General Aptitude (GA) #### Q.1 – Q.5 Carry ONE mark Each | Q.1 | "I have not yet decided what I will do this evening; I visit a friend." | |-----|---| | | | | (A) | mite | | (B) | would | | (C) | might | | (D) | didn't | | | | | | | | Q.2 | Eject : Insert : : Advance : | | | (By word meaning) | | | | | (A) | Advent | | (B) | Progress | | (C) | Retreat | | (D) | Loan | | | | (C) (D) 6π 7π Q.3 In the given figure, PQRSTV is a regular hexagon with each side of length 5 cm. A circle is drawn with its centre at V such that it passes through P. What is the area (in cm²) of the shaded region? (The diagram is representative) $\begin{array}{cccc} P & & & & & & & & & & & & & & & \\ \hline P & & & & & & & & & & & & \\ \hline P & & & & & & & & & & \\ \hline P & & & & & & & & & & \\ \hline P & & & & & & & & & & \\ \hline P & & & & & & & & & \\ \hline P & & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & & \\ \hline P & & & & & & & \\ \hline P & & & & & & & \\ \hline P & & & & & & & \\ \hline P & & & & & \\ \hline P & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P & & & & & & \\ \hline P &$ | Q.4 | A duck named Donald Duck says "All ducks always lie." Based only on the information above, which one of the following statements can be logically inferred with <i>certainty</i> ? | |-----|---| | | | | (A) | Donald Duck always lies. | | (B) | Donald Duck always tells the truth. | | (C) | Donald Duck's statement is true. | | (D) | Donald Duck's statement is false. | | | | Q.5 A line of symmetry is defined as a line that divides a figure into two parts in a way such that each part is a mirror image of the other part about that line. The figure below consists of 20 unit squares arranged as shown. In addition to the given black squares, upto 5 more may be coloured black. Which one among the following options depicts the minimum number of boxes that must be coloured black to achieve two lines of symmetry? (The figure is representative) (A) d (B) c, d, i (C) c, i (D) c, d, i, f, g # Q.6 – Q.10 Carry TWO marks Each | Q.6 | Based only on the truth of the statement 'Some humans are intelligent', which one of the following options can be logically inferred with <i>certainty</i> ? | |-----|--| | | | | (A) | No human is intelligent. | | (B) | All humans are intelligent. | | (C) | Some non-humans are intelligent. | | (D) | Some intelligent beings are humans. | - (A) $mean = median \neq mode$ - (B) mean = median = mode - (C) $mean \neq median = mode$ - (D) $mean \neq mode = median$ | Q.8 | The James Webb telescope, recently launched in space, is giving humankind unprecedented access to the depths of time by imaging very old stars formed almost 13 billion years ago. Astrophysicists and cosmologists believe that this odyssey in space may even shed light on the existence of dark matter. Dark matter is supposed to interact only via the gravitational interaction and not through the electromagnetic-, the weak- or the strong-interaction. This may justify the epithet "dark" in dark matter. | |-----|---| | | Based on the above paragraph, which one of the following statements is FALSE? | | (A) | No other telescope has captured images of stars older than those captured by the James Webb telescope. | | (B) | People other than astrophysicists and cosmologists may also believe in the existence of dark matter. | | (C) | The James Webb telescope could be of use in the research on dark matter. | | (D) | If dark matter was known to interact via the strong-interaction, then the epithet "dark" would be justified. | | | | | Q.9 | Let $a=30!$, $b=50!$, and $c=100!$. Consider the following numbers: | |-----|--| | | $\log_a c$, $\log_c a$, $\log_b a$, $\log_a b$ | | | Which one of the following inequalities is CORRECT? | | | | | (A) | $\log_c a < \log_b a < \log_a b < \log_a c$ | | (B) | $\log_c a < \log_a b < \log_b a < \log_b c$ | | (C) | $\log_c a < \log_b a < \log_a c < \log_a b$ | | (D) | $\log_b a < \log_c a < \log_a b < \log_a c$ | | | | Q.10 A square of side length 4 cm is given. The boundary of the shaded region is defined by one semi-circle on the top and two circular arcs at the bottom, each of radius 2 cm, as shown. The area of the shaded region is _____ cm². - (A) 8 - (B) 4 - (C) 12 - (D) 10 # Q.11 – Q.35 Carry ONE mark Each | | For the integral | |------|--| | Q.11 | $I = \int_{-1}^{1} \frac{1}{x^2} dx$ | | | which of the following statements is TRUE? | | (A) | I = 0 | | (B) | I=2 | | (C) | I = -2 | | (D) | The integral does not converge | | | | | Q.12 | A hanger is made of two bars of different sizes. Each bar has a square cross-section. The hanger is loaded by three-point loads in the mid vertical plane as shown in the figure. Ignore the self-weight of the hanger. What is the maximum tensile stress in N/mm² anywhere in the hanger without considering stress concentration effects? | |------|--| | | 100 mm 100 kN 100 kN 50 mm | | (A) | 15.0 | | (B) | 25.0 | | (C) | 35.0 | | (D) | 45.0 | | | | | Q.13 | Creep of concrete under compression is defined as the | |------|--| | (A) | increase in the magnitude of strain under constant stress | | (B) | increase in the magnitude of stress under constant strain | | (C) | decrease in the magnitude of strain under constant stress | | (D) | decrease in the magnitude of stress under constant strain | | | | | Q.14 | A singly reinforced concrete beam of balanced section is made of M20 grade concrete and Fe415 grade steel bars. The magnitudes of the maximum compressive strain in concrete and the tensile strain in the bars at ultimate state under flexure, as per IS 456: 2000 are, respectively. (round off to four decimal places) | | (A) | 0.0035 and 0.0038 | | (B) | 0.0020 and 0.0018 | | (C) | 0.0035 and 0.0041 | | (D) | 0.0020 and 0.0031 | | | | | nent concrete mix design, with the increase in water-cement ratio, which one following statements is TRUE? | |---| | ressive strength decreases but workability increases | | ressive strength increases but workability decreases | | compressive strength and workability decrease | | compressive strength and workability increase | | | | pecific gravity of a soil is 2.60. The soil is at 50% degree of saturation with a content of 15%. The void ratio of the soil is | | | | | | | | | | | | | | Q.17 | A group of 9 friction piles are arranged in a square grid maintaining equal spacing in all directions. Each pile is of diameter 300 mm and length 7 m. Assume that the soil is cohesionless with effective friction angle $\phi' = 32^{\circ}$. What is the center-to-center spacing of the piles (in m) for the pile group efficiency of 60%? | |------|---| | (A) | 0.582 | | (B) | 0.486 | | (C) | 0.391 | | (D) | 0.677 | | | | | Q.18 | A possible slope failure is shown in the figure. Three soil samples are taken from different locations (I, II and III) of the potential failure plane. Which is the most appropriate shear strength test for each of the sample to identify the failure mechanism? Identify the correct combination from the following options: P: Triaxial compression test Q: Triaxial extension test R: Direct shear or shear box test S: Vane shear test | |------|---| | | slope face III Potential failure plane | | (A) | I-Q, II-R, III-P | | (B) | I-R, II-P, III-Q | | (C) | I-S, II-Q, III-R | | (D) | I-P, II-R, III-Q | | | | | Q.19 | When a supercritical stream enters a mild-sloped (M) channel section, the type of flow profile would become | | (A) | M_1 | | (B) | M_2 | | (C) | M_3 | | (D) | M_1 and M_2 | | Q.20 | Which one of the following statements is TRUE for Greenhouse Gas (GHG) in the atmosphere? | |------|---| | (A) | GHG absorbs the incoming short wavelength solar radiation to the earth surface, and allows the long wavelength radiation coming from the earth surface to pass through | | (B) | GHG allows the incoming long wavelength solar radiation to pass through to the earth surface, and absorbs the short wavelength radiation coming from the earth surface | | (C) | GHG allows the incoming long wavelength solar radiation to pass through to the earth surface, and allows the short wavelength radiation coming from the earth surface to pass through | | (D) | GHG allows the incoming short wavelength solar radiation to pass through to the earth surface, and absorbs the long wavelength radiation coming from the earth surface | | | | | Q.21 | G_1 and G_2 are the slopes of the approach and departure grades of a vertical curve, respectively. | | | Given $ G_1 < G_2 $ and $ G_1 \neq G_2 \neq 0$
Statement 1: $+G_1$ followed by $+G_2$ results in a sag vertical curve.
Statement 2: $-G_1$ followed by $-G_2$ results in a sag vertical curve.
