Prachand NEET 2025

Physics

Electric Charges and Fields

DPP 01

- Q1 An electric dipole is kept in non-uniform electric field. It may experience
 - (A) A force and a torque
 - (B) A force but not a torque
 - (C) A torque but not a force
 - (D) Neither a force nor a torque
- Q2 A region surrounding a stationary electric dipole has
 - (A) Magnetic field only
 - (B) Electric field only
 - (C) Both electric and magnetic fields
 - (D) No electric and magnetic fields
- Q3 In figure, a cone lies in a uniform electric field E. Determine the electric flux entering the cone.

- (A) $E\pi R^2$
- (B) ERh
- (C) $E\pi h^2$
- (D) ER^2
- Q4 In figure shown, the electric lines of force emerging from a charged body. If the electric fields at A and B are E_A and E_B respectively

and the distance between A and B is r then

- (A) $E_{
 m A} > E_{
 m B}$
- (B) $E_{
 m A} < E_{
 m B}$
- (C) $E_{
 m A}=E_{
 m B}$
- (D) $E_{\mathrm{A}}=\left(E_{\mathrm{B}}\right)/r^{2}$
- Determine the electric dipole moment of the system of three charges, placed on the vertices of an equilateral triangle, as shown in the figure.

- (A) 2qlj

Q6

A proton of mass ' m ' and charge ' e ' is released from rest in a uniform electric field of strength ' E '. The time taken by it to travel a distance ' d ' in the field is

- Q7 In nature, the electric charge of any system is always equal to:
 - (A) half integral multiple of the charge on electron
 - (B) zero
 - (C) square of the charge on electron
 - (D) integral multiple of the charge on electron
- The electric field components in the given figures are $E_x = \alpha x^{1/2}, E_y = E_z = 0$ in which $lpha = 800~{
 m NC^{-1}~m^{-1/2}}.$ If net flux through the cube is $1.05 \, \mathrm{Nm^2C^{-1}}$ (assume $\mathrm{a} = 0.1 \, \mathrm{m}$), The charge within the cube is

- (A) 9.27×10^{-12} C
- (B) $9.27 \times 10^{12} \mathrm{C}$
- (C) $6.67 \times 10^{-12}~C$
- (D) 6.97×10^{12} C
- **Q9** A circular wire loop of radius *r* carries a total charge Q distributed uniformly over its length. A small length dl of the wire is cut off. The electric field at the centre due to the remaining wire:-

 - (D)

$$\frac{\mathrm{Qd}\ell}{4\pi^2 \in_0 \mathbf{r}^3}$$

- Q10 Two parallel infinite line charges with linear charge densities $+\lambda C/m$ and $-\lambda C/m$ are placed at a distance of 2R in free space. What is the electric field mid-way between the two line charges?
 - (A) zero

 - (B) $\frac{2\lambda}{\pi\epsilon_0 R}$ N/C
 (C) $\frac{\lambda}{\pi\epsilon_0 R}$ N/C
 (D) $\frac{\lambda}{2\pi\epsilon_0 R}$ N/C
- Q11 An infinite line charge produces a field of $9 \times 10^4 \; \mathrm{N/C}$ at a perpendicular distance of 0.02 m. The linear charge density is;
 - (A) $10^{-10} \,\mathrm{C/m}$
- (B) $10^{-9} {
 m C/m}$
- (C) 10^{-8} C/m
- (D) 10^{-7} C/m
- **Q12** The distance between the two charges $25~\mu\mathrm{C}$ and $36~\mu\mathrm{C}$ is $11~\mathrm{cm}$. At what point on the line joining the two, the electric field intensity will be zero?
 - (A) At a distance of 5 cm from $25\mu C$
 - (B) At a distance of 5 cm from $36\mu C$
 - (C) At a distance of $10~{
 m cm}$ from $25\mu{
 m C}$
 - (D) At a distance of 11 cm from $36\mu\mathrm{C}$
- **Q13** Two charges $4~\mu\mathrm{C}$ and $-100~\mu\mathrm{C}$ are placed 90 cm apart. The distance of a point from $4~\mu C$ charge where the electric field intensity is zero is;
 - (A) 22.5 cm
- (B) 20.5 cm
- (C) 18.65 cm
- (D) 2.95 cm
- Q14 An electric dipole is put in north-south direction in a sphere filled with water. Which statement is correct?
 - (A) Electric flux is coming towards the sphere.
 - (B) Electric flux is coming out of the spheré.
 - (C) Electric flux entering into and leaving the sphere are same.
 - (D) Water does not permit elettric flux to enter into sphere.
- Q15 What is the magnitude of dipole moment of the system shown in figure?

