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Design Against Static Load 

4.1 

1 

BLOCK DIAGRAM 

REPRESENTATION AND SIGNAL 

FLOW GRAPH 
 

1.1. Introduction 

 

1.  

  

2.  

 Similarly if ( ) ( ) then ( ) step Responsex t Au t y t= =  

    ( ) ( ) then ( ) unit ramp Responsex t r t y t= =  

    ( ) ( ) then ( ) Ramp Responsex t Ar t y t= =  

Linear System:    

           

Time Invariant:    

 

1.1.1.  Linear Time Invariant System   

 
( ) unit⎯⎯→h t Impulse Response of L.T.I  

 
.( ) ( ) frequency SystemF Th t H⎯⎯⎯→ −  

 
.( ) ( ) Transfer function of LTI ConvolutionF Th t H S⎯⎯⎯→ −  

 ( ) ( )* ( )Y t X t h t=  

 Y (S) = X(S) H (S)  
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Standard LTI system  

      
1/ . ( ) ( )

( )
1/ . ( ) ( )

RC LT of y t Y S
H S

S RC LT of x t X S
= = =

+
 

Case 1:  T.F to differential equation  

      
( ) 1/

( )
( ) 1/

Y S RC
H S

X S S RC
= =

+
 

      
( ) 1 1

( ) ( )
dy t

y t x t
dt RC RC

+ =  

Case 2: Differential eq. to T.F  

     
( ) 1 1

( ) ( )
dy t

y t x t
dt RC RC

+ =  

       
(0) (1/ ) ( )

( )
1 1/

y RC S
y s

S RC
s

RC


= +

+
+

 

Case A Initial condition  = 0   (a) T.F can be calculated  

     ( ) ( ). ( )Y S X S H S=   (b) output can be calculated by using  T.F 

Case B Initial condition to 0   

       ( ) ( ) ( )Y S X S H S  

 (a) T.F can be calculated by putting initial condition = 0 

 (b) Output can not be calculated .  

 ➢ Regenerate initial condition to calculate output  

Block Diagram Representation         

➢ Used to represent a system .  

➢ T.F can be calculated by forcing I.C = 0  

 

 ( ) ( ) inputr t R S⎯⎯→  

 ( ) ( ) outputc t c S⎯⎯→  

 ( ) ( )Transfet functiong t C S⎯⎯→  

Important Concepts  

(1) Summer – It should have 2 or more then 2 inputs.  

Symbol  
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(2) Take of points - single input and Multi output   

 
 Used for input distributions  

(3) Forward Gain - Direction always from input to output  

 

Rules  

Case 1 :  Summer and forward Gain  

 Case A  

 

 Case B    

 

Case 2 : Take off points and forward gain  

 Case A    

 

 Case B    
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Case 3 : Take off point and summer  

 

 

Gain Connected in Parallel 

(1)  Direction of flow should be from input to output from all the gains .  

(2)  Summing block should be common.  

(3)  Input should be common.         

 

 

Gain Connected in Cascade 

 

    1 2

C
G G

R
=  

Feedback –  
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Negative Feedback  

 

Problem solving Techniques -   

(1)  Try to eliminate common node by using parallel paths .  

(2)  Convert 3 input summer to Two , 2 input Summer  

(3)  Try to bring two summers side by side by changing their inputs if required. 

1.2. MIMO 

(1)  T.F can not be calculated       

 

(2)  
2

3

1

( ) 01
( ) 0

( )

( ) R S
R S

C S

R S =
=  

Ratio parameter   

(3)  
1

2

2

( ) 03
( ) 0

( )

( ) R S
R S

C S

R S =
=  

Ratio parameter  

 (iii)  Output can be calculated by super position . 

  

2 1 1

3 3 2

1 1 1
1 3

0 0 01 2 3
0 0 0

1 2

( ) ( ) ( )
( ) ? ( )

( ) ( ) ( )

( ) ( )

R R R
R R R

C S C S C S
C S H S

R S R S R S

H S H S

= = =
= = =

= =

 

= =

 

  1 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )C S R S H S R S H S R S H S= + +  

  Signal flow Graph  - Alternative Representation of a system . 

(1)   Gain Block Representation                        

 

(2)  Summer Block -  Represented by node , after Making it neutral.  
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   1 2N X X= − −   1Y N=  2Y N=  

(3)  Take off – Represented by a node.  

 

Note : If take off point comes other summer both of them represented by same node, but if it comes before summer then two 

nodes . 

Input Node - Only outgoing branches  

Initial Node  -  may have incoming and outgoing branches  

1.                                             

 
 

      R: input node    R X=  

      ( . )
C

G M G
R
=    R: Initial Node  

                     X: Input Node  

2.      

 

 
C

R
→MG not allowed  R=HR+X 

 R: initial node  

 →
C

X
 MG allowed   X: input node  

 →
R

X
MG allowed  

Output node – Having only incoming branches, when this condition not present then forward drugging Fill above condition. 

Forward Path - Path connecting input to output. 

 Direction from input to output. 

 Any node should not traversed twice. 

 Not in loop from.  

Loop – A path which originate and terminate at same node  
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Macon Gain formula – used to calculate for  

Limitations  

 (1) 
Output Node

Input Node
    (2)   

Intermidiate Node

Input Node
 

      1

n

k k

k

p
Y

X

=



=



 

 n = no of forward path from X to Y  

  = 1-(sum of all loop gains ) + (sum of product of two non touching loop gain) (sum of product of 3 non touching loop 

gains) 

 K = It is dependent on forward path 

 K = 1- [sum of all loop gains not touching thK  forward path ] + (sum of product of 2 non touching loop gains not 

touching thK  Forword path) + -------------- 

Steps : 

(1) .
C

M G
R
⎯⎯→ Applicable     (2)  Calculate total no of  forward paths  

(3)  Calculate all types of loops .     (4) Calculate  and k 

Note :  

(1)  Self loop at initial (first ) node of unity /non unity can always be ignored . 

(2)  Self loop at intermediate nodes having unity gain –  

 (i) Result in inconsistent nodal equation 
C

R
→ ,  

 (ii) To obtain finite 
C

R
such loops can be ignored . 

 (3) MGF can not be applied between two intermediate node.   

 

 

5

5

2 2

?
/

y
y R
y y R

 
 

= = ⎯⎯→ 
  
 

calculate by MGF 

Mapping of Block diagram to SFG  

 Summer ⎯⎯→Node 

 Take off ⎯⎯→Node  

 Gain ⎯⎯→  Line 

 
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2 
TIME RESPONSE ANALYSIS 

 

2.1. Introduction 

  

     
( ) 1

( )
( ) 2

N S S
T S

D S S

+
= =

+
          

( )
( )

( ) ( 1)

SN S e
T S

D S S
= =

+
 

  Pole – Zero format 1 2

1 2

( )( )

( )( )N

k S z S z

S S p S p

− +
= →

− +
Root locus Nyquist  

 Time constant from 1 2(1 )(1 )
( )

(1 )(1 )N

a b

K ST ST
T S

S ST ST

+ +
= →

+ +
Bode , Nyquist  

 

Open loop Transfer function 
( )

( )
( )

C S
T S

R S
=  

 

     C.L.T.F = 
( )

( )
( ) 1

C S G
T S

R S GH
= =

+
 

C.L.S  May hare C.L.T.F or O.L.T.F 

       O.L.T.F of C.L.S
Y

GH
X

= =  
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2.1. Degree of T.F  

 Highest order of D(S) after pole zero cancellation. 

     
4 3

( 1)
( )

( 2)( 1)( 3)

S
T S

S S S S

+
=

+ + +
 , degree = 8 

Type of a system   

(1) Defined for C.L.S only . 

(2) To calculate Type of C.L.S , O.L.T.F or G(S) H(S) of C.L.S is used. 

(3) Pole at origin in O.LT.F of C.L.S – Type 

First order system  (O.L.S)  

      

( ) 1

( )

C S

R S ST
=      

 

 If       ( ) ( ), ( ) , ( ) ( )
A A

r t A t C S c t u t
TS T

= = =  

      
0

( ) ( ) ( ) ( ) ( )
St

o o

Ae A
r t A t t C S c t u t t

TS T

−

= − = = = −
 

 

 If system delayed by to ( ) ( )
oSt

o

e
h t t H S

TS

−

− = =  

 ( ) ,
ostAe

C S
TS

−

= ( ) ( )o

A
C t u t t

T
= −  

 

 

First order Close Loop System  
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0

(d.c gain)

( ) /
( )

( ) 1/ s
K

C S K T
T S

R S S T =
⎯⎯⎯→

= =
+

 

 

I/P C(S) C(t) 

( ) ( )r t A t=  
/

( )
1/

AK T
C S

S T
=

+
 

/( ) ( )t TAK
C t e u t

T

−=  

( ) ( )r t AU t=  
1 1

( )
1

C S AK
S s

 
= − + 

 ( ) 1 ( )
t

TC t A e u t
− 

= − 
 

 

 

1. Initial slope at t = 0 can be calculate from graph and can be equated to 
0

( )

t

dc t

dt =

= 
AK

T
 

2. Net input at summer = output approaches or settled . 

Transient and Steady state Response –  

    
/ /( ) (1 ) ( ) 1t T t TC t e u t e− −= − = −  

    1( ) 1 Steady state Response (constant)C t = →  

    
/

2 ( ) Transient Response [exponential]t TC t e−= − →  

    1 2( ) 1 , ( ) 0Lim c t Lim c t

t t

= =

→ →
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Transient Response  

It is part of total step Response which tend to 0, When large time frame is Considered 0.  

 •  Tends to 0 as t→  

 •  To calculate transient response from D.E  0, / 0IC i p =  

 •  Zero input response  

Steady State Response  

Part of total step response which remains after transient dies out .  

 •  To calculate the steady state response from D.E = I.C = 0 and input 0  

 •  zero state response  

   

( ) ( ) ( )

( ) ( )

tr ss

ss

c t c t c t

Lim c t c t

t

= +

=

→

 

Setting Time   

 

 (1) st = Time required to settle in a predefined “Error Band”. 

 (2) Error Band =m% of input + d.c gain  

 (3) st  = f (error band) 

 (4) st    as error band   

 (5) st →  for 0% error band.  

Error Signal  
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     ( ) ( ) ( )e t Kr t c t= −  

     1( ) ( ) ( )e t r t c t= −  

     ( )e t =Error signal (unity f/b) 

     
/( ) ( )t Te t Ake u t−=  

•  Steady state error = final value of error signal = 
( ) 0Lime t

t

=

→
 

•  Time constant = 
1

Real part of dominant pole
 

     
1

sec
2

T =  

 

•  3 dB band width of RC circuit 
1 1

rad/sec
Time constantRC

= =  

   
/

( )
1

K T
T s

S
T

= ⎯⎯→

+

   

   Time constant =T  

       3dB BW 1/ rad /secT=  

Rise Time  

 Time taken by step response of first order CLS to reach from 10% to 90% of its final value. 