Statement 3: $+G_1$ followed by $-G_2$ results in a crest vertical curve.
Which option amongst the following is true? | | (4) | | | (A) | Statement 1 and Statement 3 are correct; Statement 2 is wrong | | (B) | Statement 1 and Statement 2 are correct; Statement 3 is wrong | | (C) | Statement 1 is correct; Statement 2 and Statement 3 are wrong | | (D) | Statement 2 is correct; Statement 1 and Statement 3 are wrong | | | | | L | I | | Q.22 | The direct and reversed zenith angles observed by a theodolite are 56° 00' 00" and 303° 00' 00", respectively. What is the vertical collimation correction? | |------|--| | (A) | +1° 00' 00" | | (B) | -1° 00' 00" | | (C) | -0° 30' 00" | | (D) | +0° 30' 00" | | | | | Q.23 | A student is scanning his 10 inch \times 10 inch certificate at 600 dots per inch (dpi) to convert it to raster. What is the percentage reduction in number of pixels if the same certificate is scanned at 300 dpi? | | (A) | 62 | | (B) | 88 | | (C) | 75 | | (D) | 50 | | | | | Q.24 | If M is an arbitrary real $n \times n$ matrix, then which of the following matrices will have non-negative eigenvalues? | |------|--| | (A) | M^2 | | (B) | MM^T | | (C) | $M^T M$ | | (D) | $(\mathbf{M}^T)^2$ | | | | | Q.25 | The following function is defined over the interval $[-L, L]$: | | | $f(x) = px^4 + qx^5.$ | | | If it is expressed as a Fourier series, | | | $f(x) = a_0 + \sum_{n=1}^{\infty} \left\{ a_n \sin\left(\frac{\pi x}{L}\right) + b_n \cos\left(\frac{\pi x}{L}\right) \right\},$ | | | which options amongst the following are true? | | (A) | $a_n, n = 1, 2, \dots, \infty$ depend on p | | (B) | $a_n, n = 1, 2, \dots, \infty$ depend on q | | (C) | $b_n, n = 1, 2, \dots, \infty$ depend on p | | (D) | $b_n, n = 1, 2, \dots, \infty$ depend on q | | | | | | Consider the following three structures: | | |------|---|--| | | A B C D E | Structure I: Beam with hinge support at A, roller at C, guided roller at E, and internal hinges at B and D | | Q.26 | $\begin{array}{c c} A & D \\ \hline \\ B \\ \hline \\ L \\ \end{array}$ | Structure II: Pin-jointed truss, with hinge support at A, and rollers at B and D | | | $\begin{array}{c c} D & E & F \\ \hline L & \\ \hline L & \\ \hline \end{array}$ Which of the following statements is/are TRUE? | Structure III: Pin-
jointed truss, with
hinge support at A and
roller at C | | (A) | Structure I is unstable | | | (B) | Structure II is unstable | | | (C) | Structure III is unstable | | | (D) | All three structures are stable | | | Q.27 | Identify the waterborne diseases caused by viral pathogens: | |------|---| | (A) | Acute anterior poliomyelitis | | (B) | Cholera | | (C) | Infectious hepatitis | | (D) | Typhoid fever | | | | | Q.28 | Which of the following statements is/are TRUE for the Refuse-Derived Fuel (RDF) in the context of Municipal Solid Waste (MSW) management? | | (A) | Higher Heating Value (HHV) of the unprocessed MSW is higher than the HHV of RDF processed from the same MSW | | (B) | RDF can be made in the powdered form | | (C) | Inorganic fraction of MSW is mostly converted to RDF | | (D) | RDF cannot be used in conjunction with oil | | | | | | | | Q.29 | The probabilities of occurrences of two independent events A and B are 0.5 and 0.8, respectively. What is the probability of occurrence of at least A or B (rounded off to one decimal place)? | |------|--| | | | | Q.30 | In the differential equation $\frac{dy}{dx} + \alpha x y = 0$, α is a positive constant. If $y = 1.0$ at $x = 0.0$, and $y = 0.8$ at $x = 1.0$, the value of α is(rounded off to three decimal places). | | |------|--|--| | | | | | Q.31 | Consider the fillet-welded lap joint shown in the figure (not to scale). The length of the weld shown is the effective length. The welded surfaces meet at right angle. The weld size is 8 mm, and the permissible stress in the weld is 120 MPa. What is the safe load <i>P</i> (in kN, rounded off to one decimal place) that can be transmitted by this welded joint? | | | | 75 mm 50 mm P | | | | | | | Q.32 | A drained direct shear test was carried out on a sandy soil. Under a normal stress of 50 kPa, the test specimen failed at a shear stress of 35 kPa. The angle of internal friction of the sample isdegree (round off to the nearest integer). | | | | | | | Q.33 | A canal supplies water to an area growing wheat over 100 hectares. The duration between the first and last watering is 120 days, and the total depth of water required by the crop is 35 cm. The most intense watering is required over a period of 30 days and requires a total depth of water equal to 12 cm. Assuming precipitation to be negligible and neglecting all losses, the minimum discharge (in m³/s, rounded off to three decimal places) in the canal to satisfy the crop requirement is | | |------|---|--| | | | | | Q.34 | The ordinates of a one-hour unit hydrograph for a catchment are given below: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Q.35 | For a horizontal curve, the radius of a circular curve is obtained as 300 m with the design speed as 15 m/s. If the allowable jerk is 0.75 m/s³, what is the minimum length (in m, <i>in integer</i>) of the transition curve? | | #### Q.36 - Q.65 Carry TWO marks Each | Q.37 | Consider a doubly reinforced RCC beam with the option of using either Fe250 plain bars or Fe500 deformed bars in the compression zone. The modulus of elasticity of steel is 2×10^5 N/mm ² . As per IS456:2000, in which type(s) of the bars, the stress in the compression steel (f_{sc}) can reach the design strength (0.87 f_y) at the limit state of collapse? | |------|--| | (A) | Fe250 plain bars only | | (B) | Fe500 deformed bars only | | (C) | Both Fe250 plain bars and Fe500 deformed bars | | (D) | Neither Fe250 plain bars nor Fe500 deformed bars | | | | | Q.38 | Consider the horizontal axis passing through the centroid of the steel beam cross-section shown in the figure. What is the shape factor (rounded off to one decimal place) for the cross-section? | | | | | (A) | 1.5 | | (B) | 1.7 | | (C) | 1.3 | | (D) | 2.0 | | Q.39 | Consider the pin-jointed truss shown in the figure (not to scale). All members have the same axial rigidity, AE . Members QR, RS, and ST have the same length L . Angles QBT, RCT, SDT are all 90°. Angles BQT, CRT, DST are all 30°. The joint T carries a vertical load P . The vertical deflection of joint T is $k\frac{PL}{AE}$. What is the value of k ? | |------|---| | | B C D | | (A) | 1.5 | | (B) | 4.5 | | (C) | 3.0 | | (D) | 9.0 | | | | | Q.40 | With reference to the compaction test conducted on soils, which of the following is INCORRECT? | |------|---| | (A) | Peak point of the compaction curve gives the maximum dry unit weight and optimum moisture content | | (B) | With increase in the compaction effort, the maximum dry unit weight increases | | (C) | With increase in the compaction effort, the optimum moisture content decreases | | (D) | Compaction curve crosses the zero-air-voids curve | | | | | Q.41 | Consider that a force P is acting on the surface of a half-space (Boussinesq's problem). The expression for the vertical stress (σ_z) at any point (r, z) , within the half-space is given as, $\sigma_z = \frac{3P}{2\pi} \frac{z^3}{(r^2 + z^2)^{\frac{5}{2}}}$ where, r is the radial distance, and z is the depth with downward direction taken as | | | positive. At any given r , there is a variation of σ_z along z , and at a specific z , the value of σ_z will be maximum. What is the locus of the maximum σ_z ? | | (A) | $z^2 = \frac{3}{2} r^2$ | | (B) | $z^3 = \frac{3}{2} r^2$ | | (C) | $z^2 = \frac{5}{2} r^2$ | | (D) | $z^3 = \frac{5}{2} r^2$ | | | | | | | | Q.42 | A square footing of size $2.5 \text{ m} \times 2.5 \text{ m}$ is placed 1.0 m below the ground surface on a cohesionless homogeneous soil stratum. Considering that the groundwater table is located at the base of the footing, the unit weights of soil above and below the groundwater table are 18 kN/m^3 and 20 kN/m^3 , respectively, and the bearing capacity factor N_q is 58 , the net ultimate bearing capacity of the