

Attempt: 01

Date: 22nd Jan 2024

Shift: 01

Organic hemistry

Calculate Number of stereoisomers of CH₃ – CH = CH – CH – CH₃

$$2 = 2 = 4$$

Weight of the organic compound is 180 g and the weight of the AgCI precipitated

143.5 g. Calculate the estimation of Clin_____ %

wt of
$$CI = 35.5 g$$

Wt of
$$Ag = 180 g$$
.

В

JEE MAIN 2025 PAPER DISCUSSION

Statement - I: CH₃ - O - CH₂ - CI will show nucleophilic substitution by SN1 mechanism in protic medium

Statement - II: CH₃ - C-CH₂ - CI will undergo nucleophilic substitution via SN2

- Statement I and statement II both are correct
- Statement-I and statement-II both are incorrect
 - Statement- I is correct but statement -II is incorrect
 - Statement-I is incorrect but statement-II is correct

Which of the following acid is present in Vitamin C?

- (A)
 - Saccharic acid
- B
- Aspartic acid
- C
- Adipic acid
- D

Ascorbic acid

MPXC.L.E

Identify the incorrect statement

(A)

MP of Cis 2 butene is greater than tran 2-butene.

B

2-methyl 2-butene can have two geometrical isomer

DP moment of cis 2 butene is greater than trans 2 butene

In trans isomer identical groups are opposite direction

Total 40. of comp. gives positive test with Fehling's solution?

$$CH_2 - OH$$

$$C = O$$

$$CH - OH)_3$$

$$CH_2 - OH$$

В

C

D

JEE MAIN 2025 PAPER DISCUSSION

4-methoxycarboxyy 2-methylpentampic acid

3-methoxycarboxy 2-methylpentappic acid

5-methoxycarboxy, 2-methylpentanpic acid

2-methoxycarboxy-3-methylpentanpic acid

Sub: Physics

Attempt: 01

Date: 12th Jan 2024

Shift: 01

Find the dimensions of $\frac{B}{\mu_0}$

- (A) [AL]
- B [AL-1]
- C [MAL]
- [MALT-1]

Solid sphere of mass M, radius R exerts force F on a point mass. Now a concentric spherical mass M/7 is removed. what is new force?

- (A) F/7
- **B** 6F/7
- **c** 5F/7
- D 3F/7

Assertion: When YDSE set up is dipped in a denser medium than the fringe width decreases.

Reason: Speed of light decreases in denser medium but frequency of light remains same.

Find the radius of curvature of the common surface of two bubbles $(R_1 > R_2)$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

$$R = \frac{2R_1R_2}{R_1 - R_2}$$

$$R = \frac{R_1 R_2}{R_1 - R_2}$$

$$R = \frac{R_1 R_2}{(R_1 - R_2)}$$

An electron in the group state of the hydrogen atom has the orbit, radius of 5.0×10^{-10} m while that for the electron in third excited state is 8.48×10^{-10} m. The radio of the de-Broglie wavelength is electron om the ground state to that in the excited state is:

A

9

B

3

(c)

Find current in the circuit, Jockey is at middle point on 1Ω

Statement I- In a vernier callipers, one vernier scale division is smaller than one main scale division.

Statement II- The vernier constant is given by one main scale division multiplied by the number of vernier scale divisions.

- A Statement I is true and Statement II is false.
- Statement I is false and Statement II is true.
- Both the statements are true.
- Both the statements are false.

Identify the correct graph between the resistivity of conductor and temperature

From a sphere of mass M and radius R, a cavity of radius R/2 is created. Find the moment of inertia about an axis passing through the centre of sphere.

A bob of mass m is suspended at a point '0' by a light string of length 'l' and left to perform vertical motion (circular) as shown in figure. Initially by applying horizontal velocity V_0 at the point 'A', the string becomes slack when the bob reaches at the point 'D'. The ratio of the K.E of the bob at the points B and C is

- (A) 2
- **B**) 4
- **(c)** 1
- **D** 3

A Parallel plate capacitor of capacitance 40 μ F is connected to a 100 V power supply now the intermediate space between the plates is filled with a dielectric material of dielectric constant K = 2. So due to the introduction dielectric the extra charge and the change in electrostatic energy in the capacitor respectively is:

- (A) 2 mc and 0.4 J
- B 2 mc and 0.2 J
- (c) 4 mc and 0.2 J
- B mc and 2 J

Identify the diode connected in forward bias

What amount of heat is required to convert 1 gm of ice at -10°C into steam at 110°C?

$$\Delta Q = 730 \text{ cal}$$

$$\Delta Q = 1100 \text{ cal}$$

$$\Delta Q = 930 \text{ cal}$$

$$\Delta Q = 900 \text{ cal}$$

Statement I- When non – ideal batteries are connected in parallel then the resultant emf is lesser than either of the battery

Statement II- When non – ideal batteries are connected in parallel then the resultant resistance of their internal resistance is smaller than either of the resistance

- (A) I true, II false
- B I false, II true
- C Both true
- D Both false

In the diagram given below, the value of coefficients of thermal conductivity, $K_1 = 60$, $K_2 = 120$ W/mC, $K_3 = 135$ W/mC. The temperature at the left most end is 100 °C and right most end is 0 °C find the temperature θ .

- **B** 45°C
- **C** 55°C
- (D) 60°C

Sub: Mathematics

Attempt: 01

Date: 12th Jan 2024

Shift: 01

A 5-letter word is to be made using any distinct 5 alphabets such that middle alphabet is M and letters should be in increasing order.

