MOCK TEST PAPER

Instructions

Attempt only 40 questions out of the given 50 questions. Each question carries 5 marks. One mark will be deducted for a wrong answer.

Full Marks: 200 (Time: 60 Minutes)

1. The number of atoms per unit cell of bcc structure is:

- (b) 2
- (c) 4
- (d) 6

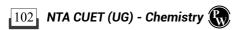
2. Match the following:

List-I (lattice point)		List-II (contribution to 1 unit cell)		
A.	Corner	(i)	1	
B.	Edge	(ii)	1/8	
C.	Face centre	(iii)	1/4	
D.	Body centre	(iv)	1/2	

- (a) A-(ii), B-(i), C-(iii), D-(iv) (b) A-(ii), B-(iii), C-(iv), D-(i)
- (c) A-(i), B-(ii), C-(iv), D-(iii) (d) A-(iii), B-(iv), C-(i), D-(ii)
- 3. The correct order in aqueous medium of basic strength in case of methyl substituted amines is:
 - $(a) \text{ Me}_{2} \text{NH} > \text{MeNH}_{2} > \text{Me}_{3} \text{N} > \text{NH}_{3}$
 - $(b) \text{ Me}_2 \text{NH} > \text{Me}_3 \text{N} > \text{MeNH}_2 > \text{NH}_3$
 - (c) NH₃ > Me₃N > MeNH₂ > Me₂NH
 - $(d) \operatorname{Me}_{3} N > \operatorname{Me}_{2} NH > \operatorname{MeNH}_{2} > \operatorname{NH}_{3}$
- 4. Match the items given in Column-I with items given in Column-II.

Column-I		Column-II		
A.	Lysine	(i)	Neutral optically active amino acid	
B.	Aspartic acid	(ii)	Basic amino acid	
C.	Valine	(iii)	Neutral optically inactive amino acid	
D.	Glycine	(iv)	Acidic amino acid	

- (a) A-(iv)
 - B-(iii)
- C-(ii) D-(i)
- (*b*) A-(iii)
- B-(ii)
 - B-(ii)
- C-(iv) C-(iii)
- A-(i) A-(ii)
 - B-(iv)
- C-(i)
- D-(iii)


D-(i)

D-(iv)

- 5. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrin which on hydrolysis forms a racemic mixture of α-hydroxy acid. The carbonyl compound is: (2006)
 - (a) Acetaldehyde
- (b) Acetone
- (c) Diethyl ketone
- (d) Formaldehyde
- 6. Match the List-I with List-II.

List-I		List-II		
A.	CH ₃ CH ₂ NH ₂	(i)	Undergoes Lieberman	
			nitrosoamine reaction	
B.	C ₆ H ₅ NH ₂	(ii)	Undergoes Hoffmann	
			bromamide reaction	
C.	(CH ₃) ₂ NH	(iii)	Gives azo dye test	
D.	CH ₃ CONH ₂	(iv)	With alcoholic KOH and CHCl ₃	
	_		produces bad smell	

- (a) A-(iv), B-(iii), C-(i), D-(ii) (b) A-(iii), B-(i), C-(iv), D-(ii)
- (c) A-(iv), B-(iii), C-(ii), D-(i) (d) A-(iii), B-(ii), C-(i), D-(i)
- 7. Van't Hoff factor more than unity indicates that the solute in solution is:
 - (a) Dissociated
- (b) Associated
- (c) Both (a) and (b)
- (d) Cannot say anything
- 8. The values of van't Hoff factors for KCl, NaCl and K₂SO₄ respectively are:
 - (a) 2, 2 and 2 (b) 2, 2 and 3 (c) 1, 1 and 2 (d) 1, 1 and 1
- **9.** The end product (Z) in the given sequence of reaction is:
 - $CH_{3}CH = CHCHO \xrightarrow{\quad NaBH_{4} \quad} X \xrightarrow{\quad HCl \quad} Y \xrightarrow{\quad (i)KCN \quad} Z$
 - (c) CH₃CH = CHCOOH
 - (a) $CH_3CH = CHCH_2COOH$ (b) $CH_3CH_2CH_2COOH$ (d) CH₂CH(Cl)CH₂COOH
- 10. Electrical conductance through metals is called metallic or electronic conductance and is due to the movement of electrons. The electronic conductance depends on:
 - (a) The nature and structure of the metal
 - (b) The nature of valence electrons per atom
 - (c) Change in temperature
 - (d) All of these