   4 2%st T=  error band  

   2.2rt T=   

   0.693dt T=  

Second order system :  

•  For first order system = one parameter = Time constant  

• For 2nd order →   :damping ratio  

     n   : undamp natural frequency  
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      n =  damping tactor 21n − =   Damped Natural frequency.  

      d  

2nd order O.L.S :    

 
2( )

( ) ( 2 )

n

n

C S

R S S S
=

+




 0 n    −   

2nd Order C.L.S  

(1) 
2

2 2

( )
0 1 d.c gain

( ) 2

n

n n

C S
S

R S S s
= = →

+ +



 
 

 

 (2) 

2

2 2

( )

( ) 2

d.c gain =0

n

n n

KC S

R S S s
=

+ +



         

 (3) 

2

2 2

( )

( ) 2

d.c gain = 1

n

n n

KC S

R S S S K
=

+ +



         

  
2

2 2

'
( )

2 ' ' '

n

n n

T S
S S

=
+ +



  
 'n nk=   

  '
K

=


  

Non Standard second order s/s 

 

 

 

2

2 2

( 2)( )
( )

( ) 2

n

n n

SC S
T S

R S S S

+
= =

+ +



 
Non Standard  T.F  
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 For std. 2nd order C.L.T.F  . . .
1

OLTF
C LT F

OLTF
=

+
 

Important Points : 

(1)  Damping ratio ( ) , dimensionless, represent decay of oscillation in output response . 

(2)  Undamped natural frequency ( ) rad/sec,n → frequency of oscillation of output response, in absence of damping force,

0n  . 

(3)  Damped natural frequency 21 rad/secd n= −   frequency of output response oscillation, when Damping force is 

present, 0d  . 

 

 

Case 1:  0 1 (under damp) ( )c t   

  (1)  

 (2)   

 (3)  

Case 2 :  0 (undamp) =  

 (1)  
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 (2)  

 (3)  

Case 3 : 1 =  critical damp system  

 
Case 4 : 1 0    overdamp  

• Output response does not oscillate and approaches constant parameter of input not in shortest possible time. 

Case 5 : 1 0−         

 
Case 6 : 1 = −     

 
Case 7 : 1, 1  − − −  



  

GATE WALLAH ELECTRICAL HANDBOOK 

Control Systems 

4.16 

 

Under  Damped  System  

 

➢ 
2

2 2 2

( ) ( )
0 1 ( )

2 1 ( ) ( ) ( )
  = = =

+ + +

n

n n

G s N s
T S

S S G s H s D s




 
      

➢  Characteristic equation 1 ( ) ( ) 0G S H S= + =  

 
2 22 0n nS S+ + =   

➢  Poles 2 21 1n n n nS j= −  − = −  −       

➢  Complex poles, left half of S-plane. 

➢  Time constant  
1

n

T= =


         

➢  4 2%st T=   Error Band  

 3 5%T=   Error Band  

➢  cos =  

➢   Locus of poles = semi circle of radius n   

➢  Always stable.  

Undamp System : 
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➢ 0 =  

➢  
2 2( ) 1 ( ) ( ) 0nD s G S H S S= + = + =       

➢  Poles , (purely imaginary)nS j=    

➢  T =  

➢ st =  

➢  marginally stable (Non repeated poles on imaginary axis) 

➢  Locus → circle of radius n  

Critical Damp System : 

 
➢  1 =  

➢ 
2 2 2( ) 2 0 ( ) 0n n nD S S S S= + + = + =    

➢  Poles  ,n nS = − −           

➢  
1

n

T =


   

➢  6 for 2%st T=  

➢  Always Stable  

➢  Poles lies on circle of radius  n  

Over damp System : 

 
➢  1    

➢  
2 2( ) 2 0 ( )( )n nD S S S S S= + + = = + +          

➢  Poles = 2 1n n−  −     real poles  

➢  
1

T


=  

      4 2%st T=  

➢  Always stable  
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Step Response of under damp system 

 

( ) ( )r t Au t=  

 ➢ Error signal E(S) = R(S) - C(S) 

 ➢ 
2

2 2
( )

( 2 )

n

n n

A
C S

S S S
=

+ +



 
  

2
( ) 1 sin( ( )

1

nt

d

e
C t A t u t

−  
= − + → 

−  



 


 

      21d n= −    

         
21

cos , tan
−

= =


  


 

 ➢  
2

( ) sin( ) ( )
1

nt

d

e
e t A t u t

− 
= + 

 − 



 


 

 

 (1) kt [Time Constant When ( )C t A= ] 
d

n
t

−
=

 


 



  

GATE WALLAH ELECTRICAL HANDBOOK 

Control Systems 

4.19 

 (2) 11,
d

n t
−

= =
 


 Rise time  

d

t =



 

  2

2
2

d

n t
−

= =
 


  Time instant of A  

  2nd order rise time   Time taken to reach from 0 to 100% of final value.  

  
1

2

cos

1
r

n

t
−−

=
−

 

 
  

3.14

radians





=

=
 

(ii) Peak Overshoot and Peak undershot time : 

 

Peak Time  1,2,3
d

n
t n


= =


 

(1) 
1 (1)po

d

t t


= = →


First peak overshoot time 

(2) 
2 (1)

2
pu

d

t t


= = →


 first peak undershoot time 

(3) 
3 (2)

3
po

d

t t


= = →


2nd peak overshoot time 

(4) 
( )

( )

2 1
po K

d

K
t

− 
=


, K = 1,2 

 Kth   peak overshoot time 

(5) ( )

2
pu K

d

K
t


=


 K = 1, 2 

 Kth peak undershoot time 

(6) At peak overshoot time 
( )

0,
dc t

dt
=  same for peak undershoot also  

(7) At 1st peak overshoot time value, output is maximum ( )(1) max[ ( )]poc t t c t= =  

(8) Time gap b/w two successive . . is 2 /po pu d→    



  

GATE WALLAH ELECTRICAL HANDBOOK 

Control Systems 

4.20 

(9) First peak undershoot time = time period of damped oscillation 
(1)

2
pu D

d

t T


= =


 

(10) ( ) ( )SS tC t C t A== =  

(11) Output maxima ( )
2

(2 1)

1

( ) 1 1,2

K

po KC t A e K

− −

−
 
  = + =
 
 

 

(12) Output Minima ( )( )
2

(2 )
1 1,2

1
pu K

K
C t A e K

 −
  = − =
 − 

 

 

(1) Maxima of 
21

max max( ) ( ) ( ) 1C t C t C t A e
− − 

 = = + 
 

 

(2) Peak overshoot = height of overshoot ( )
2

(2 1)

1

( ) ( )

K

po K SSC t C t Ae

 −
−

− − =  

(3) Max. peak overshoot 
21

max( ) ( ) SSC t C t Ae
− −

= − =  

(4) Max. peak percentage overshoot - 
21

max( ) ( )
% 100% 100%

( )

ss

po

ss

C t C t
M e

C t

− −−
=  =   

(5) Graphical Relation  

 

(i) 
21

x Ae
− −

=  

 
23 1

z Ae
−  −

=  

(ii) 
21

100% 100%
x

e
A

− −

 =   
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 (iii) 
23 1

100% 100%
z

e
A

−  −

 =   

(6) Minima of ( )
2

1

2 1

min( ) ( ) 1puC t C t C t A e
−  − 

→ = = − 
 

 

(7) Peak undershoot = height of undershoot  ( )
2(2 ) 1

( )( )
K

ss pu KC t C t Ae
− −

− =  

(8) Maxima peak overshoot ( )
22 1

1 min( ) ( ) ( )ss pu ssC t C t C t C t Ae
−  −

− = − =  

(9) Maximum peak percentage undershoot 

   
22 1min( ) ( )

% 100% 100%
( )

ss

pu

ss

C t C t
M e

C t

−  −−
=  =   

(10) Decay ratio 
22 1(2) (2)

(1) (1)

po Pu

po pu

M M
e

M M

−  −

= = =  

(11) 
0 (1)% % %p poM m M= =  

   .1
100

m
s p =  

   
2

2 2

(ln )
.2

(ln )

p
s

p
 =

 +
 

(12) ( ) ( ), effective input Ar t Au t= =  

(13) System dependent parameters  

   
( ) ( )

(2 1) 2
, , ,K r po K pu k

d d d d

K K K
t t t t

− − −  
= = = =

   
 

   24 1 2
4 , , 1 ,s d n D

n n d

t T T T


= = =  = − =
  

 

 Total no. of cycle before oscillation dies out s

D

t
A

T
=  

 0( ) ( )% , %p K pu KM M  

(14) Input Independent Parameters 

 (i) ( )C t  

 (ii) ( )poKC t  

 (iii) 
max( )C t  

 (iv) Peak overshoot 

 (v) ( )puKC t  

 (vi) ( )
min

C t  

 (vii) Peak undershoot 
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2

2 2

( )

( ) 2

n

n n

kC s

R s S S


=

+  +
 

  ( ) ssC t AK=  

 ➢ System dependent parameters → No charge  

 ➢ Input dependent parameters A AK→   

Note : If 0( ) ( )r t Au t t→ −  then all time formulas will be replaced by ( )0t t−  

Step Response of undamped System 

(1)  
2

2 2

1
( ) ( ) 1 cos ( )n

n

n

AK
C s c t Ak u t

s s

 
=  = −  

+ 
 

• From c(t) of underdamp   

 

 • 
4

cos 0 ,= = =s

n

t


 

 • , % 100%= =d n pM   

 • ,
2

=r

n

t



 

 • ( ) (2 1)= −po K

n

t K



 

 • 

2
( ) =pu

n

k
t k




 

Step Response of critically damped s/s 

     
2

2
( ) , ( ) [1 (1 )] ( )

( )
ntn

n

n

AK
C S C t AK e t u t

S S

−= = − +
+





 

➢ Output reaches to steady state without oscillation in short time.  

Step response of overdamp s/s- 

➢ 
2 2

1

2 2

1 2

( ) ( )
( 2 ) ( )( )

n n

n n

AK AK
C S C AK

S S S S S p S p

= ⎯⎯→ ⎯⎯→  =
+ + + +

 

 
 

  1 2

0 1 2( ) [ ] ( )p t p tc t a a e a e u t− −= + +  
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 Rise time: 

 (1) 0 to 100% of s. s value → underdamp and undamp system 

 (2) 10 to 90% of s .s value→ critical and overdamp system  

Locus 

(1) Constant   

 

(2) Constant d
 

 

 

 

 

(3) Constant n
 

 

(4) Constant time constant (setting time) 
1

n

T =

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Impulse Response of 2nd order s/s 

(1) Under damped system  0 1   

     ( )
2

( ) sin ( )
1

ntn
d

AK
C t e t u t−=

−





 

             
21 1004

, (peak time) , ,%r p s p

d d n

n
t t t M e

−

− −
= = =



  

  
 

(2) Undamp system 0=  

     ( ) sinn nC t AK t=    

(3) Critically damped System 1=  

     
2( ) ( )nt

nC t AK te u t−=   

(4) Overdamped System 1   

     1 2

0 1( ) p t p tC t a e a e− −= +  

Dominant Pole Concept 

    
( )( )( )( )1 2 3 4

( )

( )

C S M

R S S p S p S p S p
=

+ + + +
 

➢ 1 2 3 4, ,p p p p →  Magnitude of real part of pole 

➢ Smallest of 1, 2 3 4 1, ,p p p p p=  

➢  (i) 02
2 2

1

5 Sp
S p p

p

= + ⎯⎯⎯→  

 (ii) ( ) 03
3 3

1

5, Sp
S p p

p

= + ⎯⎯⎯→  

 (iii) ( ) 04
4 4

1

5 Sp
S p p

p

= + ⎯⎯⎯→  
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Cascading of 2nd order under damped System 