The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{4}$ and $\frac{x+2}{7} = \frac{y-2}{8} = \frac{z+1}{2}$ is

$$\frac{88}{\sqrt{1277}}$$

$$\frac{\mathbf{B}}{\sqrt{1277}}$$

$$\begin{array}{c}
\hline
\mathbf{c} & 66 \\
\hline
\sqrt{1277}
\end{array}$$

$$\begin{array}{c}
\boxed{\mathbf{D}} \quad \frac{55}{\sqrt{1277}}
\end{array}$$

Two balls are selected at random one by one without replacement from the bag containing 4 white and 6 black balls. If the probability that the first selected ball is black given that the second selected is also black, is m/n when gcd(m, n) = 1, then m + n = ?

If
$$s_n = \sum_{r=0}^n T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$$
 then find $\sum_{r=1}^n \frac{1}{T_r} = \frac{1}{T_r}$

If
$$y^2 dx + \left(\frac{1}{y} - x\right) dy = 0$$
 and $x(1) = 1$ then find $x\left(\frac{1}{2}\right)$

If
$$f(x) = \begin{cases} -3ax^2 - 2 & x < 1 \\ a^2 + bx & x \ge 1 \end{cases}$$
 given $f(x)$ is continuous 4 differentiate. Area enclosed

by f(x) and line y = -20 is $\alpha + \beta\sqrt{3}$ then find $\alpha + \beta$.

 $e^{5(\ln x)^2+3} = x^8$. Product of all real values of x.

If A be a 3×3 square matrix such that det(A) = -2. If $det(3adj(-6adj(3A))) = 2n \times 3m$, where $m \ge n$, then 3m + 2n is equal to

- (A) 103
- **B** 104
- **C** 106
- **D** 105

Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) (2, 4) in the line x + 2y = 2. If the centroid ΔPQR is the point (α, β) then $15(\alpha - \beta)$ is equation

If $A = \{1, 2, 3\}$, find the number of non empty equivalence relation on set A

- A
- **B** 5
- (c) 6
- **D** 7

A coin tossed three times. Let x denote number of times tail follows a head. If μ and σ^2 denote the mean and variance of x the value of $64(\mu + \sigma^2)$.

$$a_1, a_2, ..., a_n$$
 are in G.P.
 $a_1 a_5 = 28$
 $a_2 + a_4 = 29$

$$f(x) = 7(\tan x)^{8} + 7(\tan x)^{6} - 3(\tan x)^{4} - 3(\tan^{2} x)$$

$$I_{1} = \int f(x)dx, I_{2} \int xf(x)dx$$

$$7I_{1}+12I_{2}$$

Let f(x) be a real differentiable function such that f(0) = 1 and f(x)f'(y) + f(y)f'(x) for all $x, y \in R$. Then $\sum_{n=1}^{100} \log_e f(n) =$

The Foci of hyperbola are (1, 14) and (1, -12) and passes through the point (1, 6) then its latus rectum is

$$\sum_{n=1}^{3} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}, \gcd(m, n) = 1,$$

$$m-n=?$$

$$A = \{1,2,3,...,10\},\$$

$$B = \left\{\frac{m}{n}, m > n, m, n \in A, \gcd(m,n) = 1\right\}$$

Then no. of elements in B = ?

- (A) 31
- **B** 33
- **C** 29
- **D** 28

If $f(x) = 16(\sec^{-1}x)^2 + (\csc^{-1}x)^2$ then the max. and min. value of f(x) is respectively,

$$\frac{1001\pi^2}{33} \text{ and } \frac{2\pi^2}{9}$$

$$\frac{1117\pi^2}{68}$$
 and $\frac{4\pi^2}{17}$

$$\frac{1105\pi^2}{68}$$
 and $\frac{4\pi^2}{17}$

$$\frac{1268\pi^2}{27}$$
 and $\frac{3\pi^2}{16}$

If
$$8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + p^2) + \dots \infty$$
, then the value of p is

- $\begin{array}{|c|c|} \hline A & \frac{14}{5} \\ \hline \end{array}$
- $\frac{16}{5}$

Area outside the parabola and inside the circle $(x - 2\sqrt{3})^2 + y^2 = 12$ and parabola $y^2 = 2\sqrt{3}x$.

Coefficient of x^{2012} in the expansion of $(1-x)^{2008}$ $(1+x+x^2)^{2007}$

- (A) (
- **B** 1
- **(C)** 2
- **D** 3

Thank You

Attempt: 01

Date: 22nd Jan 2024

Shift: 01

Physica hemistry

Compare boiling point of given solutions

- (i) 10⁻⁴ M NaCl
- (ii) 10⁻³ M NaCl
- (iii) 10⁻² M NaCl
- (iv) 10⁻⁴ M Urea
- (A) |> || > || > |V
- B ||| > || > | > |V
- C || > | > || > |V
- D ||>|>||>|V

 $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$

If initial pressure of CO_2 is 0.6 atm and after equilibrium is established, total pressure is 0.8 atm. Then, find K_p .

- (A) 0.4
- **B** 0.2
- **C** 0.6
- 0.8

Radius of electron in ground state for hydrogen is a_0 , then radius of electron in He⁺ ion in 3rd excited state is a. Then $\frac{a_0}{a}$ is:

- A 1/2
- B) 1/4
- C 1/16
- D 1/8

If a work function of Cs and Fr is 1.9 and 2.5 eV . If light of h = 500 nanometre which element will show photoelectric effect.