- 11. Which of the following are essential amino acids?
 - A. Arginine,
- B. Phenylalanine,
- C. Aspartic acid,
- D. Cysteine,
- E. Histidine,
- F. Valine,

- G. Proline
- (a) A, B, C and D
- (b) B, C, D and E
- (c) C, D, E and F
- (d) A, B, E and F
- **12.** Which of the following is an example of primary battery?
 - (a) Lead storage battery
- (b) Leclanche cell
- (c) Nickel-cadmium cell
- (d) None of these
- **13.** For which order half-life period is independent of initial concentration?
 - (a) Zero
- (b) First
- (c) Second
- (d) Third
- **14.** In the first order reaction the relation between the velocity constant (k_1) and half-life period $(t_{1/2})$ is:

(a)
$$t_{\frac{1}{2}} = \frac{0.693}{k_1}$$

(b)
$$k_1 = \frac{t_{1/2}}{0.693}$$

(c)
$$t_{1/2} = 0.693 + k_1$$

(d)
$$t_{1/2} = \frac{k_1}{0.693}$$

- 15. The effect of temperature on reaction rate is shown by:
 - (a) Kirchoff's equation
 - (b) Arrhenius equation
 - (c) Gibb's- Helmhoitz equation
 - (d) Clausius- Clapeyron equation
- **16.** Which of the following ion is not diamagnetic?
 - (a) $La^{3+}(Z = 57)$
- (b) $Lu^{3+}(Z = 71)$
- (c) $Yb^{2+}(Z = 70)$
- (d) Sm^{3+} (Z = 62)
- **17.** Which of the following statements is correct about order of a reaction?
 - A. The order of a reaction can be a fractional number
 - B. Order of a reaction is experimentally determined quantity
 - C. The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction
 - D. The order of a reaction is the sum of the powers of molar concentration of the reactants in rate law expression
 - (a) (A), (B) and (D)
- (b) (A), (B) and (C)
- (c) (B), (C) and (D)
- (d) (A), (C) and (D)
- **18.** Rate of physical adsorption increases with:
 - (a) Decrease in temperature
- (b) Decrease in pressure
- (c) Increase in temperature
- (d) Decrease surface area
- 19. Which of the following ores represent the ore of iron?
- (a) Magnetite (b) Siderite
- (c) Haematite (d) All of these
- **20.** Sulphur (S) containing amino acids from the following are:
 - A. isoleucine
- B. cysteine

C. lysine

- D. methionine
- E. glutamic acid
- (a) A, D

- (b) B, D
- (c) B, C, E
- (d) A, B, C

- **21.** The increasing order of the reactivity of the following compounds in nucleophilic addition reaction is:
 - Propanal, Benzaldehyde, Propanone, Butanone
 - (a) Benzaldehyde < Propanal < Propanone < Butanone
 - (b) Butanone < Propanone < Benzaldehyde < Propanal
 - (c) Propanal \leq Propanone \leq Butanone \leq Benzaldehyde
 - (d) Benzaldehyde < Butanone < Propanone < Propanal
- **22.** Which of the following compound(s) do not give Friedel Crafts reaction?

- (a) only (iii)
- (b) only (iv)
- (c) (i) and (iii) both
- (d) (i) and (ii) both
- **23.** What are the conditions for an ideal solution which obeys Raoult's law over the entire range of concentration?

$$(a) \Delta H_{\text{mix}} = 0, \Delta V_{\text{mix}} = 0, \ P_{\text{total}} = p_A^0 \ x_A + p_B^0 x_B$$

(b)
$$\Delta H_{mix} = +ve$$
, $\Delta V_{mix} = 0$, $P_{total} = p_A^0 x_A + p_B^0 x_B$

(c)
$$\Delta H_{mix} = 0$$
, $\Delta V_{mix} = +ve$, $P_{total} = p_A^0 x_A + p_B^0 x_B$

(d)
$$\Delta H_{mix} = 0$$
, $\Delta V_{mix} = 0$, $P_{total} = p_B^0 x_B$

- 24. The correct order of increasing acidic strength is:
 - (a) Phenol < ethanol < chloroacetic acid < acetic acid
 - (b) Ethanol < phenol < chloroacetic acid < acetic acid
 - (c) Ethanol < phenol < acetic acid < chloroacetic acid
 - (d) Chloroacetic acid < acetic acid < phenol < ethanol
- **25.** Which of following is incorrect?