- (A) ql
- (B) $\sqrt{3}$ (ql)
- (C) $\sqrt{2}$ (ql)
- (D) $\frac{ql}{\sqrt{2}}$
- **Q16** A cube of side l is placed in a uniform field

 $\overrightarrow{E}=\overrightarrow{Ei}$. The net electric flux through the cube is

- (A) Zero
- (B) $l^2\mathrm{E}$
- (C) $4l^2$ E
- (D) $6l^2$ E
- Q17 The unit of electric permittivity is
 - (A) Volt $/\mathrm{m}^2$
 - (B) Joule/C
 - (C) Farad/m
 - (D) Henry/m
- Q18 Statement-I: An electric dipole placed in the electric field of a point charge can never experience zero resultant force.

Statement-II: Electric field of a point charge is non uniform.

- (A) Both Statement-I and Statement-II are
- (B) Both Statement-I and Statement-II are incorrect.
- (C) Statement-I is correct and Statement-II incorrect.
- (D) Statement-I is incorrect and Statement-II is correct.
- Q19 Figure shows electric lines of force. If E_x and E_y are the magnitudes of electric field at points xand y respectively, then

- (A) $E_x > E_y$
- (B) $E_x = E_y$
- (C) $E_x < E_y$
- (D) Any of these
- **Q20** An electric dipole is placed at an angle of 30° with an electric field intensity $2 imes 10^5~{
 m N/C}.$ It experiences a torque equal to 4 N-m. The charge on the dipole, if the dipole length is $2~\mathrm{cm}$, is
 - (A) $7\mu C$
 - (B) 8mC
 - (C) 2mC
 - (D) 5mC
- Q21 Assertion (A): Total number of positive ions in nature is constant.

Reason (R): In an isolated system, charge remains conserved.

- (A) Assertion (A) is True, Reason (R) is True; Reason (R) is a correct explanation for Assertion (A).
- (B) Assertion (A) is True, Reason (R) is True; Reason (R) is not a correct explanation for Assertion (A).
- (C) Assertion (A) is True, Reason (R) is False.
- (D) Assertion (A) is False, Reason (R) is True.
- **Q22** Match Column I and Column II:

Column I	Column II	
(a) unit of electric	(p) $N\ m^2\ C^{-1}$	
charge	(p) IV III C	
(b) unit of electric	(q) coulumb	
intensity		
(c) unit of electric flux	(r) stat coulomb	
(d) c.g.s. unit of electric	(s) NC^{-1}	
charge		

- $a
 ightarrow q, \ b
 ightarrow s, \ c
 ightarrow p, \ d
 ightarrow r$

- (C) $a
 ightarrow q, \ b
 ightarrow r, \ c
 ightarrow p, \ d
 ightarrow s$
- $a o q,\ b o s,\ c o r,\ d o p$
- Q23 Which of the following figure represents the electric field lines due to a single positive charge?

(A)

(B)

(C)

(D)

- **Q24** As per Gauss' law, which of the following is true about this $\int \overrightarrow{E} \cdot \overrightarrow{ds} \, = rac{q_{
 m int}}{\epsilon_0}$?
 - (A) This is valid for symmetrical surface only
 - (B) E is the electric field due to the charge inside the surface
 - (C) Electric flux through the closed surface due to outside charge is always zero
 - (D) none of the above

- The dimensional formula of electric flux is
 - (A) $[M^1 L^1 T^{-2}]$
 - (B) $\left[M^{1}L^{3} \ \mathrm{T^{-3}} \ \mathrm{A^{-1}}\right]$ (C) $\left[\mathrm{M^{2}} \ \mathrm{L^{2}} \ \mathrm{T^{-2}} \ \mathrm{A^{-2}}\right]$

 - (D) $[M^1 L^{-3} T^3 A^1]$
- **Q26** Which of the following graphs shows the correct variation of force when the distance r between two charges varies?