Attempt: 01

Date: 22nd Jan 2024

Shift: 01

Physica hemistry

Compare boiling point of given solutions (i) 10⁻⁴ M NaCl 7 (ii) 10⁻³ M NaCl 2 11 - 10⁻² M NaCl 2

- 10⁻⁴ M Urea

11 - Cikb (m)

- 1>11>11>1V
- ||| > || > | > |V
- || > | > ||| > |V
- || > | > || > |V

 $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$

If initial pressure of CO₂ is 0.6 atm and after equilibrium is established, total pressure is

0.8 atm. Then, find K_p.

Radius of electron in ground state for hydrogen is a0, then radius of electron in He+ ion

in 3^{rd} excited state is a. Then $\frac{a_0}{}$ is:

$$a = (n_{He}^{+})_{4} = a_{0} \frac{1}{2} = 8a_{0}$$

$$\frac{\chi}{\chi} = \frac{\chi}{\chi} = \frac{1}{4} \times \frac{2\chi}{3\chi}$$

$$\frac{\chi}{3\chi} = \frac{1}{4\chi} \times \frac{1}{5\chi}$$

$$\frac{\chi}{3\chi} = \frac{1}{4\chi} \times \frac{1}{5\chi}$$

$$\frac{\chi}{3\chi} = \frac{1}{4\chi} \times \frac{1}{5\chi}$$

If a work function of Cs and Fr is 1.9 and 2.5 eV . If light of Ix = 500 nanometre which element will show photoelectric effect.

Sub: Chemistry

Attempt: 01

Date: 12th Jan 2024

Shift: 01

Mathematics

Gasy

A 5-letter word is to be made using any distinct 5 alphabets such that middle alphabet is M and letters should be in increasing order.

$$\frac{M}{12} = \frac{M}{13} = \frac{13}{13} = \frac{13}{$$

Easy

The shortest distance between the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{4}$$
 and $\frac{x+2}{7} = \frac{y-2}{8} = \frac{z+1}{2}$ is

B
$$\frac{78}{\sqrt{1277}}$$
 $\frac{1}{b_1 \times b_2} = -\frac{260 + 840 - 50}{260 + 840 - 50}$

STREAM

JEE MAIN 2025 PAPER DISCUSSION

Two balls are selected at random one by one without replacement from the bag containing 4 white and 6 black balls. If the probability that the first selected ball is black given that the second selected is also black, is m/n when gcd(m, n) = 1, then

$$m + n = ?$$

Easy

If
$$y^2 dx + \left(\frac{1}{y} - x\right) dy = 0$$
 and $x(1) = 1$ then find $x\left(\frac{1}{2}\right)$

$$\frac{1}{1} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = = \frac{1}{2}$$

$$\frac{1$$

IAIN 2025 PAPER DISCUSSION

$$e^{5(\ln x)^2+3}=x^8$$

 $e^{5(\ln x)^2+3} = x^8$ Product of all real values of x.

$$e^{5(\ln x)^{2}+3} = x^{8}$$
In both sides
$$(5(\ln x)^{2}+3) = 8 \ln x$$

$$\ln x = t$$

$$5t^{2}+3=8t$$

$$5t^{2}-8t+3=0$$

$$5t^{2}-8t-3t+3=0$$

$$(5t-3)(t-1)=0$$

$$t=36,1$$

$$l_{nx} = 3/5$$
 or $l_{nx} = 1$
 $x = e^{3/5}$ or $x = e$

$$e^{3/5} \cdot e^{1} = e^{3/5+1} = e^{8/5}$$

LIVE

If
$$s_n = \sum_{r=0}^n T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$$
 then find $\sum_{r=1}^n \frac{1}{T_r} = \frac{1}{T_r}$

$$\int_{N} = S_{n} - S_{n-1}$$

$$\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64} = \frac{(2n-3)(2n-1)(2n+1)(2n+3)}{64}$$

$$= \frac{1}{64}(2n-1)(2n+1)(2n+3)\left(\frac{2}{2}(2n+5) - (2-2)(2n+3)\right)$$

$$= \frac{1}{8}\left(\frac{(2n-1)(2n+1)(2n+3)}{(2n+1)(2n+3)}\right)$$

$$= \frac{1}{8}\left(\frac{(2n-1)(2n+1)(2n+3)}{(2n+1)(2n+3)}\right)$$

$$T_{\gamma} = \frac{8}{(2\chi-1)(2\chi+3)}$$

$$\frac{1}{T_{Y}} = \frac{8}{4} \frac{(2Y+3)-(2Y-1)}{(2Y+1)(2Y+3)}$$

$$\frac{1}{T_{Y}} = 2 \frac{1}{(2Y-1)(2Y+1)} - \frac{1}{(2Y+1)(2Y+3)}$$

$$\frac{1}{2} = \frac{1}{3\sqrt{5}} - \frac{1}{3\sqrt{5}}$$

$$\frac{1}{3\sqrt{5}} - \frac{1}{5\sqrt{7}}$$

$$\frac{1}{3\sqrt{5}} - \frac{1}{5\sqrt{7}}$$

$$\frac{1}{3\sqrt{5}} - \frac{1}{5\sqrt{7}}$$

$$\frac{1}{3\sqrt{5}} - \frac{1}{5\sqrt{7}}$$

If
$$f(x) = \begin{cases} -3ax^2 - 2 & x < 1 \\ a^2 + bx & x \ge 1 \end{cases}$$
 given $f(x)$ is continuous and differentiable.

Area enclosed by f(x) and line y = -20 is $\alpha + \beta \sqrt{3}$ then find $\alpha + \beta$.

$$-6x^{2}-2=-20$$

$$-6x^{2}=-18$$

$$x^{2}=3$$

$$x=-\sqrt{3}$$

$$x<1$$

$$4-12x=-20$$

$$4+20=12x$$

24 - 12X

X=2

If A be a 3×3 square matrix such that det(A) = -2. If $det(3adj(-6adj(3A))) = 2^{m+n} 3^{mn}$

where m > n the n. Find 4m + 3n.