- D. $NH_2 \xrightarrow{Br_2/NaOH} NH$
- (a) Only A
- (b) Only B
- (c) Both C & D
- (d) Only D
- **26.** Which of the following pairs of ions have the same electronic configuration?
 - (a) Cu^{2+} , Cr^{2+} (b) Fe^{3+} , Mn^{2+} (c) Co^{3+} , Ni^{3+} (d) Sc^{3+} , Cr^{3+}
- **27.** Hybridization of [Ni(CO)₄] is
 - (a) sp³
- $(b) d^2sp^3$
- (c) sp³d
- $(d) \operatorname{sp}^2$
- **28.** The atomic number of 4f-series range from:
 - (a) 57 to 71
- (b) 58 to 71
- (c) 58 to 72
- (d) 57 to 72

- 29. Transition metal show paramagnetic behaviour. This is because of their:
 - (a) High lattice energy
- (b) Variable oxidation state
- (c) Characteristic configuration (d) Unpaired electrons
- 30. Match Column-I with Column-II.

Column-I			Column-II	
A.	CO, HCl Anhyd. AlCl ₃ /CuCl	p.	Hell-Volhard-Zelin- sky reaction	
B.	$ \begin{array}{c c} O \\ R -C - CH_3 + NaOX \rightarrow \end{array} $	q.	Gattermann-Koch reaction	
C.	$R - CH_2 - OH + R'COOH \xrightarrow{Conc. H_2SO_4}$	r.	Haloform reaction	
D.	$ \begin{array}{c} R - CH_2COOH \\ \xrightarrow{(i) X_2/Red P} \\ \xrightarrow{(ii) H_2O} \end{array} $	s.	Esterification	

Choose the correct answer from the options given below.

- (a) A-(r); B-(q); C-(p); D-(s) (b) A-(p); B-(s); C-(r); D-(q)
- (c) A-(q); B-(r); C-(s); D-(p) (d) A-(s); B-(p); C-(q); D-(r)
- **31.** Stable complex based on EAN rule:
 - $(a) K_4[Fe(CN)_6]$
- (b) [Co(NH₃)₅Cl]Cl₂
- (c) [Ni(CO)₄]
- (d) All of these
- 32. In crystal field splitting, in octahedral complexes, the energy order of d-orbitals is:
 - $(a) e_{g} > t_{2g}$
- (a) $c_g > c_{2g}$ (c) $d_{xy} > d_{x^2-y^2}$
- (b) $t_{2g} > e_g$ (d) $d_{v^3} > d_{zx}$
- **33.** The CFSE for octahedral $[COCl_6]^{4-}$ is 18,000 cm⁻¹. The CFSE for tetrahedral [CoCl₄]²⁻ will be:
 - (a) 18.000 cm^{-1}
- (b) 16.000 cm^{-1}
- (c) 8,000 cm⁻¹
- (d) 20,000 cm⁻¹

Read the passage given below and answer the questions (Q. 34 - 38):

Nucleophilic substitution reactions are of two types; substitution nucleophilic bimolecular (S_N2) and substitution nucleophilic unimolecular (S_N1) depending on molecules taking part in determining the rate of reaction. Reactivity of alkyl halide towards S_N1 and S_N2 reactions depends on various factors such as steric hindrance, stability of intermediate or transition state and polarity of solvent. S_N2 reaction mechanism is favoured mostly by primary alkyl halide than secondary and tertiary. This order is reversed in case of $S_N 1$ reactions.

- 34. Which of the following is most reactive towards nucleophilic substitution reaction?
 - $(a) C_6 H_5 C1$
- (b) CH₂ = CHC1
- (c) $CICH_2CH = CH_2$
- (d) CH₂CH = CHC1
- **35.** Isopropyl chloride undergoes hydrolysis by
 - (a) $S_N 1$ mechanism
 - (b) S_N^2 mechanism
 - (c) Both $S_N 1$ and $S_N 2$ mechanism
 - (d) Neither S_N1 nor S_N2 mechanism.

- **36.** The most reactive nucleophile among the following is
 - (a) CH₂O⁻
- $(b) C_6 H_5 O^-$
- (c) (CH₃)₂CHO⁻
- $(d) (CH_3)_3 CO^-$
- 37. Tertiary alkyl halides are practically inert to substitution by $S_N 2$ mechanism because of
 - (a) Insolubility
- (b) Instability
- (c) Inductive effect
- (d) Steric hindrance
- **38.** Which of the following is the correct order of decreasing $S_N 2$ reactivity?
 - (a) $RCH_2X > R_2CHX > R_3CX$ (b) $R_3CX > R_2CHX > RCH_2X$
 - (c) $R_2CHX > R_3CX > RCH_2X$ (d) $RCH_2X > R_3CX > R_2CHX$

Read the passage given below and answer the questions (Q.39 - 43):

Interhalogen compounds are formed when halogen group elements react with each other. These are the compounds which consist of two or more different elements of group-17. A halogen with large size and low electronegativity reacts with an element of group-17 with small size and high electronegativity. As the ratio of radius of larger and smaller halogen increases, the number of atoms in a molecule also increases.