- **Q27** Two unlike charges attract each other with a force of 10 N. If the distance between them is doubled, the force between them is;
 - (A) 40 N
- (B) 20 N
- (C) 5 N
- (D) 2.5 N
- Q28 Shown below is a distribution of charges. The flux of electric field due to these charges through the surface S is:-

- (A) $3q/arepsilon_0$
- (B) $2q/arepsilon_0$
- (C) $q/arepsilon_0$
- (D) Zero

Q29 If r is distance measured from centre of a charged shell and R is its radius, then the graph which may correctly represent variation of electric field (E) is

Q30 The dimensional formula of linear charge density

- (A) $\left[\mathbf{M}^{-1} \ \mathbf{L}^{-1} \ \mathbf{T}^{+1} \ \mathbf{A} \right]$ (B) $\left[\mathbf{M}^{0} L^{-1} T^{+1} A \right]$ (C) $\left[\mathbf{M}^{-1} \ \mathbf{L}^{-1} \ \mathbf{T}^{+1} \ \mathbf{A}^{-1} \right]$

(D) $\left[M^0~L^{-1}~T^{+1}~A^{-1}\right]$

Answer Key

⊋1	(A)	Q16	(A)
Q 2	(B)	Q17	(C)
23	(B)	Q18	(A)
4	(A)	Q19	(A)
5	(D)	Q20	(C)
•	(B)	Q21	(D)
7	(D)	Q22	(A)
8	(A)	Q23	(A)
	(A)	Q24	(C)
)	(C)	Q25	(B)
1	(D)	Q26	(D)
12	(A)	Q27	(D)
13	(A)	Q28	(B)
14	(C)	Q29	(A)
15	(C)	Q30	(B)

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Text Solution:

(A)

As the dipole will feel two forces which are although opposite but not equal.

Therefore, a net force will be there and as these forces act at different points of a body, a torque is also there.

Video Solution:

Q2 Text Solution:

(B)

Region around stationary charge has electric field only

Video Solution:

Q3 **Text Solution:**

(B)

The cross section of the cone is a triangle $\phi = E imes rac{1}{2} imes 2R imes h = ERh$

Video Solution:

Q4 Text Solution:

(A)

Electric field intensity is proportional to the density of electric field lines. The crowder lines means strong electric field and rarer lines means weak electric field.

Video Solution:

Q5 **Text Solution:**

Dipole moment is given by,

P=charge × distance between two charges. So for two pairs of dipoles, we can write,

$$|P_1|=q(l) \ |P_2|=q(l) \ | ext{Resultant}|=2P\cos30^\circ \ 2ql\left(rac{\sqrt{3}}{2}
ight)=\sqrt{3}ql \ ext{So, } \overrightarrow{P}_{ ext{Resultant}}=-\sqrt{3}ql\hat{j}$$

As the resultant is along negative y-axis direction.

Video Solution:

Q6 Text Solution:

(B)

$$egin{aligned} extit{F} &= eE \ a &= rac{eE}{m} \ S &= ut + rac{1}{2}at^2 \ d &= rac{1}{2}\left(rac{eE}{m}
ight)t^2 \ t &= \sqrt{rac{2md}{eE}} \end{aligned}$$

Video Solution:

Q7 Text Solution:

(D)

By quantization of charge

 $Q = \pm ne$

Where.

N = number of transferred electrons.

 $e = 1.6 \times 10^{-19}$ C

Video Solution:

Text Solution: Q8

(A)

By Gauss's law

$$\phi = rac{q}{\epsilon_0}$$

or
$$q=\phi\in_0$$
 $=1.05 imes 8.854 imes 10^{-12}C=9.27 imes 10^{-12}C$

Video Solution:

Q9 Text Solution:

(A)

E due to point charge
$$=$$
 $\frac{Kq}{r^2}$ Case-1 $\xrightarrow{Case-2}$ \xrightarrow{Cut} portion $\xrightarrow{Full wire}$ Remaining wire

Let charge is positive

Assume two dimetrically opposite sections on ring, suppose point A and B in case-1, so electric live of force due to small charge (dq) on it will be as directed in figure. Hence they will cancel each other.