(M)

$$3n.$$
 $28+9=37$
 $3adj(-6adj3A)$
 $3adj(-6x3^2adjA)$
 $3.6^2.3^4$
 $3dj(adjA)$
 $3^3.66.3^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$
 $3^3.36.263^{12}$

Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) (2, 4) in the line x + 2y = 2. If the centroid ΔPQR is the point (α, β) then $15(\alpha - \beta)$ is

equation

$$\frac{x-2}{2\times 1} = \frac{y-8/3}{2\times 2} = -\left[\begin{array}{c} 2+\frac{16}{3} - 2\\ \hline 2\times 1 \end{array}\right]$$

$$\frac{x-2}{2\times 1} = \frac{y-8/3}{2\times 2} = -\left[\begin{array}{c} 2+\frac{16}{3} - 2\\ \hline -\frac{16}{3} - \frac{16}{3} \end{array}\right]$$

$$\frac{x-2}{2} = -\frac{16}{3} = -\frac{64}{3}$$

$$\frac{y-8/3}{2} = -\frac{64}{3}$$

$$G\left(\frac{6}{3},\frac{8}{3}\right) = \left(\frac{2}{8},\frac{8}{3}\right)$$

If $A = \{1, 2, 3\}$, find the number of non empty equivalence relation on set A

$$\left\{ (1,1)(2,2)(3,3)(1,2)(2,1)(1,3)(3,1)(2,3)(3,2) \right\}$$

 $a_1, a_2, ..., a_n$ are in G.P. $a_1 a_5 = 28$ $a_2 + a_4 = 29$

Find $a_6 = ?$

$$f(x+y) = f(x)f'(y) + f(y)f'(x)$$

$$f(x) = f(x)f'(0) + f(0)f'(x)$$

$$f(x) = f(x)f'(0) + f'(x)$$

1 and
$$(n) = f(0) = f(0) f'(0) + f'(0)$$

$$1 = 2f'(0) f'(0) = 1/2$$

$$\frac{dy}{dy} = \frac{1}{2} \frac{1}{2}$$

The Foci of hyperbola are (1, 14) and (1, -12) and passes through the point (1, 6) then its latus rectum is

$$P(1,6)$$

 $|PF_1-PF_2|=2\alpha$
 $|PF_1-PF_2|=18$
 $|8-18|=2\alpha$
 $|6=2\alpha \Rightarrow \alpha=5$

$$\sum_{n=0}^{5} \frac{11C_{2r+1}}{2r+2} = \frac{m}{n}, \gcd(m, n) = 1,$$

$$m = 2^{-1}$$

$$m = 12$$

$$m = n = ?$$

$$n = 12$$

Area outside the parabola and inside the circle $(x - 2\sqrt{3})^2 \pm y^2 = 12$ and

parabola $y^2 = 2\sqrt{3}x$.

$$(x-2\sqrt{3})^2 + 2\sqrt{3}x = 12$$
 $x^2 + 1/2 - 4\sqrt{3}x + 2\sqrt{3}x = 1/2$
 $x^2 = 2\sqrt{3}x$
 $x = 0, x = 2\sqrt{3}$
Area = $a \left(\frac{xx^2}{y} - \int_0^y y dx \right)$

If
$$f(x) = 16((\sec^{-1}x)^2 + (\csc^{-1}x)^2)$$
 then the sum of max. and min. value of

f(x) is

$$f(\pi)|_{mun} = 16 \left[(\pi/4)^2 + (\pi/4)^2 \right]$$

$$\pi^2 + \pi^2 = 2\pi^2$$

$$f(\pi)|_{max} = 16 \left[(\pi/4)^2 + (\pi/4)^2 \right]$$

$$16 \left[(\pi/4)^2 + (-\pi/2)^2 \right]$$

$$16 \left[(\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 \right]$$

$$16 \left[(\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 \right]$$

$$16 \left[(\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 + (\pi/4)^2 \right]$$

$$16 \left[(\pi/4)^2 + (\pi/4)^$$

Sec
$$x \in [0, \pi]$$

Cosec $x \in [-\pi/2, \pi/2]$
 $y = 16 \left(0^2 + (\pi/2 - 0)^2\right)$

IN 2025 PAPER DISCUSSION

$$f(x) = 7(\tan x)^{8} + 7(\tan x)^{6} - 3(\tan x)^{4} - 3(\tan^{2} x)$$

$$I_{1} = \int f(x)dx, I_{2} = \int xf(x)dx$$

$$f(x) = 7 \tan^{6} x \left(\tan^{2} x + 1 \right) - 3$$

$$I_{1} = \int f(x)dx, I_{2} = \int xf(x)dx$$

$$f(x) = 7 \tan^{2} x \left(\tan^{2} x + 1 \right) - 3 \tan^{2} x \left(\tan^{2} x + 1 \right)$$

$$T_{1} + 12I_{2}$$

$$I_{1} = \int f(x)dx \qquad Sec^{2}x \left[7 \tan^{2} x - 3 \tan^{2} x \right]$$

$$I_{1} = \int (7 \tan^{2} x - 3 \tan^{2} x) Sec^{2}x dx$$

$$\int (7 + 6 - 3 + 2) dt = +7 + 3 = (\tan x)^{2} - (\tan x)^{3}$$

$$I_{2} = \int xf(x)dx = x \left(\tan^{2} x - \tan^{2} x \right) - \left(\tan^{2} x - \tan^{2} x \right)^{3} dx$$

$$I_2 = \int x f(x) dx - x \left(tan x - tan x \right) - \int \left(tan x \right)^2 - \left(tan x \right)^3 \right) dx$$

Circle lie in the second quadrant with radius 2 and touching both coordinate areas. Another circle with centres (2, 6) exactly intersect the first circle at two points then range of it's radius is (a, b) then find (a + b).