 

   
2

1

2 2

1 IInd order

( ) 1/ ( )

( ) 1/ ( ) 2

n

n n

C s T C s

R s s T C s s s
= =

+ + +



 
 

   S – I Ist order   S – II 

   

( )

2

2 2

1
( )

3rd order
1( )

2

n

n n

C s T
R s

s s s
T

=
 

+ + + 
 



 

 

Case 1: 

   
2 2

( ) ( )

( ) 2 n n

C s N s

R s s s
=

+ +   

 

    
 

Case 2 : 

 

    
2( ) comparision of , allowedn nN s k= →    

    
3 2

( ) ( )

( )

C s N s

R s s s s T 
=

+ + +
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Case 3:  

 
 

 
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3 

STEADY STATE ERROR  
AND ROUTH STABILITY 

 

3.1.  Error  

 

 

     ( ) ( ) ( )e t r t b t= − amplitude error 

System Error  

(1)  Must tends to 0 as t →  

(2)  ( )syse t = ( ) ( ) for ( ) ( )r t c t r t Au t− =  

(3) ( )syse t = ( ) ( ) for ( ) ( )
t t

r t c t dt r t A t
− −

− =    

(4) ( )syse t  
( ) ( )

for ( ) ( )
dr t dc t

r t At u t
dt dt

= − =  

Amplitude Error  

       ( ) ( ) ( ) outpute t r t c t= − →  

Effective input at summer  

   ( ) ( ) ( ) ( )r t Au t e t Au c t= = −  

   r(t) = Atu(t)   e(t)= Atu(t) – c(t) 

   
2 2( 2)

r(t) = ( ) ( ) ( )
2 2

At u At
e t u t c t

+
= −  
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Calculation of amplitude error  

(1)  ( ) ( )e t or E s at the output of summer.  

(2) Steady state amplitude error  
0

( ) ( )
t S
Lim e t LimSE S
→ →

= →  will be finite only when all poles of 

               SE(S) will be strictly on LHP. 

 
0

( )

1 ( )
SS

S

SR S
e Lim

G S→
=

+
 

Steps : 

(1) Identify feedback (unity) 

(2) 
0

( )

1 ( )S

SR S
ess Lim

G S→
=

+
 

(3) Pole location of 
( )

1 ( )

SR S

G S+
 is strictly on L.H.P then perform calculation.  

Steady state Error for different inputs. 

Input Check ess 

Au(t) Poles of 
1 ( )

A

G S+
 

1
SS

p

A
e

K
=

+
 

Atu(t) Poles of 
(1 ( ))

A

S G S+
 

SS

V

A
e

K
=  

2

( )
2

At
u t  

Poles of 

2(1 ( ))

A

S G s+
 

a

A
ess

K
=  

 0
( )

S
Kp LimG s

→
= =Positional Error constant /coefficient  

 0
( )

S
Kv LimSG S

→
= =  velocity Error constant / coefficient  

 2

0
( )

S
Ka LimS G S

→
=  Acceleration Error constant / coefficient 

Effect of Type  

Input SSe  

 T-0 T-1 T-2 

Au(t) Finite 0 0 

Atu(t)   Finite 0 

2

( )
2

At
u t      Finite 

(1)  Finite steady error is independent of shift in input signal.  

(2)  Steady state error can be undefined or  even if CLS is stable. 

Error Analysis for Non unity f/b –  
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(1) 1( ) ( ) ( )e t r t b t= − →  Can be shown in diagram  

(2) 2 ( ) ( ) ( )e t r t c t= − →  Can not be shown in diagram 

(3) 3( )e t =  ref signal - ( )c t  

 Ref signal = Value of c(t) due to which output of summer is 0. 

 

Case : 1  

  Error Signal = ( ) ( ) ( )e t r t b t= −  

         
0 0

( )
( )

1 ( ) ( )
ss

s s

SR S
e LimSE S Lim

G S H S→ →
= =

+
 

  Steps: (1) feedback – Non unity → error was shown in frequency .  

    (2) 
0

( )

1 ( ) ( )
ss

S

SR S
e Lim

G S H S→

 
=  

+ 
 all poles must be in L.H.P 

Case: 2 ( ) ( ) ( )e t r t c t= −  

 

  
0

( )[1 ( ) ( ) ( )]

1 ( ) ( )
ss

S

SR S G S H S G S
e Lim

G S H S→

+ −
=

+
 

  Steps : 

 (1) f/b →Non unity ( ) ( ) ( )e t r t c t= −  

 (2) 
0 0

( ) [ ( ) ( )]
S S

ess LimSE S LimS R S C S
→ →

= = −  

 (3) All poles of SE(S) must be in L.H.P 

Case: 3   
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( ) (0) ( )r H C =   

(0) HH K=  

( ) ( )ss fe r c=  −   

        ( )fr t =Value of C(t) due to which ( ) 0q t =  

      ( )fr  =Value of ( )C   due  to which ( ) 0q  =  

    
0

( )
[1 ( )]ss H

S
H

SR S
e Lim K T S

K→
= −   

0
( )H S

K H S
=

=  

 Steps: (1) Non unity f/b,  ( ) ref signal ( )e t c t= −  

   (2) 
0

( ) ( )
[1 ( )] ( )ss H

s
H H

SR S r
e Lim K T S c

K K→

 
  

= − = −  
 
 

 

    all poles must be in L.H.P 

Note : ( ) ( )NH S S F S=  

 
0

( )H
S

K LimF S
→

=  

 
0

( )
(1 ( ) )N

ss HNs
H

SR S
e Lim K T S S

K S→
= −  

Concept of Disturbance or Noise signal :  

 

1 2 2

1 2 1 21 1

G G G
C R D

G G H G G H

   
= +   

+ +   
 

Error signal at output of 1,S E R CH= −
1 2

1 2 1 2

,
1 1

R D
S E R CH G H

G G H G G H

   −
= − = +   

+ +   
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Stead state error,
0

( )ss
s

e LimSE S
→

=  

( )

2
0 0

1 2 1 2

for addition at s-2

( ) ( )
( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( ) ( )

due to input r(t)[desired input] due to undesired input

at s-1 d(t) or Noise or diturbance

at S-2

+

→ →



   −
= +   

+ +   

 

ss
s s

SR S SD S
e Lim Lim G s H s

G S G S H S G S G S H S

 

➢ We can reduce sse  if 1G  should be as high as passible and  2G  as low as possible 

Sensitivity of a parameter : 

     
K

TS =  sensitivity of K w.r.t T 

     
( / )

( / )

K

T

K K
S

T T


=


 

Stability of  an LTI System : 

(1) For an LTI S/S to be stable must follow BIBO criteria . 

(2) Bounded (in amplitude) signal ; ( ) , :X t M M  finite No. X(t) is bounded signal  

 

(3) LTI system ( )h t→  

 Unit impulse response must be absolutely integrable  

 ( ) ( )h t dt h t


−
→  

(4) For an LTI s/s to be stable ROC of H(s) must include j  axis [ROC never include poles] 

Conclusion :  

Causal LTI system can be stable, it all poles of H(s) must be strictly on L. H. P 

Location of poles in H(s) Stability 

(1)   Repeated or Non – repeated poles on L.H.P Stable 
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(2)   Single pole at origin Marginal stable 

(3)   Non repeated poles on j  axis Marginal stable 

(4)   Multiple Non repeated poles on j  axis  Marginal stable 

(5)   Multiple poles on j  axis Unstable 

(6)   Repeated poles on j  axis Unstable 

(7)   Poles on R.H.P Unstable 

(8)   No poles Stable 

Imaginary vs image Location : 

 

 Imaginary location (a), (b) image location (c), (d) 

1st Order Polynomial 

 If all coefficient are same then roots will be in L.H. P 

 D(S) = S +2 ,        D(S) 3S=− −  

 L. H. P   L. H. P 

2nd  Order 

 All coefficient having same sign and No coefficient  is zero, then all roots will be in LHP 

 D(S) =  
2 2 2S S+ +  D(S)  

2 1S S= − − −  

 L.H.P    L. H. P 

3rd Order  

 No missing power and all coefficient has same sign then – 

 (A) All real roots in L. H. P 

 (B) No comment on complex roots 

R – H Table 

     
( )

( ) ( )
( )

N s
T s H S

D s
= =  Root of  D(s) = Poles of T(s) 

     
6 5 4 3 2

0 1 2 3 4 5 6( )D s a s a a a s a s a s a s a= + + + + + +  
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4s 1 2 0 3

1

1

a a a a
b

a

−
=    2b      0                 0          1 3 2 1

1

1

b a b a
c

b

−
=  

 
3s       1c         2c            0     0            1 3 2 1

1

1

b a b a
c

b

+
=  

 
2s       1d          6a            0                 0              

2 1 5 6 1 1c b a a a c= −  

 
1s             1c           0             0                0  

1 1 2 1 2 1d c b bc c= −  

 
0s       6a           0             0                 0  1 2 1 6

1

1

d c c a
e

d

−
=  

Key Point: 

(1) If any now of RH table multiply or divided by + constant result remains same 

(2) 1st column elements have same sign → No roots in  

(3) Any row becomes zero then roots will be at image location 

(4) If all elements in 1st column → same sign  + No row becomes zero 

 Then all roots in LHP 

(5) The no of sign changes in 1st column = No of roots lying  in RHP 

(6) If any power of s is missing then 

 (i) 1 or more than 1 root may exist in RHP  

  
2( ) 1

Roots 1

D s s

s

= −

= = 
 

 (ii) Non repeated roots on j  axis may exist  

   
2( ) 1D s s s j= +  =   

 (iii) Repeated roots may exist on j  axis 

 (iv) There may be complex roots 

 (v) If only even power of s exist then root will be at image location. 

 (vi) If only odd power of s exist then few roots will be at origin and remaining roots at image location 

 (vii) In RH table → odd ROZ → some roots will be at image location 

     

 Sign of elements in 1st   → Image location will be imaginary axis 

 Column is same 

 (viii) In RH table → No odd ROZ → No root at image location 

        

   No root at imaginary location 

 

3.2. Root Calculation when Odd Row is never zero 
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For nth order polynomial 

(1) Form RH  Table 

(2) Observe the first column 

(3) 1st column elements  

Note : 

 

 I.P – Inner product 

 E. P – External Product 

All coefficient should have same sign 

 (1) IP > EP→ all roots in LHP 

 (2)   

 (3) 
2 root RHP

1 root LHP
IP EP=  

Special Cases 

(1) 1st element of row = 0 other elements non zero 

 Ex. 
4 3 23 3 2s s s s+ + + +  

 

4

3

2

1

0

3 3 2

1 1 0

0 2 0

2
0 0

0

s

s

s d

d
s

d

s

→

−
   

quantity

2 2 2
1 1

0

d ve

d

d d

ve

= +

−
= − = −

= −

 

 No odd row is zero, two sign changes  

 
2 . .

2 . .

