cdot OD = 23 \cdot HD$. Prove that G lies on the incircle of triangle ABC.

Sol.

As $\triangle ABC$ be acute isosceles \triangle

 \Rightarrow O, G, I and H will lie on same line, where I is Intentre

Let AD = x

$$\Rightarrow GD = \frac{x}{3} = 2GI \text{ (as } GD \text{ is diameter)}$$
$$= 2ID$$

 $BD = C \sin B$

$$HD = \frac{C \sin B}{\tan C} = 2R \sin^2 B \cdot (AB = AC \Rightarrow \angle B = \angle C)$$

 $OD = R\cos A$,

As 2OD = 23HD (Given)

$$\Rightarrow$$
 2RcosA = (23)(2Rsin²B)

$$\Rightarrow$$
 2cos $A = 23(1 - \cos^2 B)$, Also $\angle A = 180^\circ - \angle B - \angle C$

$$\Rightarrow$$
 $\angle A = 180^{\circ} - 2\angle B \ (\angle B = \angle C)$

$$\Rightarrow$$
 $\cos A = \frac{23}{25}$, $\sin A = \frac{4\sqrt{6}}{25}$

$$\cos B = \frac{1}{5}$$
 and $\sin B = \frac{2\sqrt{6}}{5} \Rightarrow 5\sin A = 2\sin B$

$$\Rightarrow \frac{\sin A}{\sin B} = \frac{2}{5}$$

If GD = 2r then GD will be diameter and G will lie on in circle

$$\Rightarrow r = \frac{\Delta}{S} = \frac{\frac{1}{2}xa}{\frac{1}{2}(a+b+c)} = \frac{2R\sin Ax}{2R(\sin A + \sin B + \sin B)} = \frac{x\sin A}{6\sin A}$$

$$=\frac{x}{6}=\frac{GD}{2}$$

$$\Rightarrow$$
 $GD = 2r$

 \Rightarrow G lies on in circle of $\triangle ABC$.

4. Let a_1 , a_2 , a_3 , a_4 be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist i, j with $1 \le i < j \le 4$, such that $\left(a_i - a_j\right)^2 \le \frac{1}{5}$.

Sol.

Let's assume that for real numbers

$$a_1$$
, a_2 , a_3 , a_4 there exists $\left(a_i - a_j\right)^2 > \frac{1}{5}$
 $1 \le i \le j \le 4$

for

without losing the generality

 $a_{\rm l} \geq a_{\rm l} \geq a_{\rm l} \geq a_{\rm l}$, clearly equality doesn't holds otherwise proof will be done

$$\Rightarrow a_1 > a_2 > a_3 > a_4$$

$$\Rightarrow$$
 $\left(a_1 - a_2\right) > \frac{1}{\sqrt{5}}$

$$\left(a_2 - a_3\right) > \frac{1}{\sqrt{5}}$$

$$\left(a_3 - a_4\right) > \frac{1}{\sqrt{5}}$$

Adding,

$$\Rightarrow a_1 > a_4 + \frac{3}{\sqrt{5}}$$

$$a_2 > a_4 + \frac{2}{\sqrt{5}}$$

If $a_4 > 0 \Rightarrow a_i > 0 \quad \forall i \in \{1, 2, 3, 4\}$

$$\Rightarrow a_2^2 > a_4^2 + \frac{4}{5} + \frac{4}{\sqrt{5}} a_4$$

$$a_1^2 > a_4^2 + \frac{9}{5} + \frac{6}{\sqrt{5}}a_4$$

$$a_3^2 > a_4^2 + \frac{1}{5} + \frac{2}{\sqrt{5}}a_4$$

$$\Rightarrow \sum_{i=1}^{4} a_i^2 > 4a_4^2 + \frac{14}{5} + \frac{12}{\sqrt{5}} a_4 > 4 \left(a_4 + \frac{3}{2\sqrt{5}} \right)^2 + \left(\frac{14}{\sqrt{5}} - \frac{9}{20} \right) \Rightarrow \sum_{i=1}^{4} a_i^2 > 1$$

We reach to contradiction

If $a_1 < 0 \Rightarrow a_i < 0 \quad \forall i \in \{1, 2, 3, 4\}$

Let
$$b_i = -a_i \Rightarrow b_i > 0 \ \forall \ i \in \{1, 2, 3, 4\}$$

⇒ from equation (i), (ii) and (iii)

$$b_2 - b_1 > \frac{1}{\sqrt{5}}$$

$$b_3 - b_2 > \frac{1}{\sqrt{5}}$$

$$b_4 - b_3 > \frac{1}{\sqrt{5}}$$

$$\Rightarrow$$
 $b_1 < b_2 < b_3 < b_4$

Will lead to similar contraction

$$\Rightarrow \sum b_i^2 > 1$$

$$\forall i, j \in \{1, 2, 3, 4\}$$

⇒ There must exist such a_1 , a_2 , a_3 , $a_4 \in R$ such that

$$\left(a_i-a_j\right)^2\leq \frac{1}{5}$$

5. Let ABCD be a cyclic quadrilateral such that AB is parallel to CD. Let O be the circumcenter of ABCD and L be the point on AD such that OL is perpendicular to AD. Prove that $OB \cdot (AB + CD) = OL \cdot (AC + BD)$.