Now, in case-2, dl is cut, hence at centre, E is produced due to point charge (dq) at A only.

Hence,
$$dq=rac{Q}{2\pi r}.\,dl$$
 $dE=rac{KQ}{r^2}=rac{KQ}{2\pi r^3}.\,dl$ $dE=rac{Qdl}{8\pi^2{
m r}^3arepsilon_{
m o}}$ where $\left(K=rac{1}{4\piarepsilon_{
m o}}{
m S.\,I.}
ight)$

Video Solution:

Q10 Text Solution:

The correct option is $C \frac{\lambda}{\pi \varepsilon_0 R} N/C$ $\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2}$ $= \frac{\lambda}{2\pi \varepsilon_0 R} + \frac{\lambda}{2\pi \varepsilon_0 R}$ $= \frac{\lambda}{\pi \varepsilon_0 R} N/C$

Video Solution:

Q11 Text Solution:

(D)

Use,
$$E=\frac{\lambda}{2\pi\varepsilon_0 r}=\frac{2\lambda}{4\pi\varepsilon_0 r}$$
 or, $9\times 10^4\Big(\mathrm{\ N/C}\Big)=\frac{9\times 10^9\times 2\lambda}{0.02}$ $\therefore \lambda=10^{-7}$ coulomb per meter

Video Solution:

Q12 Text Solution:

(A)

$$q_1 = 25\mu C$$

$$q_1 = 36\mu C$$

$$r = 11 \text{ cm}$$

$$(r - x)$$

Let at point P, E = 0

$$\begin{split} E_{q_1} &= E_{q_2} \\ \frac{Kq_1}{x^2} &= \frac{Kq_2}{(r-x)^2} \\ \frac{25}{x^2} &= \frac{36}{(r-x)^2} \\ \frac{5}{x} &= \frac{6}{(r-x)} \\ 5(\mathbf{r} - \mathbf{x}) &= 6\mathbf{x} \\ 5\mathbf{r} - 5\mathbf{x} &= 6\mathbf{x} \\ 11\mathbf{x} &= 5\mathbf{r} \\ x &= \frac{5}{11} \times \mathbf{r} = \frac{5}{11} \times 11 \text{ cm} = 5 \text{ cm} \end{split}$$

Video Solution:

Text Solution: Q13

(A)

According to question;

Video Solution:

Q14 **Text Solution:**

(C)

According to the Gauss' law, net flux through the surface

$$\phi=rac{Q_{inside}}{arepsilon_0}$$

Net charge inside the sphere

For a diploe, both charges are equal in magnitude and opposite in sign.

$$Q_{inside} = (+q) + (-q)$$

 $Q_{inside} = zero$

So, net flux

$$\Rightarrow \phi = rac{0}{arepsilon_0} = 0 \; NC^{-1}m^2$$

Video Solution:

Q15 Text Solution:

(C)

Angle between the two vectors is 90° and Length of the diploe is a. Diploe Moment will be aq.

Resultant Diploe Moment will be:

$$P = \sqrt{(aq)^2 + (aq)^2 + (aq)(aq)\cos 90^\circ}$$

$$\Rightarrow P = \sqrt{2(aq)^2}$$

$$\Rightarrow P = aq\sqrt{2}$$

Video Solution:

Q16 Text Solution:

(A)

Given – side of cube = L

· According to Gauss law,

$$\Rightarrow \phi = \oint \overline{E}$$
 . $ds = rac{q_{in}}{arepsilon_0}$

As there is no charge residing inside the cube.

$$\Rightarrow \phi = rac{0}{arepsilon_0} = 0$$

• Hence net flux is zero.