R H P

L H P

→

→
 

(2) If all element of odd row are zero 

 (i) Few roots at image location 

 (ii) Form auxiliary characteristic equation has been formed from the row just above the odd row 

  ( ) 0A s =  

(3) Then 

 ( ) ( )
d

A s B s
ds

=  

(4) Replace odd row of zeros with B(s) coefficients 

(5) Roots of A(s)  = Roots of D(s), A(s) roots will be at image location A(s) is always a factor of D(s) 
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( )

( ) Remaining roots
( )

D s
P s

A s
= →  

(6) Both location and exact value of roots can be calculated  

If odd row becomes zero once: 

(1) Roots of A(s) will be to image location and non-repeated in nature 

(2) If A(s) is of 2nd order and roots of A(s) is on j  axis then roots will represent,  undamp natural frequency of 2nd order 

system 

(3) 
( )

( ) 0
( )

D s
P s

A s
= = →  Remaining roots 

3.2.1. Odd Row becomes Zero Twice 

(1)  

(2) Roots of 2 ( )A s  will automatically be covered by 1( )A s  

(3) Roots of 1( )A s  will be image location 

(4) 
1

( )
( )

( )

D s
P s

A s
= →Remaining roots  

  
( ) Highest No. of sign changesNo. of roots of D s  on 

  2
orderAE below highest order AEImaginary axis

C
   

= −  −   
   

 

 No. of roots of D(s) is RHP = No of sign charge in 1st column   ..... (2) 

 No. of roots of D(s) in LHP = order of D(s) – (i) – (ii) 

Conditionally Stable : 

 

  1 2variable, ConstentK K→ →  

 ➢  Stability depends on 1K  or conditionally stable 

 ➢  Use wavy curve 

Marginally Stable : 

 S – 1 form RH table 
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 S – 2 All sign should be same 

 S – 3  Odd row become zero once. Non repeated roots on imaginary axis and system becomes marginally stables 

Oscillating system with undamp natural frequency 

 S – 1 form RH table 

 S -2 All elements should be +ve 

 S – 3  Odd row zero once Auxiliary  C.E. is of 2nd order 

Note : 

➢ If polynomial has only even power the roots are symmetrical  about origin or image location. 

➢ Random power of s missing then at least 1 root in RHP 

Limitation of Routh: 

 (1) Applicable to finite order polynomial only 

 (2) ( ) , tan ,cos RH invalidsD s e s s= →  

 (3) Coefficient of polynomial showed be constant  

3.3. Transportation Lag System 

 

T : delay time or log time 

Common Mistake   

      ( ) sTT s e−=  

         1 (When is very small)xe x x− = −  

      ( ) 1 0STD s Ke−= + =  

 Routh invalid, use basic root calculation approach  

➢ Both polynomial and exponential present thin R.H. applicable  

 

2

2

0

(1 ) 0

sTs s Ke

s s K sT

−+ + =

+ + − =
 

Shifting Of origin 

➢ System 2 is more stable 

 

Note : D(s) = s + 2 
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shifting the origin S = 0 to S = - 1 

 

  
0

0

1 1

1 1

Z

Z

Z s
S

Z s

=

=

+ ⎯⎯⎯→ =

− ⎯⎯⎯→ =−
 

Put  S = Z – 1 

             D(s) = Z + 1 

Note :  
2( ) 1D s s s= + +  

 (1) How many roots are more negative than 0 =   Roots in LHP R – H criteria in D(s) 

 (2) How many roots are more +ve  than 0 =  Roots in RHP R – H criteria in D(s) 

 (3) How many roots have 0 =  Roots on j  axis R – H criteria on D(s)  

 (4) How many roots are more negative than 1 = −  

   Put S = Z – 1 

   D(z) → R. H criteria 

 No of roots in RHP in z plane  No of roots having 1  −  in s – plane  

 No of roots in LHP in z plane No of roots having 1  −  in s – plane 
 

 

 
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4 
ROOT LOCUS 

 

4.1. Root Locus  

Locus of roots of characteristic equation or Locus of zeros of characteristic equation or Locus of poles of closed loop system . 

 D.R.L  Direct root locus  

 C.R.L  Complementary root Locus  

4.1.1. Angle and Magnitude Criteria 

Case 1:   For D.R.L ,  C.E ,  KF(S) = 1 , K= +ve   constant  

  ( ) 1KF S =  

  ( ) (2 1)KF S n  = +  

Case 2:  For C.R.L  KF(S) =1 

  ( ) 1KF S =  

  ( ) 2KF S n =  

G(S)H(S) K Feedback Locus  

KF(S) 0<K<  -Ve D.R.L 

-KF(S) 0<K<  -Ve C.R.L 

KF(S) 0<K<  +Ve C.R.L 

-KF(S) 0<K<  +Ve D.R.L 

Rules to plot D.R.L  

Rule  1 :  To plot D.R.L all the coefficient of S should be + ve. 

Rule  2 :  Origination of D.R.L  

 (1) DRL originate from open loop poles 
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 (2)   

 

 (3) Open loop pole : finite Real – DRL branch will originate  from the open loop pole and move on the real axis in the 

section D.R.L present .  

 (4) Open loop pole : finite complex – D.R.L branch will originate form open loop pole in the directions of angle of 

departure  

 (5) open loop pole present at  - D.R.L branch will originate from  by gazing the asymptotic lines given by angle of 

asymptotes. 

 (6) at open loop pole value of  K = 0 

Rule 3 : Termination of D.R.L 

 (1) Terminate at open loop zeros . 

 (2)  

 
 

 (3)  open loop zero : finite Real – Terminate at open loop zero by moving on the real axis in the section D.R.L exist .  

 (4) open loop zero finite complex – DRL branch will terminate at open loop zero in the direction given by angle of 

arrival.  

 (5)  open loop zero at  - DRL branch will terminate at open loop zero by gazing angle of asymptotes. 

 (6) Value of K at open loop zero is  

  0 K K → =  

  0K K−  → =−  

Rule 4 :  Existence of D.R.L on Real axis.  

  ➢ Segment of real axis where D.R.L exist  

  ➢ Segment where DRL exist must hare “ ODD no of open loop poles zeros towards its night. 

Rule 5 :  Identification of a point oS S=  is  

 (i) Part of root locus  

 (ii) Poles of C.L.S  

 (iii) Roots of C.E  

 (iv) zeros of C.E 
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Case 1: S = So is real  

 Method 1 check if oS S=  is part of D.R.L  

 Method 2 Angle sub started by all open loop poles and zeros towards desired point must be odd  

     Multiple of  . 

 Method 3 (i) put 0S S=  in CE , calculate K then if K is real and 0Ve S S+  =  is part of D.R.L 

           K is real and +ve 0S S =  is part of D.R.L   

           K otherwise 0S S = is  not part of D.R.L. 

 Method 4 verify magnitude and angle criteria at 0S S=   

    D.R.L ( ) (2 1)KF S n = +   

    ( ) 1KF S =  

Case 2 : 0S S=  Complex.  

 Method 1  fails  

 Method 2,3,4 are applicable  

Rule 6 : Calculation of K at 0S S=  (if 0S S=  is part of RL) 

     
( )( )

( ) ( )
( )( )( )

K S a S b
G S H S

S c S d S e

+ +
=

+ + +

0

/

K

ve f b

 

−
 

           1 2 3

1 2,

lp lp lp
K

lz lz
=    

 

Rule 7: Angle of asymptotes 
Only for those branches which ether originate or terminate at  . 

Formula : 

(1) 0, 0,1,2,3, 1P Z n P Z−  = −− − −   P = finite open loop poles  

(2) 0(2 1)180

( )
n

If P Z

n

p z



+
 =

−

0(2 1)180

( )
n

Z P

n

z p



+
 =

−

 Z = finite open loop zeros   
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Rules 8 :  Centroid 

(i) Calculated When P Z  

(ii) Needed only when A.O.A are calculated.  

(iii) The A.O.A drown from a point on real axis known as centroid, (originating point of asymptotes) 

(iv) All the asymptotic lines meets at common point on real axis know as centroid. 

(v) Always present on real axis .  

(vi) May or may not be part of R.C  

(vii) Value of centroid 0, ,ve ve→ = + −  

(viii) formula
p z

p z


 −
=

−
  : Real numbers  

Rule 9:  Break point  

(1) Where 2 or more then 2 poles of C.L.S coincides simultaneously . If is part of  R.L 

Types :  

(1)  Break  away point  

 (1) 2 or more then 2 poles of C.L.S coincides .  

 (2) After B.A.P  R.L Breaks into some parts and it can not remains on real axis. It moves into different parts in complex 

conjugate location 

 (3) BAP means shifting of R.L from real axis into complex conjugate Location. 

 (4) At BAP k achieves max value for which root remains on real axis if K   then R.L moves on complex conjugate 

location  

  0 BAPK K  : Root locus  is on real axis . 

  BAPK K  Root locus on complex conjugate location.  

(2)  Break In point  

 (1) 2 or more then 2 poles of C.L.S coincides .  

 (2) After the BIP R.L Breaks into some parts and if can not remain on complex conjugate location . If move on into 

different parts on real axis .  

 (3)  BIP means shifting of root locus from complex conjugate location to real axis . 

 (4) At BIP K achieves min value for which root locus is on real axis . If K   if remains on real axis 0 BIPK K  →  

complex conjugate location  

  Real axisBIPK K →  

    S.1 from the CE 1 ( ) ( ) 0G S H S =  
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  1 ( ) 0KF S =  

     
1

( )
( )

K Q S
F S

=  =  

   0, Possible Break point
dk

ds
=  

  S.2 By 0,
dk

ds
=    

 

  S.3 If so is valid Break point .  

  0 : RealS     

0

2

2
0

S S

d K

ds
=

 
 

 
 

  0( ) maxima at . .K Q S S S B A P= → = →  

  

0

2

2
0

S S

d k

ds
=

 
 

 
 

  K = Q(S) →Minima at 0 . .S S B I N= →   

4.2. Properties of Break points  

(1) At Break point ,RL branches from an angle of 
0180

n
  with real axis where n is number of closed loop poles arriving or 

departing from signal breakpoint on the real axis . 

(2)  If 2 adjacent open loop poles on real axis and segment between them is part of DRL then there will be at least one BAP 

between then . 

(3) For 2 adjacent open zeros of OLS →At least 1 BIP exist  

(4) If 2 or more then 2 poles of OLS coincide at K = 0 this itself represent BAP .  

 for K = 0 , OLP = CLP 

(5) If 2 or more then 2 zeros coincide at K =  then this itself becomes Break point for  

 ,K OLZ CLP= =  

Rule 10 : Angle of departure  

➢  For complex OLP , given originating direction to Branch of DRL  

 0180 [ ]d p z  = − −  

 
p =  Angle sustained by remaining OLP towards desired pole  

 z =  Angle  sustained by remaining all OLZ towards desired pole  
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Rule 11 : Angle of arrival 

➢ For complex OLZ , gives terminating direction .  

 0180 [ ]a z p  = − −  

 z =  Angle sustained by remaining OLZ toward desired OLZ  

 pd =  Angle sustained by  remaining  all OLP toward desired OLZ . 

Rule 12 :  Intersection with j axis  

➢ Identification of CLP on j axis .  

 S-1 From C.E and R.H table .  

 S-2     

 Odd Row → Zero and K = +ve and Root of AE on j  axis → RL intersect j  axis  

Rules to PLOT a C.R.L  

• Rule 1 – Same as DRL  

• Rule 2 – Same  

• Rule 3 – Same  

• Rule 4 – Replace odd with Even  

• Rule 5 – Identification of 0S S= on CRL  

Case 1 : 0S S= is real  

• Method-1  So is part of CRL  

• Method -2 Angle by all OLP and zero are even multiple of 2n =  

• Method -3 1 ( ) ( ) 0 Real andoS S
G S H S K ve

=
 = ⎯⎯⎯→ = +  

• Method -4   
0

( ) 1
S S

KF S
=

=  

 
0

( ) 2
S S

KF S
=

 =   

Case 2 : 0S S= Complex  

  M-1 Fall  

  M-2 Angle by all OLP and OLZ should be 2n  

  M-3 0 real and
S S

C E K ve
=

 ⎯⎯⎯→ +   

  M-4 
0

( ) 1, ( ) 2
S S

KF S KF S n
=

=  =   
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Rule 6 : Angle of asymptotes  

     P Z P Z   

    
2

n

n

P Z


 =

−
 

2
n

n

P Z


 =

−
 

Rule 7 :  Same  

Rule 8 :  Calculate K at 0 ,S S= if 0 ,S S= is part of C.R.L 

Rule 9 :  Breakpoint  

  S.1 – Same as DRL 

  S.2 – Validate S = S0 by following C.R.L criteria 

Rule 10: Angle of departure  

     

    

 

Rule 11: Angle of arrival.  

  00 ( )a z p  = − −  

Rule 12: Same  

  Note – RL always symmetrical about real axis  

Few Important Result 

(1) 
( )

( ) ( )
( )

K s b
G S H S

s a

+
=

+
 

 Breakpoint = 2b b ab−  −  

 Radius of circle = 2b ab−  

 Centre = (-b, 0) 

(2) 
( )

( ) ( )
( )

K s b
G S H S

S s a

− −
=

+
 

 Breakpoint 2s b b ab =  +  

 Centre = (b, 0) 

 Radius 2b ab= +  

(3) ( ) ( )
( )( )

KS
G S H S

S a S b
=

− −
 

 Breakpoint s ab =   

 Centre = (0 , 0) 

 Radius ab=  

(4) (4) ( ) ( )
( )( )

KS
G S H S

S a S b

−
=

+ +
 

 Breakpoint s ab =   

 Centre = (0, 0) 

 Radius = ab  

(5) 

2

2

( )
( ) ( )

( )

K S a
G S H S

S b

+
=

+
 

 Centre ,0
2

a b + 
= −  

  
 

 Radius 
1

2
a b= −  

 Breakpoint , ,s a b= − −  

 

  

D.R.L C.R.L 
0180 ( )d p z  = − −  00 ( )d p z  = − −  
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Note : 

(1) 

 

(2) 

 

Min phase System : All polls and zeros must be in L.H.P  

Non Minimum phase system : Which are not minimum phase  

 

  
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5 

FREQUENCY  
RESPONSE ANALYSIS 

 

5.1. Introduction 

Test inputs : Sinusoidal input  

   ( ) cos ox t A t= →  const frequency = o S j =  

   0 0cos ( ) ( ) ( ) cos( ( ))o oA t H S y t A H j t H j⎯⎯→ ⎯⎯→ = +     

   sin ( ) ( ) ( ) sin( ( )o o o oA t H S y t A H j t H j⎯⎯→ ⎯⎯→ = +     

➢ Only j  axis of S domain needed .  

➢ Steady state output when a sinusoidal signal is applied –  

   0

0 1( ) [ ]oj t j t

SS t
y t Lim a e a e −

→
= +  

Few observations   

     cos( ) ( ) ( )oA t H S y t + ⎯⎯→ ⎯⎯→  

   
0( ) ( ) cos( ( )) [ ( )]o o SSy t A H j t H j y t= + + →



   
 

   Replace With sin for sin i/p . 

 ( )H j →Frequency response of an LTI S/S 

 ( )H j →Magnitude 

 ( )H j →  Phase Response  

 5.1.1. Frequency domain analysis of 1st order  

 

     
/

( )
1/

K T
T S

S T
=

+
 

          
/

( )
1/

K T
T j

j T



=

+
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        1

2 2

/
( ) , ( ) tan

1/

K T
T j T j T

T

−=  =−
+

  


 

 
0( )

3. rad/sec
2

c

T j
dB BW− =  

5.1.2. Frequency domain analysis of 2nd Order System  

        

2

2
( ) 0 1

2 2

n

n n

K
T S

s s
=  

+ +




 
 stability can be decided.  

    1

22
2 2

2
2

2 2

2 /
( ) , ( ) tan

1
4

n

n
n n

K
T j T j

i

−

 
 
 

=  = −  
      −  − +         

 
 

 
  

 

Plot 1 

 

For Resonant frequency  

      ( ) 0
d

T j
d




=  

21 2r n= −    

n → undamped Natural frequency  

r →  Resonant frequency  

d → Damped frequency 

Resonant Peak  

      
22 1

r

K
M =

− 
 

r is real only when 1/ 2  

for 
1

,
2

r  does not exist  

       
2

: 0

1 2 :0 1/ 2

0 : 1/ 2

n

r n

  =


 =  −    


 
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2

: 0

: 0 1/ 2
2 1

1
:

2

r

K
M

K




 =


=  
−


 





 



 

 

 
as if constantr n→     

 if is constantr n→    

  (0 1/ 2)rM as→     

       
2 2 2(1 2 ) (1 2 ) 1c n= − + − +     

       
2 4 2(1 2 ) 4 4 2c n= − + − +      

 as , constantc n→      

 When constantc n is→     

Bode Plot :  

 
Exact frequency Analysis of a system

( )T S
: 

 S-1 Put 0S j +=   +   

 S-2    ( )( ) ( ) j T jT j T j e   =  

 S-3     Plot  ( )T j VS → Exact Magnitude plot 

  ( )T j VS  →  Exact phase plot  

 ➢ Exact plots are non linear in shape ; drawn on normal graphs . 

  Stability of T(S) → can be defined by plotting Bode plot of OLTF G(S)H(S). 

Bode Plot:  
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Let OLTF is G(S)H(S) 

1.  ( ) ( ) ( )S j G j H j T j   = =  

2.  ( ) ( ) ( )G j H j T j  =  

 
10 1020 log ( ) ( ) 20 log ( ) ( ) (

dB
G j H j T j G j H j= =      

 
10Plot ( ) ( ) vs log Should be linearG j H j →    

3.  
0( ) ( ) ( )G j H j T j =    

 Plot : 10( ) ( ) vs logG j H j →   This need not to be linear .  

4.  

 

 10 1 1 10 2 2(log , ) (log , )A M dB B M dB   

 10( ) logT j dB VS → Make sure it is linear.  

 2 1

2
10

1

( )
Slope

decade Octave
log

M M dB dB−
= = =
 
 
 





 

 

 

 
linear

( )
Non linear

T j   

 (7) 
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 2 1

2
10

1

degree degree

decode octave
log

S or
 





−
=

 
 
 

 

 
20 6

decode octave

dB dB+
+ =  

Exact Plot -  

(1)  Low frequency Range 
10: ( ) 20logc dB

T j K   =  

Summary Table for  ( ) pT S KS=  

( ) ( )G S H S  Initial slope 0 dB axis Int. 
Slope at 
→  

PHASE 

K 0 dB / decode   0 dB/decode 00  

Ks +20 dB/dec 
1

K
 =  +20 dB/dec 090+  

2Ks  +40 dB/dec 1
2

1

( )K
 =  +40 dB/dec 0180+  

: ; ; ; : 

pKS  +20p dB/dec 1

1

( ) PK
 =  +20 dB/dec 

090 p+  

 

Summary table for ( ) ( ) p
KG S H S

S
=  

G(S)H(S) Initials lobe 0dB axis Int . 
Final slope  
→  

Phase 

K

S
 -20dB / dec =K -20dB / dec 090−  

2

K

S
 -40dB / dec 

1

2( )K =  -40dB / dec 0180−  

3

K

S
 -60dB/dec 

1

3( )K =  -60dB/dec 0270−  

: ; : : ; 

p

K

S
 -20pd B/dec 

1

( ) pK=  -20pdB/dec 
090p−  
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Important Observation : 

Slop of Initial line Initial Phase Type 

+20 p dB /dec 090P+  “0” 

+0dB/decode 00  “0” 

-20dB / decade 090−  “1” 

-40dB/decade 0180−  “2” 

-20p dB/decade 
090 p−  “p” 

Steady state error from Bode plot – 

Initial Line slope Information sse  

0dB / decade 1020log pAmp K=  
1 p

A

K+
 

-20dB/decade 0dB axis Intersection  vK=  
v

A
K

 

-40dB/decade 0 dB axis Intersection  aK=  
a

A
K

 

Exact Plot  

(1) Low frequency Range 
10: ( ) 20logc dB

T j K   =  

(2) Mid frequency Range 
10: ( ) 20log 3c dB

T j K dB  = = +  

(3) High frequency Range 10 10: ( ) 20log 20logc dB
c

T j K


  


 = +   

G(S)H(S) Initial Line with slope 
Change in slope at 

c =  

error in mag. at 

c =  
Slop at 
→  

1
c

S
K



 
+ 

 
 

0dB /decade with mag 

1020Log K  
+20 dB/dec +3dB +20dB / dec 

2

1
c

S
K



 
+ 

 
 

0dB /decade with mag 

1020Log K  
+40dB/dec +6dB +40dB/dec 

: 

: 

: 

: 

 

 
   

1

p

c

S
K



 
+ 

 
 

0dB /decade with mag 

1020log K  
+20pdB/dec +3pdB +20pdBdecade 
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G(S)H(S) Initial Line  

With slope 

Change in slope at 

 = c 

Error in Mag at  

 = c 

Slope at 

 =  

1
c

K

S



 
+ 

 

 
 

0dB/decade with 

mag 20 10log K  

 

–20dB/dec 

 

–3dB 

 

–20dB/dec 

2

1
c

K

S 
+ 

 

 
 

0dB/decade with 

mag 20 10log K  

 

–40dB/dec 

 

–6dB 

 

–40dB/dec 

1

P

c

K

S



 
+ 

 

 
 

0dB/decade with 

mag 20 10log K  

 

–20pdB/dec 

 

–3pdB 

 

–20pdB/dec 

➢  If magnitude plot given , then recovered T.F is not unique . 

➢ If Bode magnitude and phase plot is given , then reordered T.F is unique 

  

Time constant from 

          

1
( )

1

Corner frequency

T S
S

T

=
 
+ 

 

  

Approximation of T.F.   