A coin tossed three times. Let x denote number of times tail follows a head. If μ and σ^2 denote the mean and variance of x the value of $64(\mu + \sigma^2)$.

Hote the	Xean	P(**!)	"XCYCXU) ^	the value	υ υ υ τ (μ	TU).
HHH	0	1/8	O	Xi P(Xi)	
HHT	1	18	1/8	0		
THH	0	28	0	8	2	
HTH	1	18		0	S = 4	8-(2)2
TTH	0	١	8	8		0 (2)
THT	1	18	0	0		2-4
HIT	(1)	ک	8	8	-	-(1)
TTT	20	8	8			(4)
		8	0	8		
			V	0.		
			1/8=1/2			

$$A = \{1,2,3,\ldots,10\},$$

$$B = \left\{ \frac{m}{n}, n > m, \underline{m, n \in A} \left(\gcd(m, n) = 1 \right) \right\}$$

Then no. of elements in B = ?

- 31
- 33
- 29
- 28

$$n=10$$
 $m \in [1,3,7,9]$
 $n=9$ $m=(1,2,4,5,7,8)$

$$M=6$$
, $m=1,5$
 $M=5$, $m=1,2,3,4$
 $h=4$, $m=1,3$

$$m=3, n=1, 2$$

 $m=2, n=1$
 $m=1, n \times$

YOU

Sub: Physics

Attempt: 01

Date: 12th Jan 2024

Shift: 01

Find the dimensions of $\frac{B}{\mu_0} = ?$

- (A) [AL]
- B [AL-1]
- C [MAL]
- [MALT-1]

Find the radius of curvature of the common surface of two bubbles $(R_1 > R_2)$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

$$\uparrow p_i - p_{atm} + \frac{4\tau}{R}$$

$$R = \frac{2R_1R_2}{R_1 - R_2}$$

$$R = \frac{R_1 R_2}{(R_1 - R_2)}$$

$$\frac{1}{R_2} - \left(\frac{1}{R_1}\right) = \frac{4T}{Req}$$

$$\frac{1}{R_2} - \frac{1}{R_1} - \frac{1}{Req}$$

16

JEE MAIN 2025 PAPER DISCUSSION

An electron in the group state of the hydrogen atom has the orbit, radius of 5.0×10^{-10} m while that for the electron in third excited state is 8.48×10^{-10} m. The radio of the de-Broglie wavelength is electron om the ground state to that in the excited state is:

$$\frac{\lambda_1}{\lambda_4} = \frac{h}{mv_1} + \frac{mv_2}{h}$$

$$\frac{\lambda_1}{\lambda_4} = \frac{v_4}{v_1} = \frac{m_4}{m}$$

$$\frac{\lambda_1}{\lambda_4} = \frac{v_4}{v_1} = \frac{m_4}{m}$$

Find current in the circuit, Jockey is at middle point on 1Ω

Assertion: When YDSE set up is dipped in a denser medium than the fringe width decreases.

Reason: Speed of light decreases in denser medium but frequency of light remains same.

$$\beta = \frac{\lambda D}{d}$$

Medium $\lambda_{med} = \frac{\lambda}{\mu}$
 $\beta_{new} = \frac{\beta_{sid}}{\mu}$
 $\gamma_{med} = \frac{\lambda}{\mu}$
 $\gamma_{med} = \frac{\lambda}{\mu}$
 $\gamma_{med} = \frac{\lambda}{\mu}$

Statement I- In a vernier callipers, one vernier scale division is smaller than one main scale division.

Statement II- The vernier constant is given by one main scale division multiplied by the number of vernier scale divisions. $\lfloor \cdot \cdot \cdot \cdot \rangle = 1 \text{MSD} - 1 \text{VSD}$

- A Statement I is true and Statement II is false.
- Statement I is false and Statement II is true.
- Both the statements are true.
- Both the statements are false.

Identify the correct graph between the resistivity of conductor and temperature

disc/.

From a sphere of mass M and radius R, a cavity of radius R/2 is created. Find the moment of inertia about an axis passing through the centre of sphere.

A bob of mass m is suspended at a point '0' by a light string of length 'l' and left to perform vertical motion (circular) as shown in figure. Initially by applying horizontal velocity V_0 at the point 'A', the string becomes slack when the bob reaches at the point 'D'. The ratio of the K.E of the bob at the points B and C is

A Parallel plate capacitor of capacitance 40 μ F is connected to a 100 V power supply now the intermediate space between the plates is filled with a dielectric material of dielectric constant K = 2. So due to the introduction dielectric the extra charge and the change in electrostatic energy in the capacitor respectively is:

- A 2 mc and 0.4 J
- B 2 mc and 0.2 J
- 4 mc and 0.2 J
- D 8 mc and 2 J

$$|E| = \frac{1}{2} |C|^{2}$$

$$|C| = \frac{2}{4} |C|$$

$$|C| = \frac{2}{4} |C|$$

$$|C| = \frac{4}{4} |C|$$

$$|C| = \frac{4}{4} |C|$$

$$|C| = \frac{1}{4} |C|$$

Identify the diode connected in forward bias

F.B
$$V_P > V_N$$
.