Video Solution:

Q17 Text Solution:

(C)

$$C=rac{Aarepsilon_0}{d}$$
(C is capacity in air) $arepsilon_0=rac{Cd}{A}$

S.I. unit of C is farad

S.I. unit of d is meter

S.I. unit of A is meter²

 \therefore S.I. unit of $arepsilon_0$ is farad/metre

Video Solution:

Q18 Text Solution:

(A)

As E is not uniform, therefore magnitude of forces are not equal. Hence net force is not zero. Electric field of a point charge either starts from it or enters into it, hence it is not uniform.

Video Solution:

Q19 Text Solution:

(A)

Near point x, Electric lines of force are crowded and near point y Electric Lines Of Force are $E_x\!>\!E_y.$

Video Solution:

Q20 Text Solution:

(C)

$$\begin{split} \tau &= pE.\sin\theta \\ \therefore p &= \frac{\tau}{E.\sin\theta} \\ \text{qx2I} &= \frac{4}{2\times10^5\times0.5}......\left(\ p = q\times2I \right) \\ \therefore q &= \frac{4}{2\times10^5\times0.5\times0.02}... \\ \cdot \left(\ 2I = 0.02m \ given \right) \\ &= 2\times10^{-3}\text{C} \\ \text{q} &= 2 \text{ mC} \end{split}$$

Video Solution:

Q21 Text Solution:

(D)

Statement I is false because the total number of positive ions is not constant and can vary with situations and system.

Statement II is true by conservation of charge.

Video Solution:

Q22 Text Solution:

(A)

(a) S,I, unit of charge is coulomb (C)

(b) $E=rac{F}{q}$ \therefore S.I. unit of E is N/C

(c) $\phi = \text{E.ds}$, S.I. unit of ϕ is N-m²-C⁻¹

(d) CGS unit of charge is stat coulomb

Video Solution:

Q23 **Text Solution:**

(A)

Electric lines of force due to an isolated positive charge are radially outwards.

Video Solution:

Text Solution: Q24

(C)

Since the electric field at a point is equal to electric flux passing per unit area, therefore,

 $\oint E.ds^{'}$ is the net flux emanating from a closed surface.

Though net flux through the closed surface depends upon the charges enclosed in that surface only.

Electric field E at a point depends not only upon charges enclosed but it depends on charges lying outside the surface also.

Hence (A) is wrong.

Gauss' law is applicable to a closed surface. The surface may have any shape. It means, it is a general law. Hence (B) is wrong.

Gauss' law is $\oint \overrightarrow{E.ds} = rac{\sum q}{arepsilon_0}$ It means, that net flux through a closed surface depends upon $\sum q$. But it is equal to the net charge enclosed within the surface only. Hence (C) is correct.

Video Solution:

Q25 Text Solution:

(B)

$$egin{aligned} \phi &= E. \; ds \ &= rac{F}{q}. \; A \ &= rac{M^1 L^1 T^{-2}.L^2}{AT} \ [\phi] &= = [\mathsf{M}^1 \mathsf{L}^3 \mathsf{T}^{-3} \mathsf{A}^{-1}] \end{aligned}$$

Video Solution:

Q26 Text Solution:

(D)

$$F \propto rac{1}{r^2}$$

Force according to Coulomb's law obeys inverse square law.

Video Solution:

Q27 Text Solution:

(D)

$$F \propto \frac{1}{r^2}$$

$$\frac{F_1}{F_2} = \left(\frac{r_2}{r_1}\right)^2 \qquad \{r_2 = 2r_1\}$$

$$F_2 = \frac{F_1}{4} = \frac{10}{4} = 2.5 \text{ N}$$

Video Solution:

Q28 **Text Solution:**

(B)

Using Gauss' law $\phi = \sum q_{enclosed}/arepsilon_0$

Video Solution:

Text Solution:

(A)

Electric field inside shell is zero. Outside shell. $E \propto rac{1}{r^2}$

Video Solution:

Q30 Text Solution:

(B)

$$\begin{split} \lambda &= \frac{q}{L} = \frac{It}{L} \\ [\lambda] &= [\mathsf{M^0L^{\text{-1}}T^{\text{+1}}A}] \end{split}$$

Video Solution:

