Important Questions for Class 9 Maths Chapter 4: Linear Equations in Two Variables introduces the concept of equations involving two variables and how they can be represented graphically. Important topics include the general form of linear equations (ax + by + c = 0), solutions of linear equations, plotting graphs, and finding the x- and y-intercepts.

Key questions often focus on solving equations, verifying solutions, and graphing lines on a coordinate plane. Students are also expected to understand the relationship between coefficients and the slope of the line and parallel and intersecting lines.

Important Questions for Class 9 Maths Chapter 4 Overview

Chapter 4 of Class 9 Maths, Linear Equations in Two Variables, is crucial for building a strong foundation in algebra and graphing. It introduces linear equations involving two variables, which form the basis for understanding higher-level concepts like coordinate geometry, simultaneous equations, and calculus in advanced classes. This chapter covers important concepts like the general form of linear equations, solutions of equations, plotting them on a graph, and interpreting their graphical representations.

Students learn how to find the x- and y-intercepts, and how the coefficients affect the slope and position of lines. Understanding this chapter is key for solving problems related to real-life situations, such as determining the relationship between quantities and predicting outcomes, making it a highly important chapter.

Important Questions for Class 9 Maths Chapter 4 Linear Equations in Two Variables

Below is the Important Questions for Class 9 Maths Chapter 4 Linear Equations in Two Variables -

Question 1: Define the following linear equations in the form ax + by + c = 0 and show the values of a, b and c in every individual case:

(i)
$$x - y/5 - 10 = 0$$

(ii)
$$-2x+3y = 6$$

(iii)
$$y - 2 = 0$$

Answer 1:

(i) The equation x-y/5-10 = 0

$$(1)x + (-1/5)y + (-10) = 0$$

Directly compare the above equation with ax + by + c = 0

Therefore, we get;

$$a = 1$$

$$b = -\frac{1}{5}$$

$$c = -10$$

(ii)
$$-2x + 3y = 6$$

Re-arranging the provided equation, we obtain,

$$-2x + 3y - 6 = 0$$

The required equation -2x + 3y - 6 = 0 can be written as,

$$(-2)x + 3y + (-6) = 0$$

Directly comparing (-2)x + 3y + (-6) = 0 with ax + by + c = 0

We obtain a = -2

$$b = 3$$

$$c = -6$$

(iii)
$$y - 2 = 0$$

$$y - 2 = 0$$

The required equation y - 2 = 0 can be written as,

$$0x + 1y + (-2) = 0$$

Directly comparing 0x + 1y + (-2) = 0 with ax + by + c = 0

We obtain a = 0

$$b = 1$$

$$c = -2$$

Question 2: The price of a notebook is twice the cost of a pen. Note a linear equation in two variables to illustrate this statement.

(Taking the price of a notebook to be ₹ x and that of a pen to be ₹ y)

Answer 2: Let the price of one notebook be = ₹ x

Let the price of one pen be = ₹ y

As per the question,

The price of one notebook is twice the cost of one pen.

i.e., the price of one notebook = 2×price of a pen

 $x = 2 \times y$

x = 2y

x-2y = 0

x-2y = 0 is the required linear equation in two variables to illustrate the statement, 'The price of one given notebook is twice the cost of a pen.

Question 3: Give the geometric representations of 2x + 9 = 0 as an equation

- (i) in one variable
- (ii) in two variables

Answer 3:

(i)
$$2x + 9 = 0$$

We have, 2x + 9 = 0

2x = -9

x = -9/2

which is the required linear equation in one variable, that is, x only.

Therefore, x = -9/2 is a unique solution on the number line as shown below:

(ii) 2x + 9 = 0

We can write 2x + 9 = 0 in the two variables as 2x + 0, y + 9 = 0

or
$$x = -9-0.y/2$$

... When
$$y = 1$$
, $x = -9-0.(1)/2 = -9/2$

$$y=2$$
, $x = -9-0.(2)/2 = -9/2$

$$y = 3$$
, $x = -9-0.(3)/2 = -9/2$

Therefore, we obtain the following table:

X -9/2 -9/2 -9/2 Y 1 2 3

Now, plotting the ordered pairs (-9/2,3), (-9/2,3) and (-9/2,3) on graph paper and connecting them, we get a line PQ as the solution of 2x + 9 = 0.

Question 4: Note four solutions individually for the following equations:

(i)
$$2x + y = 7$$

Answer 4: For the four answers of 2x + y = 7, we replace different values for x and y

Let x = 0

Then,

$$2x + y = 7$$

$$(2\times0)+y=7$$

y = 7

(0,7)

Let x = 1

Now,

$$2x + y = 7$$

$$(2\times1)+y=7$$

$$2+y = 7$$

$$y = 7 - 2$$

$$y = 5$$

(B) Two solutions

(C) Infinitely many solutions

Answer 5: (C) Infinitely many solutions

Solution:

Linear equation: The equation of two variables which gives a straight line graph is called a linear equation.