 $V_{P} - V_{N} = 2 - 4 = -2$
 $-3 - (-1) = -2$
 $0 - (-15) = +15$

What amount of heat is required to convert 1 gm of ice at -10°C into steam at 110°C?

$$\Delta Q = 730 \text{ cal}$$

$$\Delta Q = 1100 \text{ cal}$$

$$\Delta Q = 930 \text{ cal}$$

$$\Delta Q = 900 \text{ cal}$$

Si = 0.5 Cal

Statement I- When non - ideal batteries are connected in parallel then the resultant emf is lesser than either of the battery C Nota Necassay Condition (Talse).

Statement II- When non – ideal batteries are connected in parallel then the resultant resistance of their internal resistance is smaller than either of the resistance

I false, II true

Both true

Both false

R= YKA

In the diagram given below, the value of coefficients of thermal conductivity, $K_1 = 60$, $K_2 = 120$ W/mC, $K_3 = 135$ W/mC. The temperature at the left most end is 100 °C and rightmost end is 0 °C find the temperature θ .

- **B** 45°C
- **C** 55°C
- (D) 60°C

$$\frac{60(0-100)+126(0-100)+2700}{120} = 0$$

$$\frac{120}{270} = \frac{1200}{1200}$$

$$\frac{120}{270} = \frac{1200}{45}$$

A charge of value q is placed at the edge of a imaginary cube of side a as shown in figure. find the net flux through the cube.

$$\mathbf{B}$$
 q/4 ϵ_0

$$c$$
 q/8 ϵ_0

$$Q/2\varepsilon_0$$

Proet =
$$\frac{9i}{\varepsilon_0}$$
 = $\frac{9i}{\varepsilon_0}$ = $\frac{9i}{\varepsilon_0}$

2=1

Two spherical black bodies of radius 0.8 m and 0.2 m are at temperatures of 400 K and 800 K respectively. Find ratio of rate of heat loss.

Ratro

$$\frac{dQ|}{dt|_{1}} = \frac{4\pi v_{1}^{2} T_{1}^{4}}{4\pi v_{2}^{2} T_{2}^{4}} = \frac{0.8}{0.2} \left(\frac{4}{8}\right)$$

A particle is projected with velocity 60 m/s at an angle 30° with respect to horizontal. It reaches height h_1 in 1^{st} second and height h_2 in last second during its motion. Find the ratio of h_1/h_2

A closed organ pipe of length 10 cm is in 9th harmonic resonates with 4th harmonic of open organ pipe. Find the length of open organ pipe.

$$L_0 = 15 \text{ cm}$$

$$L_0 = \frac{100}{9} \text{ cm}$$

$$L_0 = \frac{80}{9} \text{ cm}$$

$$L_0 = \frac{110}{7} \text{ cm}$$

Combined Pdf -

JEE Wallah Telegram. Manzil batch App.

dinkin pinned Comments

Alinkin pinned Comments

YOU

$$\gamma_1 = f(t)$$

$$\gamma_2 = f(t)$$

$$\sigma'' = f(t)$$

$$\sigma''$$

Attempt: 01

Date: 22nd Jan 2024

Shift: 01

Physical Jemistry

Compare boiling point of given solutions

- (i) 10⁻⁴ M NaCl
- (ii) 10⁻³ M NaCl
- (iii) 10⁻² M NaCl
- (iv) 10⁻⁴ M Urea
- (A) |> || > || > |V
- B ||| > || > | > |V
- (C) ||>|>|||>|V
- D || > | > || > |V

 $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$

If initial pressure of CO_2 is 0.6 atm and after equilibrium is established, total pressure is 0.8 atm. Then, find K_p .

- (A) 0.4
- **B** 0.2
- **C** 0.6
- 0.8

Radius of electron in ground state for hydrogen is a_0 , then radius of electron in He⁺ ion in 3rd excited state is a. Then $\frac{a_0}{a}$ is:

- (A) 1/2
- B) 1/4
- C 1/16
- D 1/8

At 25°C a thermally insulated closed vessel containing liquid is stirred mechanically

$$\triangle U = 0$$
 $q = 0$ $u = 0$

$$D$$
 $\Delta U > 0$ $q = 0$ $u < 0$

Which of the following is not true?

- A Decay constant does not depends on temperature
- B Decay constant increases with temperature
- $c t_{1/2} = \frac{\ln 2}{K}$
- None of these

norganic hemistry

Electrolysis of which compound give H₂S₂O₈

- A Electrolysis of conc. Na₂SO₄
- B Electrolysis of dil. Na₂SO₄
- C Electrolysis of conc. H₂SO₄
- D Electrolysis of dil. H₂SO₄

No. of linear compounds?

Which of the following has maximum size out of Al3+, Mg2+, F-, Na+?

For [NiCl₄]²⁻ what is the charge on metal and shape of complex respectively?

- A +2 Tetrahedral
- B) +2, square planar
- C +4, Tetrahedral
- +4, square planar

$$\frac{M^{2t} \left(\frac{d^8}{d^9} \right)}{I^- \rightarrow H_{20}} \qquad NH_3 \rightarrow c_8$$

$$Td\left(sp^3 \right) \qquad Sq. \, blahar \left(dsp^2 \right)$$

The correct decreasing order of electronegativity is

- F > Cl > Br > 1
- C() F > Br > 1
- C F C C | C Br C |
- Br > F > I > Cl

Which of the following lanthanide ion at 7 electrons in the outer most shell?

- A Eu+3
- **B** (Gd+3)
- (C) Sm²⁴
- **D** Gd²⁺

Which of the following electronegativity order is incorrect?