        

5 5
5 1 1

5( 20)( 50) 20 50
( )

5 5( 10)( 100)
1 1

10 100

S S
T S

S S

   
+ +   + +    = =

+ +    
+ +   

   

   

 (i) 
5(1)(1)

0 10 ( ) 5
(1)(1)

T S  = =  

 (ii) 
5(1)(1)

10 ( ) 5
(1)(1)

T S = = =  

 (iii) 
5(1)(1) 50

10 20 ( )
5 5

(1)
10

T S  = =
 
 
 
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 (iv) 
5(1)(1) 50

20 ( )
5

.1
10

T S
S

 = = =  

 (v) 

5 1
520

20 50 ( )
2

.1
10

S

T S
S



 
 
   = =
 
 
 

 

 (vi) 
5

50 ( )
2

T S = =  

Similany  

 How to calculate T.F from Bode plot – 0 dB / decode → K  

 Step - 1 Identify initial slope 20pdB/decode pKS→  

             20pdB/decode / pK S− →  

 Step - 2  Identify corner frequency (where slope changes change in slop = (final – Initial) slope 

   
1

20 1 , 20

1

p

p

c

c

s
S p S p

S



 
 = + +  = − 

  
+ 

 

 

 Step -3 For calculation of K  

   M-1 Approximation  

   M-2  (i)  If initial line is 0dB/de code = 1020log K M=  

     (ii)  If slope is there  

      Magnitude at 1 N = ⎯⎯→ (magnitude of initial line) 1020log K N=  

      Bode plot of  

2

2 2
( ) ( ) ?

2

n

n n

K
G S H S

S S
= =

+ +



 
 

 Case - 1  Critical damping ( )1=  

   
2

( ) ( )

1
n

K
G S H S

S
=
 

+ 
 
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 Case – 2 Overdamped ( 1)  

   

1 2

( ) ( )

1 1

K
G S H S

S S

 

=
  

+ +  
  

   

  

 Case -3 Underdamp ( )0 1   

 (1) 
1

0
2

       (2) 
1

2
=  

 

 (3) 
1

1
2
       
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 Case-4: 0=  

 

Important Points : 

(1) Calculation of unknown frequency  

 

 

5.2. Nyquist Stability and Plot 

➢  Contour (closed curve in S – plane) or  (specified region in s plane) encircles  

 encircles (contains) m poles of Q(S) strictly inside if .  

        

 Q(S) plot in Q(S) plane encircles origin (0,0) m times. 

➢ Contour in splane passes through one or more pole of ( )S  

 Q(S) plot in Q(S) plane remain open curve. Hence poles do not contribute in encirclement of origin.  

➢ Contour in s-plane encircle m zeros of Q(S) strictly inside it  

     Same durection  

 Q(S) plot in Q(S) plane encircles the origin m times. 

➢ Contour in s plane has m zero on the boundary of the contour  

       same sense  

 (i) Q(S) plot in Q(S) plane is closed. 

 (ii) Q(S) plot crosses origin m times.  

 (iii)  Such zeros do not contribute in encirclement of origin  
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 5.2.1. Rules of mapping from S plane to Q(S) Plane 

     
( )

( )
( )

N S
Q S

D S
= ,   C contour in S plane 

 CP = No of poles of Q(S) present strictly inside C,  

 CZ  = No of Zeros.  

 N = No . of encirclement of origin by Q(S) plot. 

  

Limitation  

(a) If pole of Q(S) lies on boundary of C 

(b)  If  zero of Q(S) lies on boundary of C 

Important Points : 

(1)  Principle of argument  

 

➢ If CP =  Pole inside Contour,  CZ =   zero inside contour , Q(S) plot in Q(S) plane  

 (i) ( )C CP Z Q S →  plot in Q(S) plane encircles the origin (0,0) ( )C ZP P− time in direction opposite to the contour in 

S plane. 

 (ii) c cP Z →Encircle origin ( )C CZ P− time in same direction .  

 (iii)  C CP Z= →  Does not encircle origin .  

(2) Rules of Mapping  

 valid for T.F 
( )

( )
( )

N S
Q S

D S
=  

 
( ) ( ) ( )

( )
( ) ( )

N S AD S BH S
A BQ S A B

D S D S

+
+ = + =  

 (i) Let T.F =
( )

( )
( )

N S
Q S

D S
=  

  CP =  No of poles of Q(S) inside contour . 

  CZ =  No of Zeros of Q(S) inside contour 



  

GATE WALLAH ELECTRICAL HANDBOOK 

Control Systems 

4.57 

  N = No of encirclement of (0,0) by Q(S) plot.  

  N = +ve , if C and Q(S) has opposite direction  

  N =  - ve , if C and Q(S) has same direction  

 (ii) Let T.F is A + BQ(S) 

  N = C ZP P−  

  CP →No . of poles of T(S) inside contour 

  CZ →No. of zero . 

  N →  No. of encirclement of  (0,0) by A+BQ(S) plot . 

 (iii)  If A+BQ(S) plot encircle origin then Q(S) plot will encircle ,0
A

B

 
− 
 

. 

     Or  

  If Q(S) plot encircles (-A/B,0) then A+BQ(S) plot will encircle (0,0) 

Nyquist 

 If  
( )

( ) ( )
( )

N S
G S H S

D S
=  

 
( ) ( )

1 ( ) ( )
( )

N S D S
G S H S

D S

+
+ =  

 
( ) ( )

( ) ( )
( )

AD S BH S
A BG S H S

D S

+
+ =  

 ➢ Poles of T.F ( ) ( )A BG S H S+  will be same as T.F G(S)H(S). 

 ➢ Zeros of 1 ( ) ( )G S H S+ =Root of  1 ( ) ( )G S H S+  = Poles of CLS 

 ➢  Poles of 1 ( ) ( )G S H S+ =  Poles of G(S)H(S)  

 Case 1   

 

 Fixed : Clockwise 

 Rule of Mapping : let TF is ( ) ( ) C CG S H S N P Z = −  

 N = No of encirclement of (0,0) by G(S)H(S) plot in G(S)H(S) plane.  
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 CP =No of poles of G(S)H(S) lying inside contour in S plane .  

     OR 

 No of poles of G(S)H(S) lying in right side plane C tP P=  

 CZ =  No of zero of G(S)H(S) lying inside contour in S plane . 

     OR 

 No of zeros of G(S)H(S) lying in RHP C tZ Z=  

    N P Z+ += −  

 For OLS to be stable 0CP =  

 Case 2   

 

 Rule of Mapping : Let T.F is 
( ) ( )

1 ( ) ( )
( )

N S D S
G S H S

D S

+
+ =  

       C CN P Z= −  

 N = No of encirclement of (0,0) by 1+GH plot in 1+GH plane .  

     OR 

 No of encirclement of (-1,0) by GH plot in GH plane .  

 CP =no of poles of [1 ( ) ( )]G S H S+ lying in R.H.P  

     OR 

 No of poles of G(S)H(S) lying in C tP P=  

 CZ =  no of zeros of [1+G(S)H(S)] lying in RHP. 

     OR 

 No of poles of closed loop system lying in R.H.P.  C tZ Z→  
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Note: After Nyquist modified the mapping Rule . 

  (i) S plane contour : Entire R.H.P. 

  (ii) Plot of G(S)H(S) is needed only  

   ➢ Stability of all the T.F. of type A+BG(S)H(S) can be determined. 

   ➢ Also stability of C.L.S can be determined by applying N.S.C. in 1 ( ) ( )G S H S . 

    S plane contour → Entire R.H.P. : “NYQUIST CONTOUR “  

Nyquist Contour : “Contour containing entire R.H.P.” 

5.2.2. “Types Of Nyquist Contour” 

    

 

( )
( ) ( )

( )

N S
G S H S

D S
=



 

Should not have any pole or zero on j  axis 

Nyquist Contour 

 [I]:  0S j=     

 [II]:  
θ= = jS re r  

   
2 2

 


− −
   
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2. 
( )

( ) ( )
( )

N S
G S H S

D S
= →  It has poles or zeros at origin  

 

(I) S j=    0   

(II) 
10s re=   r =   

(III) S j= −    o   

(IV) 
10S re=   r → 0  / 2 / 2  −  +  

3. 
( )

( ) ( )
( )

N S
G S H S

D S
= ⎯⎯→ It has poles and zeros on j  axis. 

 

Note:  
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N.S.C.  for various T.F.  Let Nyquist contour is clockwise: 

Case 1 : N.S.C. for T.F. G(S)H(S) 

  + += −N P Z  

  N =  number of encirclement of (0,0) by GH plot in GH plane  

   

  P+ = Number of poles of GH lying in RHP 

  Z+ = Number of zeros of GH lying in RHP 

  For TF GH to be stable : P+ = 0 

Case 2 : N. S. C. for T.F. 1 + G(s)H(s) 

  N = P+ – Z+ 

  N = Number of encirclement of (0, 0) by 1 + GH plot in 1 + GH plane 

       Or 

  No. of encirclement of (–1, 0) by GH plot in GH plane 

  P+ = Number of poles of 1 + GH lying in R.H.P. 

       Or 

  Number of poles of GH lying in R.H.P 

  Z+ = Number of zeros of 1 + GH lying in RHP 

       Or 

  Number of poles of 
1

G

GH+
 (C.L.S) lying in RHP 

  (i) For TF 1 + GH to be stable 0+⎯⎯→ =P  

  (ii) For closed loop system 
1

G

GH

 
 
+ 

 to be stable 0+⎯⎯→ =Z  

 Case 3: N.S.C. for T.F. 1 –  G(s)H(s) 

  N = P+ – Z+                                                                                

  N = Number of encirclement of (0,0) by 1 -  GH plot in 1- GH plane 

      Or 

  Number of encirclement of (1,0) by GH plot in GH plane 

  P+ = Number of poles of 1- GH lying in RHP  

      Or 

  Number of poles of GH lying in RHP 

  Z+ = Number of zeros of 1 – GH lying in RHP 

      Or 

  Number of poles of 
1

G

GH+
 (C.L.S.) lying in R.H.P. 

  (i) For TF 1 - GH to be stable 0+⎯⎯→ =P  

  (ii) For C.L.S.
1

G

GH

 
 
− 

 to be stable 0+⎯⎯→ =Z  

Case 4 : N.S.C. for T.F. 4 + 3 G(s)H(s) 
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  + += −N P Z                                                                                 

  N = Number of encirclement of (0,0) by 4 + 3GH plot in 4 + 3 GH plane 

      Or 

  Number of encirclement of 
4

,0
3

− 
 
 

  by GH plot in GH plane 

  P+ = Number of poles of 4 3GH+  lying in RHP  

       Or 

  No. of poles of GH lying in RHP 

  Z+ = Number of zeros of 4 3GH+ lying in RHP 

       Or 

  Number of poles of 0 system 
4 3

G

GH+
 lying in R.H.P. 

Case 5 : N.S.C. for T.F. ( ) ( )A BG s H s+  

  + += −N P Z                                                                                 

  N = Number of encirclement of (0,0) by A BGH+ plot in A BGH+  plane 

       Or 

  Number of encirclement of ,0
− 

 
 

A

B
  by GH plot in GH plane 

  P+ = Number of poles of A BGH+  lying in RHP  

       Or 

  Number of poles of GH lying in RHP 

  Z+ = Number of zeros of A BGH+ lying in RHP 

       Or 

  Number of poles of 0 system 
G

A BGH+
 lying in R.H.P. 

5.3. Problem Solving Approach 

1. Flow Chart 
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Plotting Nyquist Plot 

Assumptions 

 (1) Nyquist contour is clockwise. 

 (2) Does not contain pole or zero on j axis. 