soil is estimated as 1706 kPa (unit weight of water = 10 kN/m^3). Earlier, a plate load test was carried out with a circular plate of 30 cm diameter in the same foundation pit during a dry season, when the water table was located beyond the plate influence zone. Using Terzaghi's bearing capacity formulation, what is the ultimate bearing capacity (in kPa) of the plate? | |------|---| | (A) | 110.16 | | (B) | 61.20 | | (C) | 204.00 | | (D) | 163.20 | | | | | Q.43 | A very wide rectangular channel carries a discharge (Q) of 70 m ³ /s per meter width. Its bed slope changes from 0.0001 to 0.0009 at a point P, as shown in the figure (not to scale). The Manning's roughness coefficient of the channel is 0.01. What water surface profile(s) exist(s) near the point P? | |------|--| | | $Q = 70 \text{ m}^3/\text{s}$ per meter width | | | $S_0 = 0.0001$ | | | $S_0 = 0.0009$ | | (A) | M_2 and S_2 | | (B) | M ₂ only | | (C) | S ₂ only | | (D) | S ₂ and hydraulic jump | | | | | Q.44 | A jet of water having a velocity of 20 m/s strikes a series of plates fixed radially on a wheel revolving in the same direction as the jet at 15 m/s. What is the percentage efficiency of the plates? (round off to one decimal place) | | (A) | 37.5 | | (B) | 66.7 | | (C) | 50.0 | | (D) | 88.9 | | | | | | | owing table, identify the con-1 and Column-2. | rrect set of associations between the entries | | |------|-------------|---|---|--| | 0.45 | | Column-1 | Column-2 | | | Q.45 | | P: Reverse Osmosis | I: Ponding | | | | | Q: Trickling Filter | II: Freundlich Isotherm | | | | | R: Coagulation | III: Concentration Polarization | | | | | S: Adsorption | IV: Charge Neutralization | | | (A) | P-II, Q-I, | S-III | | | | (B) | Q-III, R-II | I, S-IV | | | | (C) | P-IV, R-I, | S-II | | | | (D) | P-III, Q-I, | R-IV | | | | | | | | | A plot of speed-density relationship (linear) of two roads (Road A and Road B) is shown in the figure. Road A Road B Poly Density, k k_A If the capacity of Road A is C_A and the capacity of Road B is C_B , what is $\frac{C_A}{C_B}$? (B) u_A $\overline{u_B}$ $\overline{k_B}u_B$ (D) $$\frac{k_A u_B}{k_B u_A}$$ | Q.47 | For the matrix $[A] = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ which of the following statements is/are TRUE? | |------|---| | | | | (A) | The eigenvalues of $[A]^T$ are same as the eigenvalues of $[A]$ | | (B) | The eigenvalues of $[A]^{-1}$ are the reciprocals of the eigenvalues of $[A]$ | | (C) | The eigenvectors of $[A]^T$ are same as the eigenvectors of $[A]$ | | (D) | The eigenvectors of $[A]^{-1}$ are same as the eigenvectors of $[A]$ | | | | | Q.48 | For the function $f(x) = e^x \sin x $; $x \in \mathbb{R}$, which of the following statements is/are TRUE? | | (A) | The function is continuous at all x | | (B) | The function is differentiable at all x | | (C) | The function is periodic | | (D) | The function is bounded | | | | | Q.49 | Consider the beam shown in the figure (not to scale), on a hinge support at end A and a roller support at end B. The beam has a constant flexural rigidity, and is subjected to the external moments of magnitude <i>M</i> at one-third spans, as shown in the figure. Which of the following statements is/are TRUE? | |------|---| | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | (A) | Support reactions are zero | | (B) | Shear force is zero everywhere | | (C) | Bending moment is zero everywhere | | (D) | Deflection is zero everywhere | | | | | Q.50 | Which of the following statements is/are TRUE in relation to the Maximum Mixing Depth (or Height) ' D_{max} ' in the atmosphere? | | (A) | D_{max} is always equal to the height of the layer of unstable air | | (B) | Ventilation coefficient depends on D _{max} | | (C) | A smaller D_{max} will have a smaller air pollution potential if other meteorological conditions remain same | | (D) | Vertical dispersion of pollutants occurs up to D_{max} | | | | | Q.51 | | of the following options match al tests in the table? | the test reporting conventions with the g | give | |------|---------|---|---|------| | | | Test reporting convention | Material test | | | | | (P) Reported as ratio | (I) Solubility of bitumen | | | | | (Q) Reported as percentage | (II) Softening point of bitumen | | | | | (R) Reported in temperature | (III) Los Angeles abrasion test | | | | | (S) Reported in length | (IV) Flash point of bitumen | | | | | | (V) Ductility of bitumen | | | | | | (VI) Specific gravity of bitumen | | | | | | (VII) Thin film oven test | | | (A) | (P) - (| VI); (Q) - (I); (R) - (II); (S) - (V | II) | | | (B) | | VI); (Q) - (III); (R) - (IV); (S) - | <u> </u> | | | (D) | (1)-(| v1), (Q) - (III), (R) - (IV), (S) - | (v) | | | (C) | (P) - (| VI); (Q) - (I); (R) - (II); (S) - (V | | | | (D) | (P) - (| VI); (Q) - (III); (R) - (IV); (S) - | (VII) | | | Q.52 | The differential equation, | |------|---| | | $\frac{\mathrm{d}u}{\mathrm{d}t} + 2tu^2 = 1,$ | | | is solved by employing a backward difference scheme within the finite difference framework. The value of u at the $(n-1)^{\text{th}}$ time-step, for some n , is 1.75. The corresponding time (t) is 3.14 s. Each time step is 0.01 s long. Then, the value of $(u_n - u_{n-1})$ is(round off to three decimal places). | | | | | Q.53 | The infinitesimal element shown in the figure (not to scale) represents the state of stress at a point in a body. What is the magnitude of the maximum principal stress (in N/mm², in integer) at the point? | | | 6 N/mm ² 3 N/mm ² 4 N/mm ² 5 N/mm ² 6 N/mm ² | | | | Q.54 An idealised bridge truss is shown in the figure. The force in Member U_2L_3 is _____ kN (round off to one decimal place). Q.55 The cross-section of a girder is shown in the figure (not to scale). The section is symmetric about a vertical axis (Y-Y). The moment of inertia of the section about the horizontal axis (X-X) passing through the centroid is _____ cm⁴ (round off to nearest integer). | Q.62 | The composition and energy content of a representative solid waste sample are given in the table. If the moisture content of the waste is 26%, the energy content of the solid waste on dry-weight basis isMJ/kg (round off to one decimal place). | | | |------|--|--|---| | | Component | Percent by mass | Energy content as-discarded basis (MJ/kg) | | | Food waste | 20 | 4.5 | | | Paper | 45 | 16.0 | | | Cardboard | 5 | 14.0 | | | Plastics | 10 | 32.0 | | | Others | 20 | 8.0 | | | | | | | | | | | | Q.63 | 15°C, and the average temperature of water is the power input are magradient (in %) due to to off to nearest integer). | e velocity gradients reduced to 5°C, but aintained as the satthe reduction in was secosity of water at | m ^{3.} The temperature of water in the tank is not maintained in the tank is 100/s. The sut all other operating conditions including me. The decrease in the average velocity ster temperature is (round 15°C and 5°C as 1.139×10 ⁻³ N-s/m ² and | | | | | | | Q.64 | be operated
of influent
primary se
concentrati
removal of | d with a food to micro
biodegradable orga
ettling) is 150 mg/L
ion to be maintained | oorganism ratio of 0. unic matter of the value of the value of the value of the plant is 2000 in the plant is the tank | is 0.5 m ³ /s, and the plan
.2 mg/mg-d. The concent
wastewater to the plant
uor volatile suspended
mg/L. Assuming that con
k, the volume of aeration | ration
(after
solids
nplete | |------|--|--|--|--|--------------------------------------| | Q.65 | Trigonometric levelling was carried out from two stations P and Q to find the reduced level (R. L.) of the top of hillock, as shown in the table. The distance between Stations P and Q is 55 m. Assume Stations P and Q, and the hillock are in the same vertical plane. The R. L. of the top of the hillock (in m) is (round off to three decimal places). | | | | | | | is | | (round off to three d | ecimal places). | | | | isStation | Vertical angle of the top of hillock | Staff reading on benchmark | R. L. of benchmark | | | | | Vertical angle of | Staff reading on | - ' | | #### **END OF QUESTION PAPER**