Here the linear equation is 2x - 5y = 7

Let y = 0, then the value of x is:

$$2x - 5(0) = 7$$

$$2x = 7$$

$$x = 7/2$$

Now, let y = 1, then the value of x is:

$$2x - 5(1) = 7$$

$$2x - 5 = 7$$

$$2x = 7 + 5$$

$$2x = 12$$

$$x = 12/2$$

$$x = 6$$

Here for different values of y, we are getting different values of x

Therefore, the equation has infinitely many solutions

Question 6: Represent the following linear equations in the form ax + by + c = 0 and show the required values of a, b and c in every case:

Answer 6: (i) x - (y/5) - 10 = 0

The required equation x - (y/5) - 10 = 0 can be written as,

$$1x+(-1/5)y + (-10) = 0$$

Comparing the given equation x+(-1/5)y+(-10) = 0 with ax+by+c = 0

We obtain,

$$a = 1$$

$$b = -(1/5)$$

$$c = -10$$

(ii)
$$-2x+3y = 6$$

$$-2x+3y = 6$$

Rearranging the equation, we obtain,

$$-2x+3y-6=0$$

The required equation -2x+3y-6 = 0 can be written as,

$$(-2)x+3y+(-6)=0$$

Comparing the given equation (-2)x+3y+(-6) = 0 with ax+by+c = 0

We obtain a = -2

b = 3

c = -6

(iii)
$$x = 3y$$

$$x = 3y$$

Rearranging the equation, we obtain,

$$x-3y = 0$$

The required equation x-3y=0 can be written as,

$$1x+(-3)y+(0)c = 0$$

Comparing the given equation 1x+(-3)y+(0)c = 0 with ax+by+c = 0

We obtain a = 1

b = -3

c = 0

(iv)
$$2x = -5y$$

$$2x = -5y$$

Rearranging the equation, we obtain,

$$2x+5y = 0$$

The required equation 2x+5y = 0 can be written as,

$$2x+5y+0 = 0$$

Comparing the given equation 2x+5y+0=0 with ax+by+c=0

We obtain a = 2

$$b = 5$$

$$c = 0$$

$$(v) 3x+2 = 0$$

$$3x+2 = 0$$

The required equation 3x+2 = 0 can be written as,

$$3x+0y+2=0$$

Comparing the given equation 3x+0+2=0 with ax+by+c=0

We obtain a = 3

$$b = 0$$

$$c = 2$$

$$(vi) y-2 = 0$$

$$y-2 = 0$$

The required equation y-2 = 0 can be written as,

$$0x+1y+(-2) = 0$$

Comparing the given equation 0x+1y+(-2) = 0 with ax+by+c = 0

We obtain a = 0

$$b = 1$$

$$c = -2$$

(vii)
$$5 = 2x$$

$$5 = 2x$$

Rearranging the equation, we obtain,

$$2x = 5$$

i.e.,
$$2x-5 = 0$$

The required equation 2x-5 = 0 can be written as,

$$2x+0y-5=0$$

Comparing the given equation 2x+0y-5=0 with ax+by+c=0

We obtain a = 2

$$b = 0$$

$$c = -5$$

Question 7: Note four solutions individually for the following equations:

$$\pi x + y = 9$$

Answer 7: For the four answers of $\pi x + y = 9$, we replace other values for x and y

Let
$$x = 0$$

Now,

$$\pi x + y = 9$$

$$(\pi \times 0) + y = 9$$

$$y = 9$$

(0,9)

Let
$$x = 1$$

Now,

$$\pi x + y = 9$$

$$(\pi \times 1) + y = 9$$

$$\pi + y = 9$$

$$y = 9-π$$
 $(1,9-π)$
Let $y = 0$
Now,
 $πx + y = 9$
 $πx + 0 = 9$
 $πx = 9$
 $x = 9/π$
 $(9/π,0)$
Let $x = -1$
Now,
Put $x = 2$, we have
 $πx + y = 9$
 $π(2) + y = 9$
 $y = 9 - 2π$
The answers are $(0,9)$, $(1,9-π)$, $(9/π,0)$, $(2,9 - 2π)$
Question 8: Find out the value of k, if $x = 2$, y

Question 8: Find out the value of k, if x = 2, y = 1 is a given solution of the equation 2x + 3y = k.

Answer 8: The provided equation is

$$2x + 3y = k$$

As per the given question, x = 2 and y = 1.

Then, Replacing the values of x and y in the equation 2x + 3y = k,

We get,

$$\Rightarrow$$
 (2 x 2)+ (3 × 1) = k

The required value of k, if x = 2, y = 1 is a given solution of the equation 2x + 3y = k, is 7.

Question 9: Establish that the required points A (1, 2), B (-1, -16) and C (0, -7) lie on the graph of the required linear equation y = 9x - 7.

Answer 9: We include the equation,

$$y = 9x - 7$$

Replacing (x,y) = (1, 2),

We obtain,

$$2 = 9(1) - 7$$

$$2 = 9 - 7$$

$$2 = 2$$

For B
$$(-1, -16)$$
,

Replacing (x,y) = (-1, -16),

We get,

$$-16 = 9(-1) - 7$$

$$-16 = -9 - 7$$

$$-16 = -16$$

For C
$$(0, -7)$$
,

Replacing (x,y) = (0, -7),

We obtain,

$$-7 = 9(0) - 7$$

$$-7 = 0 - 7$$

$$-7 = -7$$

Therefore, the points A (1, 2), B (-1, -16) and C (0, -7) satisfy the line y = 9x - 7.

Therefore, A (1, 2), B (-1, -16) and C (0, -7) are answers to the linear equation y = 9x - 7

Thus, points A (1, 2), B (-1, -16), and C (0, -7) lie on the graph of the linear equation y = 9x - 7.

Question 10: Note the linear equation such that every point on its graph has a coordinate 3 times its abscissa.

Answer 10:

As per the question,

A given linear equation such that every point on its graph has a coordinate(y) which is 3 times its

abscissa(x).

So we obtain

 \Rightarrow y = 3x.

Therefore, y = 3x is the required linear equation.

Question 11: Illustrate the graph of the given linear equation 3x + 4y = 6. At what points does the graph cut the X and Y-axis?

Answer 11: Given the equation,

3x + 4y = 6.

We need at least 2 points on the graph to illustrate the graph of this equation,

Therefore, the points the graph cuts

(i) x-axis

The given point is on the x-axis. We have y = 0.

Replacing y = 0 in the equation, 3x + 4y = 6,

We get,

 $3x + 4 \times 0 = 6$

 \Rightarrow 3x = 6

$$\Rightarrow x = 2$$

Therefore, the point at which the graph cuts the x-axis = (2, 0).

(ii) y-axis

Since the point is on the y-axis, we have x = 0.

Replacing x = 0 in the equation, 3x + 4y = 6,

We obtain,

$$3 \times 0 + 4 y = 6$$

$$\Rightarrow$$
 4y = 6

$$\Rightarrow$$
 y = 6/4

$$\Rightarrow$$
 y = 3/2

$$\Rightarrow$$
 y = 1.5

Thus, the point at which the graph cuts the x-axis = (0, 1.5).

By plotting the points (0, 1.5) and (2, 0) on the graph.

Question 12: Show that the required points A (1, 2), B (-1, -16) and C (0, -7) lie on the given graph of the linear equation y = 9x - 7.

Answer 12: We have the given equation,

$$y = 9x - 7$$

For A (1, 2),

Substitute the values of (x,y) = (1, 2),

We obtain,

$$2 = 9(1) - 7 = 9 - 7 = 2$$

For B
$$(-1, -16)$$
,

Substitute the values of (x,y) = (-1, -16),

We obtain,

$$-16 = 9(-1) - 7 = -9 - 7 = -16$$

For C (0, -7),

Substitute the values of (x,y) = (0, -7),

We obtain,

$$-7 = 9(0) - 7 = 0 - 7 = -7$$

Thus, we locate that points A (1, 2), B (-1, -16) and C (0, -7) satisfy the line y = 9x - 7.

Thus, A (1, 2), B (-1, -16), and C (0, -7) are required solutions of the linear equation y = 9x - 7

Hence, the given points A (1, 2), B (-1, -16) and C (0, -7) lie on the graph of the required linear equation y = 9x - 7.

Benefits of Solving Important Questions for Class 9 Maths Chapter 4

Below we have provided some of the benefits of solving Important Questions for Class 9 Maths Chapter 4 Linear Equations in Two Variables -

Strengthens Conceptual Understanding: Reinforces key concepts like linear equations, graphing, and slope.

Enhances Problem-Solving Skills: Builds proficiency in solving different types of linear equation problems.

Improves Graphing Techniques: Boosts the ability to plot and interpret linear equations on a coordinate plane.

Exam-Oriented Practice: Familiarizes students with the format and difficulty of exam questions.

Boosts Confidence: Regular practice reduces errors and increases confidence in tackling similar problems.

Prepares for Higher Studies: Lays a solid foundation for more advanced algebra and geometry concepts.