 (3) Mapping on G(s) H(s) plane  

Prequisite 

 (1) Rang of  →− +  

 (2) Consider generalized Nyquist contour 

 

 Closing of Nyquist Plot 

  (i)  ( ) ( )0 ( ) : 0 tos j T s T j T j + + + += →   ⎯⎯→   

  (ii) ( ) ( )Re ( ) : tos j T s T j T j + − + −= →   ⎯⎯→    

  (iii) ( ) ( )0 ( ) : to 0s j T s T j T j − − − −= →   ⎯⎯→   

  (iv) ( ) ( )Re 0 0 ( ) : 0 to 0s j T s T j T j − + − += →   ⎯⎯→  

  Nyquist Contour    Nyquist plat 

 (3) 

  (i) 0s j + +=     

  (ii) Re to (C W)
2 2

js R  


−
= → →+  

  (iii) 0s j + −=      

  (iv) Re 0 to A.C.W
2 2

js R  
= → →−  

 (4) 

to :CW
2 2

to :ACW
2 2

 


 


+ −
→

− +
− →
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 (5) 

1
( )

1

segment 1

1
( )

1

T s
s

s j

T j
j






=
+

− =

=
+

 

Case 1: 
1

( )
1

=
+

T j
j




 

  1

2

1
( ) , ( ) tan

1

−=  =−
+

T j T j  


 

  0+=   ( )0 1T j + =   +=   ( ) 0T j =  

  ( ) 00 0T j + =     ( ) 090T j =−  

Case 2: ( )
1

1
T j

j



=

+
 

  ( ) 01
0 0 1 1 0

1 0
T j

j
 + +

+
= = = = 

+
 

    ( ) ( ) 00 1 , 0 0T j T j+ +=  =  

  ( ) 01 1
0 90

1
T j

j j
 +

+ +
=  = = = −

+  
 

  ➢ Mapping of segment I on ( ) ( )G s H s plane is polar plot. 

  ➢ Mapping of segment III on ( ) ( )G s H s Inverse polar plot 

   Inverse polar plot = error image of polar plot w.r.t. horizontal axis keeping the same flow direction 

Step to Draw Polar Plot  

(1)  Put ( ) 0S j T j t+=      

(2)  1 1( 0 )T j M+ =   

 2 2( )T j M+ =   

(3)  Rationalise     ( ) Re ImT j T j T = +  

Nyquist Plot  

 S-1 Draw pole – zero diagram on S plane and select proper contour.  

 S-2 Map segment I of Contour and draw polar plot . 

 S-3 Map segment II of contour and draw the respective mapping (generally circle). 

 S-4 Map segment III of contour and draw inverse polar plot . 

 S-5 Map segment IV of contour and draw respective mapping (generally circle) . 

All Pass System/filter  

Poles and zeros are at mirror image w.r. to j axis .  
(1 )

( )
1

S
T S K

S

−
=

+
 

➢ Nyquist plot of all pass filter is always circle, with radius K and center (0,0). 
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 5.3.1. Closing of Nyquist Plot from Polar Plot  

Case 1  If OLTF contains n no. of poles at origin .  

 ➢  ( ) ( )G and G+ −  will be connected by O+  radius circle (short circle) 

 ➢  ( ) and ( ) .+ − →G O G O O C  

 ➢  To close this n  clockwise encirclement is performed from ( ) to ( )G O G O− +
 

Case 2 If Type of OLS = 0, and order of zero is greater then of pole .  

 ➢ (0 ) and (0 ) short circuitG G− +   

 ➢ ( ) and ( ) .+ −  G G O C  

 ➢ ( )m n−   clockwise encirclement from ( ) ( )G to G+ −  . 

Case 3 Type of OLS = 0, order of zero   order of pole  

 ➢ (0 ) and (0 ) .G G S C− +   

 ➢ ( )and ( ) .G G S C+ −    

Gain Margin – Phase Margin   

 Minimum Phase System : All poles and zero must be on L.H.P 

 ➢ Poles and zeros at origin or j  axis are allowed  

 Non Minimum Phase System : Which are not minimum .  

 ➢  All poles in L.H.P , few zeros in RHP →Type A  

 ➢  All zero in LHP few poles are in RHP → Type B  

Gain Margin   

(1) Can determine stability  

(2) Amount of gain 1K that is needed to multiplied in OLTF such that corresponding C.L.S becomes stable .  

(3) Amount of gain (in dB) that need to be added in OLTF such that corresponding C.L.S becomes marginally stable . 

Phase Margin   

(1) Can determine stability  

(2) Amount of phase angle that is needed to added in of G(S)H(S) such that C.L.S become Marginally stable  

 5.3.2. Mathematical calculation of G.M  
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S-2   Put S j=  and determine range of   

  Contour 1: 0    ( ) ( )
S j

T S T j



=

=  

  Contour 2: 0    

S-3   
0( ) 180T j = −  

  Solve and calculate  , possible phase crossover frequency . 

S-4  Validation of   

  (i)  is real and +ve   (i) n (ii) 
pc =  

  (ii) 
0( ) 180T j = −  

S-5  At ( )PC PCT j M  = =  

   Gain Margin =
1

M
 

Note: (1) If No valid PC then G.M will be either dB or dB+ − , depending on nature of OLS and absolute stability 

of CLS .  

  (2) dB or dBGM = + − represent absolute stable / unstable nature . 

Method 2 

 S-1 Put S j=  and find range of   

 S-2  ( ) ( ) ( ) :IT s j TR j jT j  = = + Rationalize 

 S-3 ( ) 0IT j =  Possible 
pc  

 S-4 validity ( )Realand+ve ( ( ) )pc pcTR j ve= =−   

 S-5 ( )PCT j M = ,  
1

.G M
M

=  

Note : If 
pc is invalid →same procedure as Method 1.  

Note:   G.M cannot be 0 or   in ratio 

C.L.T.F O.L.T.F GM(dB) PM in degree  

Stable unstable  Min phase system  +ve (dB) 

-ve(dB) 

+ve in degree 

-ve  in degree 

Stable unstable  Non Minimum 

Type –A 

+ve(dB) 

-ve(dB) 

+ve in dgree 

-ve  in degree 

Stable unstable  Non Minimum  

Type – B 

-ve (dB) 

+ve(dB) 

-ve in degree 

+ve  in degree 

Mathematical calculation of phase Margin– 

Given T(S) 

 S-1 S j=  and range of   

 S - 2 ( ) 1T j =  passible : gain crossover frequency ( )gc  

 S-3  Validity : →Real and +ve 

 S-4 P.M = 0( ) 180gcT j +  
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Note : 

(1) Changes in 
pc  

(2) Change gain margin   Introduction of Transportation log  

         

     (1) 
gc remain same 

     (2) PM changes  

     (3) PM  , so stability   

Shortcut for G.M   

( ) ( ) ( )T S G S H S=  

➢  Let K Multiplied in ( ) ( ) , ( ) ( ),G S H S K G S H S→  So that roots of 1 ( ) ( )KG S H S+  represents Marginal Stability  

➢  S-1 from Routh table  

 S-2   ODD Row  LAST Row   G.M 

   Invalid  →  Invalid  →  /+ −  

   Invalid  →  valid   →  finite 

   Valid  →  Invalid   →  finite  

   Valid  →  valid  →  Absured case 

 S-3   Valid Odd Rows : 

   Odd row = 0 , K= +ve , A.E roots are non repeated on j  axis then 1K GM= in ratio and roots of PCAE →  

 S-4  Valid last Row : 

   Last Row = 0 

   0K ve K=+ →    

G.M and P.M from Nyquist  

G.M  (1)  0? ( ) 180pc T j =  =−   [Nyq plot must cross –ve real axis → pc exist] 

  (2)  
1 1

.
( ) length on negative real axis tieePC PC

G M
T j 

= =  

Phase Margin –  

 (i) ( ) 1gc gcT j → =  

  Nyquist plot intersects unity radius circles then 
gc  exist . 

 (ii) 0( ) 180gePM T j= +  

  ( ) from+ve real axisgcT j →                               

For OLS : Min phase 

  G.M (in dB) PM in degree C.L.S 

1K K=  
pc gc   +ve (dB) 0ve+  Stable 

2K K=  
pc gc   0 (dB) 00  M.S 

3K K=  
pc gc   - ve (dB) 0ve−  Unstable 

  

  
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6 
STATE SPACE ANALYSIS 

 

6.1. Introduction 

Single I/P single output Input ( )u t→  

 

     
1/

( ) , . 0
1/

= =
+

RC
H s I C

s RC
 

           
( ) 1 1

( ) ( )+ = →
dy t

y t u t
dt RC RC

 initial condition not zero 

     1( ) ( )= →y t x t  stable variable (A parameter across memory element) 

               1

( )
( )=

dy t
x t

dt
 

 

1 1

1

1 1
State equation( ) ( ) ( )

( ) ( )

Output equation

−
→= +

=



x t x t u t
RC RC

y t x t  

 
   

   

1

1

1 1
( ) ( ) ( )

( ) [1] ( ) [0] [ ( )]

−   
= +   
   

= +

X X
X X

XX X

x t x t u t
RC RC

y t x t u t

 

State Model of above system 

 
 ( ) [ ][ ( )] [ ][ ( )]

Mathematical Representating of a physical system
[ ( )] [ ][ ( )] [ ][ ( )]

= +


= + 

x t A x t B u t

y t C x t D u t
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For MIMO System 

State Equation 

     

1 1 1

2 2 2

1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
   

        
        
        = +
        
        

        n n ln n n ln n l

x t x t u t

x t x t u tA B

x t x t u t

 

Output Equation 

    

1 1 1

0 2 2

1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
   

        
        
        = +
        
        

        n n ln n m lm n l

y t x t u t

y t x t u tC D

y t x t u t

 

      
         

   
1 1 1

11 1

( ) ( ) ( )

( ) [ ] ( ) [ ] [ ( )]

    

   

= +

= +

n n n n n l l

m n m l lm n

x t A x t B u t

y t C x t D u t
 

State Model Representation from DE 

    
3 2

3 2

( ) 3 ( ) 6 ( )
7 ( ) 6 ( )+ + + =

d y t d y t dy t
y t u t

dt dt dt
 

output , input→ →y   

Let 
1( ) ( )y t x t= , 

2

2 3 22

( )
( ) ( ) ( ), ( ) ( )= = = =

d y t
dy t x t xi t x t x t

dt
 

            
3

33

( )
( )=

d y t
x t

dt
 

Then solve question  

       
1 1 1

2 2 2

3 3 3

( ) ( )

( ) ( ) and ( ) [ ] ( ) ( )

( ) ( )

     
     

= + = +     
          

x t x x t

x t A x B u t y t C x t Du t

x t x x t

 

From Transfer function  

   Let T.F is T(S) 
3 2

3 2 1 0

4 3 2

3 2 1 0

( )+ + +
=

+ + + +

b c d c s c s c

s a s a s a s a
 

Case 1 : Controllable canonical from  

   

1 1

2 2

3 3

0 1 2 34 4

0 1 0 0 0

0 0 1 0 0
( )

0 0 0 1 0

0

      
      
      = +
      
      

− − − −      

x x

x x
u

x x

a a a ax x

 

   

1

2

0 1 2 3

3

4

[ ] [ ] [0][ ]

 
 
 = +
 
 
 

x

x
y C C C C u

x

x
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Note :  

1. No of state variable = Highest order of 
rD  

2. Coefficient of highest order of 
rD should be 1. 

Case 2 :  Observable canonical from  

   X = AX + BU 

   Y = CX + DU 

   [ ] [ ] , [ ] [ ] ,[ ] [ ]= = =T T T

OCF CCF OCF CCF OCF CCFA A B C C B  

Case 3 :   Diagonal canonical form  

   31 2 4

1 2 3 4

( )
( ) ( ) ( ) ( )

= + + +
+ + + +

bb b b
T S

s p s p s p s p
 

   

1 1

2 2

3 3

4 4

0 0 0

0 0 0
[ ]

0 0 0

0 0 0

−   
   

−   =
   −
   

−   

p K

p K
A B

p K

p K

1 2 3 4

1 1 1

2 2 2

3 3 3

4 4 4

[ ] [ , , , ]=

=

=

=

=

C m m m m

b K m

b K m

b K m

b K m

 

Case 4 :  Jordan Canonical form  

Extension of D.C.F when poles are repeated. 

    31 2 4

2 3 4

1 1 1 2

( )
( ) ( ) ( ) ( )

= + + +
+ + + +

bb b b
T S

s p s p s p s p
 

     

1

1

1

2

0 0 0

0 0 0
[ ]

0 0 0

0 0 0

− 
 

− =
 −
 
 

p

p
A

p

p

 Jordan Block  

From S.F.G  

1. Summing Node    

 

2. Take off Node      
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3. Potential of a node      

 

  
1 1 2 2 3 3

4

N a x a x a x

Z a N

= + +

=
 

4.  Integrator Block 

 
 

5.  Integrator SFG      

 

No of integrator = No of state variable  

Important : 

     1 1

Solution of state variable Solution of stateVariabledue
due to non zero I.C toinput.

( ) [ ] [ (0 )] [ ] [ ][ ( )]− − −= − + −X S SI A X SI A B U S  

State Transition Matrix – (S.T.M) 

(a) S.T.M  in S-domain = 1[ ]−− SI A n n  

(b) S.T.M  in time domain = AT
nxn[ (t)] or [e ]  

  
L.T 1

n n[ (t)] [ST A]− ⎯⎯→ −  

 6.1.2. Properties of STM 

[ ] [ ( )]= Ate t  

(1) [ ] [ (0)] [ ]=  =Ao
nxne I  

(2) 

0

( )

=

  
  =     

At

nxn

t

de
A

dt
 

(3)   1( ) ( )−  − = 
 

t t  

(4)    1 2 1 2( ) ( ) ( ) + =  t t t t  

(5)  ( ) ( )  = 
 

K t Kt  
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(a) Homogeneous State equation ( ) [ ][ ( )]  = X t A x t  

Sol.    
1

( ) (0 )
− − = −
 

X s SI A X  

  1( ) (0 ) or [ ( )] [ ( )][ (0 )]− −  = = 
  

ATx t e x x t t x  

    1( )
−

 = −t ILT SI A  

(b) Non Homogeneous state equation ( ) [ ][ ( )] [ ][ ( )]  = + X t A x t B u t  

 = +X AX BU  

Sol.  
1

( ) (0 ) [ ( )]*[ ][ ( )]X S SI A x t B u t
− − = − +   

Solution of y(t) 

[ ( )] [ ][ ( )] [ ][ ( )]= +y t C X t D u t  

  ( ) [ ][ ( )] [ ][ ( )]= +Y S C X S D U S  

     1 1
[ ( )] [ ] [ (0 )] [ ][ ( )] [ ][ ( )]

− −−= − + − +Y S C SI A x SI A B U S D U S  

  

    1 1

Zero State ResponseZero Input Response

Total Response

[ ( )] [ ] [ (0 )] [ ] [ ] [ ] [ ( )]
− − −= − + − +Y S C SI A x C SI A B D U S

  

For 2 Input 2 Output 

     
1 1

2 2

and
   
   
   

Y U

Y U
 

For 1 Input and 1 Output 

        
1( )

[ ] [ ] [ ]
( )

Y S
C SI A B D

U S

− = − +
 

 

    (0 ) 0x −  =   

    [ ] Poles of the system eigen values of matrix ASI A− = = ( )D S=  

      
[ ] [ ][ ] [ ]( )

( )

C adj SI A B D SI AY S

U S SI A

− + −
=

−
 

Controllability and observability 

     
2

= +

= +

X AX BU

Y CX DU
 

Square matrixA→  

   A→  

   Rank of matrix ( )A A→ =  

   n n→   
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Method 1 

Kalman Test  

• Controllability 

(1)   2 1 Square
: : :

Rectangular

− = −−−−−
 

n
CQ B AB A B A B  

(2) ( ):Rectangular, ( ) Controllable = →C CQ Q A  

             ( ) ( ) Uncontrollable  →CQ A  

• Observability 

(1)   ( ) ( )
12

0 : : ............
− 

=  
 

n
T T T T T TQ C A C AT C A C  

(2) 0 :SquareQ  

  0 0 Non observable=Q  

  0 0 observableQ  

(3) ( )0:Rectangular, ( ) Observable = →CQ Q A  

     ( ) ( ) Not observable  →CQ A  

Method 2 

 If A is diagonal Matrix with distinct diagonal  

  

11 121

21 222

3

1 24

0 0 0

0 0 0

: :0 0 0

0 0 0


  
  
  = + ⎯⎯→
  
  

   n nn n

b bd

b bd
X X

d

b bd

They should not be all zero (Controllable) 

  
11 12 1

21 22 2

[ ]
−−−− 

= + 
− −−− 

n

n

C C C
Y X U

C C C
 

They should not be all zero (observable) 

Method 3  

Gilbert Test 

Upper Triangular Matrix 

• UTM having Jordan block 

• Jordan block is used when E.V are repeated 

  

1 1 2

2 3

3 They all Should not be zero

0

0 0
⎯⎯→

 
 
 
  

d a a

d a

d

 

Lower Triangular Matrix 

  

1

1 2

1 3 3 Should not be all zero

0 0

0

⎯⎯→

 
 
 
  

d

a d

a a d
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Method 4 

• Controllable Canonical form 

  

0 1 2

0 1 0 0

0 0 1 0

   
   = =
   
   − − −   

A B

a a a b

 

• O.C.F 

  

0

1

2

0 0

[ ] 1 0 [ ] [ , 0, 0]

0 1

− 
 = − =
 
 − 

a

A a C C

a

 

  
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7 

CONTROLLER AND 

COMPENSATOR 
 

7.1. Introduction 

(1) Phase lead compensator 

 
    1 1=T R C  

          
( )2 1 1

1 1
1 2

1 2

1
( )

1

+
=

 
+ + 

+ 

R SR C
T S

SR C
R R

R R

 

 
( ) 2

1 2

1 1
( ) 1 1

1

 +
=   = 

+   +

ST R
T S

S T R R
 

 Pole, 
1

= −


S
T

 

 Zero, 
1

= −S
T

 

 

 7.1.1. Zero Dominant Compensator 

Phase ( )1 1tan ( ) tan− −=  − T T  

 Max. value of phase,  ( ) 0  =


d

d
 

 Max max

1 1
tan

2

−
 =  =

 T
 

  max

1
sin

1

−
 =

+
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• Behave as HPF 

• Decrease gain of system 

• Increase steady state error 

• Increase , gc BW  

• Increase P.M, improve relative stability 

• Increase 
Mr decreases

% Mp decreases
  

• n increases, ts decreases 

• Improve or reduces the transient region 

• Increase the speed of system 

Phase log Compensator  

 

1 1

1 1 2

1
( )

1 ( )

+
=

+ +

SR C
T S

SC R R
 

1
( )

1

 +
=  

+ 

ST
T S

ST
         

     1 2
1 1

1

1 1
, , 1,

+− −
= =  =


R R
S T R C

T T R
 

 

• Pole dominant  

• 1 1tan tan− −=  − T T  

• 
1

 =


m
T

 

• 
1

sin 1
1

 −
 =   

+ 
m  

• LPF  

• Gain remains constant 

•  

• Reduces B.W reduced →gc  
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• Reduces P.M → Relative stability decrease  

• and→  p rM M  

• ,    → n st  

• Increases transient region, speed of operation decreases. 

Lead – Log Compensator  

 

            1 1

2 2

(1 ) (1 )
( ) .

(1 ) (1 )

 + +
=

+ +

ST ST
T S

ST ST
 

    1 1 2 2 1 1' '= =T R C T R C       

    2

1 2

 =
+

R

R R
 1 2

1

' '

'

+
=

R R

R
     

 1 2T T  

➢  B.P.F 

LAG – LEAD Compensator  

   
(1 ) (1 )

( )
(1 ) (1 )

   +  +
=    

+ +   

ST ST
T S

ST ST
  

1 2

1 1


T T
 

      2 1 log
T T  

 

• Band Reject filter 

Controllers 
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7.2. Proportional Controller 

 

T.F of controller:   
( )

( )
= P

Y S
K

X S
 

    H (S) = 1 

    
( )

2

( )
2


=

+ 

n

n

G S
S S

 

       ' , '  =  =n n p
p

K
K

 

          
2 

=  
 

ss
p n

A
e

K
 

Effects 

(1) sse  reduces if  1PK  

(2) constont, constant, stability same= =n st  

(3) ,% , ,   P d rM t   

7.2.1. Integral Controller 1st order 

 

T.F
( )

( )
= = iKY S

X S S
 

• Increases type of system by 1 

• sse  for same input becomes 0. 

• It makes 
1 order CLS to M.S

2 orderCLS to unstable
→

st

nd
 

Proportional Integral Controller 
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( )

( )
= + i

P

KY S
K

X S S
 

 If 1=PK  
( )

1
( )

= + iKY S

X S S
 

No. of oscillations

Sluggish Transiend regionbecomespronounced

→ → → 





n st

 

Derivative Controller 

 

• Derivative Controller reduces type of system by 1 

• sse  for same input 

• Transient region reduced 

Proportional Derivative Controller (P –D) 

 

    
1 1== + ⎯⎯⎯→ +PK

P d d

Y
K K S K S

X
 

• It reduces 
% , ,P s rM t t

 

• It improves: relative stability and transient region 

PID Controller 

  Transfer function = + +i
P D

K
K SK

S
 

• Improves stability and decreases sse  

•  Increases type and decreases sse  

Mathematical Modelling 

 Mechanical system   ⎯→  Electrical system 

 Translational System (Mass Damper System) 

(1) Mass 
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(2) Damper 

 

 

 

     ( ) ( )2 1 2 1= − = −
d

F B x x B v v
dt

 

(3) Spring 

 

Rotational System 

(1) Inertia 

 

   
2

2


=

d
T J

dt
J : Moment of Inertia 

(2) Damper 

 

   ( ) 2 1
2 1

  
=  − = − 

 

d d
T B B

dt dt
 

(3) Spring  

 

Force voltage – force Current  

Given 
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Network 

 

Force voltage Analogy  

=
dQ

I
dt

 

 
2

2

1
= + +

Ld Q RdQ
V Q

dt dt C
 

   

2

2
= + + x

Md x Bdx
F K

dt dt
 

   1

→ →

→ ⎯→
→

→

F V x Q

M L v I
K

B R C

 

Force current Analogy 

 

   =
dQ

V
dt

 

2

2

1 1
= + +

d Q dQ
I C Q

dt R st L
 

1/

1/

→

→

→

→

→

F I

M C

B R

K L

x Q

  Voltage →  Velocity  

 
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