- A Mg < Be < B < N
- B AI < Si < C < N.
- C S CI CO CF
- Al < Mg < B < N

Which of the following has = 0.8

B)
$$K_3[Fe(SCN)_6]$$

$$\rightarrow F_e^{+3} (a^5)$$

C
$$K_3[Fe(NH_3)_6]$$

D $K_2[Fe(NH_3)_5Br]$

Element not showing variable oxidation state

C

Organic hemistry

Calculate Number of stereoisomers of CH₃ – CH = CH – CH – CH₃

Weight of the organic compound is 180 g and the weight of the AgCl precipitated 143.5 g. Calculate the estimation of Cl in ______ %

wt of CI = 35.5 g

Wt of Ag = 180 g.

Statement - I : CH₃ - O - CH₂ - Cl will show nucleophilic substitution by SN1 mechanism in protic medium

CH₃

Statement – II: CH₃ – Ç^{H₃} CH₂ – Cl will undergo nucleophilic substitution via SN2 mechanism easy

A

Statement-I and statement-II both are correct

B

Statement-I and statement-II both are incorrect

C

Statement-I is correct but statement-II is incorrect

Statement-I is incorrect but statement-II is correct

Which of the following acid is present in Vitamin C?

- A
- Saccharic acid
- B
- Aspartic acid
- C
- Adipic acid
- D
- Ascorbic acid

Identify the incorrect statement

- A
- MP of Cis 2 butene is greater than tran 2-butene.
- B
- 2-methyl 2-butene can have two geometrical isomer
- C
- DP moment of cis 2 butene is greater than trans 2 butene
- D

In trans isomer identical groups are opposite direction

Which of the following gives positive test with Fehling's solution?

$$CH_{2} - OH$$
 $C = O$
 $C = O$
 $(CH - OH)_{3}$
 $CH_{2} - OH$

COOH $COOCH_3$ $CH_3 - CH - CH = CH - CH_3$ IUPAC Name?

- $oldsymbol{A}$
- 4-methoxycarboxy-2-methylpentanoic acid
- B
- 3-methoxycarboxy-2-methylpentanoic acid
- C
- 5-methoxycarboxy-2-methylpentanoic acid
- (D)
- 2-methoxycarboxy-3-methylpentanoic acid

Sub: Physics

Attempt: 01

Date: 12th Jan 2024

Shift: 01

Find the dimensions of $\frac{B}{\mu_0}$

- (A) [AL]
- B [AL-1]
- C [MAL]
- [MALT-1]

Assertion: When YDSE set up is dipped in a denser medium than the fringe width decreases.

Reason: Speed of light decreases in denser medium but frequency of light remains same.

Find the radius of curvature of the common surface of two bubbles $(R_1 > R_2)$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

$$R = \frac{2R_1R_2}{R_1 - R_2}$$

$$R = \frac{R_1 R_2}{R_1 - R_2}$$

$$R = \frac{R_1 R_2}{(R_1 - R_2)}$$

An electron in the group state of the hydrogen atom has the orbit, radius of 5.0×10^{-10} m while that for the electron in third excited state is 8.48×10^{-10} m. The radio of the de-Broglie wavelength is electron om the ground state to that in the excited state is:

A

9

B

3

(c)

Find current in the circuit, Jockey is at middle point on 1Ω

Statement I- In a vernier callipers, one vernier scale division is smaller than one main scale division.

Statement II- The vernier constant is given by one main scale division multiplied by the number of vernier scale divisions.

- A Statement I is true and Statement II is false.
- Statement I is false and Statement II is true.
- Both the statements are true.
- Both the statements are false.

Identify the correct graph between the resistivity of conductor and temperature

From a sphere of mass M and radius R, a cavity of radius R/2 is created. Find the moment of inertia about an axis passing through the centre of sphere.

A bob of mass m is suspended at a point '0' by a light string of length 'l' and left to perform vertical motion (circular) as shown in figure. Initially by applying horizontal velocity V_0 at the point 'A', the string becomes slack when the bob reaches at the point 'D'. The ratio of the K.E of the bob at the points B and C is

- (A) 2
- **B**) 4
- **(c)** 1
- **D** 3

A Parallel plate capacitor of capacitance 40 μ F is connected to a 100 V power supply now the intermediate space between the plates is filled with a dielectric material of dielectric constant K = 2. So due to the introduction dielectric the extra charge and the change in electrostatic energy in the capacitor respectively is:

- (A) 2 mc and 0.4 J
- B 2 mc and 0.2 J
- (c) 4 mc and 0.2 J
- B mc and 2 J

Identify the diode connected in forward bias

What amount of heat is required to convert 1 gm of ice at -10°C into steam at 110°C?

$$\Delta Q = 730 \text{ cal}$$

$$\Delta Q = 1100 \text{ cal}$$

$$\Delta Q = 930 \text{ cal}$$

$$\Delta Q = 900 \text{ cal}$$

Statement I- When non – ideal batteries are connected in parallel then the resultant emf is lesser than either of the battery

Statement II- When non – ideal batteries are connected in parallel then the resultant resistance of their internal resistance is smaller than either of the resistance

- (A) I true, II false
- B I false, II true
- C Both true
- D Both false

In the diagram given below, the value of coefficients of thermal conductivity, $K_1 = 60$, $K_2 = 120$ W/mC, $K_3 = 135$ W/mC. The temperature at the left most end is 100 °C and rightmost end is 0 °C find the temperature θ .

- (A) 40°C
- **B** 45°C
- **C** 55°C
- (D) 60°C

A charge of value q is placed at the edge of a imaginary cube of side a as shown in figure. find the net flux through the cube.

- (A) q/6 ϵ_0
- \bigcirc q/4 ϵ_0
- c q/8 ϵ_0
- $Q/2\varepsilon_0$

Two spherical black bodies of radius 0.8 m and 0.2 m are at temperatures of 400 K and 800 K respectively. Find ratio of rate of heat loss.

A solid sphere of uniform density and radius R exerts a gravitational force of attraction F_1 on the particle P, distant 2R from the centre of the sphere. A spherical cavity of radius R/3 is now formed in the sphere as shown in figure. The sphere with cavity now applies a gravitational force F_2 on the same particle P. Find the ratio F_2 / F_1 .

- A 7/9
- B 9/7
- **C** 11/12
- **D** 3/4

A particle is projected with velocity 60 m/s at an angle 30° with respect to horizontal. It reaches height h_1 in 1^{st} second and height h_2 in last second during its motion. Find the ratio of h_1/h_2

A closed organ pipe of length 10 cm is in 9th harmonic resonates with 4th harmonic of open organ pipe. Find the length of open organ pipe.

$$L_0 = 15 \text{ cm}$$

B
$$L_0 = \frac{100}{9} \text{ cm}$$

$$C \qquad L_0 = \frac{80}{9} \text{ cm}$$

$$L_0 = \frac{110}{7} \text{ cm}$$

Sub: Mathematics

Attempt: 01

Date: 12th Jan 2024

Shift: 01

A 5-letter word is to be made using any distinct 5 alphabets such that middle alphabet is M and letters should be in increasing order.

The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{4}$ and $\frac{x+2}{7} = \frac{y-2}{8} = \frac{z+1}{2}$ is

$$\frac{88}{\sqrt{1277}}$$

$$\frac{\mathbf{B}}{\sqrt{1277}}$$

$$\begin{array}{c}
\hline
\mathbf{c} & 66 \\
\hline
\sqrt{1277}
\end{array}$$

$$\begin{array}{c}
\boxed{\mathbf{D}} \quad \frac{55}{\sqrt{1277}}
\end{array}$$

Two balls are selected at random one by one without replacement from the bag containing 4 white and 6 black balls. If the probability that the first selected ball is black given that the second selected is also black, is m/n when gcd(m, n) = 1, then m + n = ?

If
$$s_n = \sum_{r=0}^n T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$$
 then find $\sum_{r=1}^n \frac{1}{T_r} = \frac{1}{2n}$

If
$$y^2 dx + \left(\frac{1}{y} - x\right) dy = 0$$
 and $x(1) = 1$ then find $x\left(\frac{1}{2}\right)$

If
$$f(x) = \begin{cases} -3ax^2 - 2 & x < 1 \\ a^2 + bx & x \ge 1 \end{cases}$$
 given $f(x)$ is continuous 4 differentiate. Area enclosed

by f(x) and line y = -20 is $\alpha + \beta\sqrt{3}$ then find $\alpha + \beta$.

 $e^{5(\ln x)^2+3} = x^8$. Product of all real values of x.

If A be a 3×3 square matrix such that det(A) = -2. If $det(3adj(-6adj(3A))) = 2^{m+n} 3^{mn}$ where m > n the n. Find 4m + 3n.

Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) (2, 4) in the line x + 2y = 2. If the centroid ΔPQR is the point (α, β) then $15(\alpha - \beta)$ is equation

If $A = \{1, 2, 3\}$, find the number of non empty equivalence relation on set A

- A
- **B** 5
- (c) 6
- **D** 7

A coin tossed three times. Let x denote number of times tail follows a head. If μ and σ^2 denote the mean and variance of x the value of $64(\mu + \sigma^2)$.

$$a_1, a_2, \ldots, a_n$$
 are in G.P.

$$a_1 a_5 = 28$$

$$a_2 + a_4 = 29$$

Find
$$a_6 = ?$$

$$f(x) = 7(\tan x)^{8} + 7(\tan x)^{6} - 3(\tan x)^{4} - 3(\tan^{2} x)$$

$$I_{1} = \int f(x)dx, I_{2} \int xf(x)dx$$

$$7I_{1}+12I_{2}$$

Let f(x) be a real differentiable function such that f(0) = 1 and f(x)f'(y) + f(y)f'(x) for all $x, y \in R$. Then $\sum_{n=1}^{100} \log_e f(n) =$

The Foci of hyperbola are (1, 14) and (1, -12) and passes through the point (1, 6) then its latus rectum is

$$\sum_{n=1}^{3} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}, \gcd(m, n) = 1,$$

$$m-n=?$$

$$A = \{1,2,3,...,10\},\$$

$$B = \left\{\frac{m}{n}, m > n, m, n \in A, \gcd(m,n) = 1\right\}$$

Then no. of elements in B = ?

- (A) 31
- **B** 33
- **C** 29
- **D** 28

If $f(x) = 16(\sec^{-1}x)^2 + (\csc^{-1}x)^2$ then the max. and min. value of f(x) is respectively,

$$\frac{1001\pi^2}{33} \text{ and } \frac{2\pi^2}{9}$$

$$\frac{1117\pi^2}{68}$$
 and $\frac{4\pi^2}{17}$

$$\frac{1105\pi^2}{68}$$
 and $\frac{4\pi^2}{17}$

$$\frac{1268\pi^2}{27}$$
 and $\frac{3\pi^2}{16}$

If
$$8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + p^2) + \dots \infty$$
, then the value of p is

- $\begin{array}{|c|c|} \hline A & \frac{14}{5} \\ \hline \end{array}$
- $\frac{16}{5}$

Area outside the parabola and inside the circle $(x - 2\sqrt{3})^2 + y^2 = 12$ and parabola $y^2 = 2\sqrt{3}x$.

Thank You