Sol.

- ∴ AB || CD and ABCD is cyclic
- ⇒ ABCD is cyclic trapezium
- \Rightarrow AD = CB and AC = BD

Let r be the radius of circle

$$OB \cdot (AB + CD) = r(AB + CD)$$

Let $\angle DOC = \theta$, $\angle AOB = \alpha$

$$\angle DOL = \angle AOL = \beta$$

$$\Rightarrow \angle BOC = 2\beta$$

$$AM = r \sin \frac{\alpha}{2}$$

$$AB = 2r \sin\left(\frac{\alpha}{2}\right)$$

Similarly,
$$CD = 2r \sin\left(\frac{\theta}{2}\right)$$

$$AC = 2r \sin\left(\frac{2\beta + \theta}{2}\right)$$

$$OL = r \cos \beta$$

LHS =
$$r\left(2r\sin\frac{\alpha}{2} + 2r\sin\frac{\theta}{2}\right)$$

$$= 2r^2 \left| \sin \frac{\alpha}{2} + \sin \frac{\theta}{2} \right|$$

RHS =
$$r\cos\beta \left| 2r\sin\left(\frac{2\beta+\theta}{2}\right) + 2r\sin\left(\frac{2\beta+\theta}{2}\right) \right|$$

$$= 2r^2 \left(2\sin\left(\frac{2\beta + \theta}{2}\right) \cos\beta \right)$$

$$= 2r^2 \left(\sin \left(2\beta + \frac{\theta}{2} \right) + \sin \frac{\theta}{2} \right)$$

Now,
$$2\beta + 2\beta + \alpha + \theta = 360$$

$$2\beta + \frac{\alpha}{2} + \frac{\theta}{2} = 180$$

$$= 2r^2 \left| \sin \left(\frac{\alpha}{2} \right) + \sin \frac{\theta}{2} \right|$$

$$\Rightarrow$$
 LHS = RHS.

6. Let $n \ge 2$ be a positive integer. Call a sequence $a_1, a_2, ..., a_k$ of integers an n-chain if $1 = a_1 < a_2 < ... < a_k = n$ and a_i divides a_{i+1} for all i, $1 \le i \le k-1$. Let f(n) be the number of n-chains where $n \ge 2$. For example, f(4) = 2 corresponding to the 4-chain $\{1, 4\}$ and $\{1, 2, 4\}$.

... (i)

Prove that $f(2^m \cdot 3) = 2^{m-1}(m+2)$ for every positive integer m.

Sol.

Lets see via examples

12-chain,

$$f(12) = n(S), 12 = 2^2 . 3^1$$

$$S = \{(1, 12), (1, 2, 12), (1, 3, 12), (1, 2, 6, 12), (1, 4, 12), (1, 3, 6, 12), \dots, (1, 6, 12)\}$$

 \Rightarrow In another way we need to select divisors of n.

Clearly
$$f(2k) = f(2^{k-1}) + f(2^{k-2}) + \dots + f(2^1) + f(2^0)$$

$$= (2^{k-2} + 2^{k-3} + \dots + 1) + 1$$

$$= (2^{k-1} - 1) + 1 = 2^{k-1}$$

Let's proceed with induction

$$f(2^k \cdot 3) = (k+2) \cdot 2^{k-1}, k \ge 1$$

⇒ Checking the base case

$$f(6) = 3 \cdot 2^0 = 3$$

$$\{(1, 6), (1, 2, 6), (1, 3, 6)\}$$

Notice that $(2^k \cdot 3)$ and (2^{k+1}) are proper factor of $(2^{k+1} \cdot 3)$

Also,
$$f(2^{k+1} \cdot 3^1) = f(2^k \cdot 3) + f(2^{k+1}) + f(2^k \cdot 3)$$

$$\Rightarrow$$
 $(k+2) \cdot 2^{k-1} + 2^k + (k+2) \cdot 2^{k-1}$

$$= (k+3) \cdot 2^k = [(k+1)+1] \cdot 2^{(k-1)+1}$$

$$\Rightarrow$$
 Since for $f(k)$, $f(k+1)$ is also true.

Therefor the proof is done

Alter:

$$f(2^m \cdot 3) = \sum_{k} k \cdot \lfloor {m-1 \choose k-1} C_{k-1} + {m-1 \choose k-2} \rfloor$$

Using combinotorics argument for selection of factors when 3 is in divisors factors.

$$\Rightarrow \sum_{k} k \binom{m-1}{k} C_{k-2} = \sum_{k} \left\lfloor \left(k-1\right)^{m} C_{k-1} + {}^{m}C_{k-1} \right\rfloor$$

$$= \sum_{k} \left(\frac{m}{k-1} \right) (k-1) {m-1 \choose k-2} + \sum_{k} {m \choose k-1}$$

$$= m \cdot 2^{m-1} + 2^m$$

$$=2^{m-1}(m+2)$$

Hence proved.