- **39.** The stability of interhalogen compounds follows the order
 - (a) $IF_3 > BrF_3 > ClF_3$
- (b) $ClF_3 > BrF_3 > IF_3$
- (c) $BrF_3 > IF_3 > ClF_3$
- (d) $ClF_3 > IF_3 > BrF_3$
- **40.** Identify the correct match from the following.
 - (a) $[ICI_2]^-$ bent
 - (b) IF₇ pentagonal bipyramidal
 - (c) ClF₃ trigonal planar
 - (d) $[BrF_4]^-$ square pyramidal
- **41.** In XA₅, the central atom has (both X and A are halogens)
 - (a) 5 bond pairs and no lone pairs
 - (b) 5 bond pairs and one lone pair
 - (c) 6 bond pairs and no lone pairs
 - (d) 4 bond pairs and one lone pair
- 42. In the known interhalogen compounds, the maximum number of atoms are
 - (a) 4
- (b) 8
- (c) 5
- (d) 7
- 43. Which of the following is not the characteristic of interhalogen compounds?
 - (a) They are more reactive than halogens
 - (b) They are quite unstable but none of them is explosive
 - (c) They are covalent in nature
 - (d) They have low boiling points and are highly volatile.
- **44.** The structure of 2 Bromo 2 methyl propane:

$$\begin{array}{cccc}
& \operatorname{Br} & \operatorname{CH}_{3} \\
& | & | \\
(a) & \operatorname{CH}_{3} - \operatorname{CH} - \operatorname{CH}_{2}
\end{array} (b)$$

$$(b) \operatorname{CH}_3 - \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{Br}$$

- 45. A primary alkyl halide would prefer to undergo:
 - (a) $S_N 1$ reaction
- (b) S_N^2 reaction
- $(c) \alpha$ elimination
- (d) Racemisation
- **46.** Buna–N is used in making oil seals & tank lining because
 - (a) It is resistant to action of lubricating oil & organics solvents
 - (b) It is more elastic than natural rubber
 - (c) It can be stretched twice its length
 - (d) It does not melt at high temperatures
- 47. In which of the following molecules carbon atom marked with asterisk (*) is asymmetric?

- (a) (i), (ii), (iii) and (iv)
 - (b) (i), (ii) and (iii)
- (c) (ii), (iii) and (iv)
- (d) (i), (iii) and (iv)
- 48. Lower alcohol are:
 - (a) Soluble in water
 - (b) Insoluble in organic solvents
 - (c) Soluble in water only on heating
 - (d) Insoluble in all solvents
- **49.** The strongest acid among the following aromatic compounds
 - (a) p-chlorophenol
- (b) p-nitrophenol
- (c) m-nitrophenol
- (d) o-nitrophenol
- 50. Ethers and alcohols are:
 - (a) Chain isomers
- (b) Positional isomers
- (c) Functional isomers
- (d) Stereoisomers

Answer Key

(Scan QR Code for Detailed Explanations)

- **4.** (*d*) **3.** (a)
 - **5.** (*a*)
- **6.** (*a*)
- 7. (a)
- **8.** (b)
- **9.** (a)
- **10.** (*d*)

- **1.** (b) **11.** (*d*)
- **2.** (b)

- **16.** (*d*) **26.** (*b*)
- **17.** (a)
- **19.** (*d*)

- **12.** (*b*)
- **13.** (*b*)
- **14.** (a) **24.** (*c*)
- **15.** (*b*) **25.** (*b*)
- **27.** (*a*)
- **18.** (a) **28.** (b)
- **29.** (*d*)
- **20.** (b) **30.** (*c*)

21. (b) **31.** (*d*)

41. (*b*)

22. (*d*) **32.** (a)

42. (*b*)

23. (a)

43. (*d*)

- **33.** (*c*)
- **44.** (*c*)
- **34.** (*c*)
- **35.** (*c*) **45.** (*b*)
- **36.** (a) **46.** (a)
- **37.** (*d*) **47.** (*b*)
- **38.** (a) **48.** (a)
- **39.** (a) **49.** (*b*)
- **40.** (*b*) **50.** (*c*)