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1 

ASYMPTOTIC 
NOTATION 

 

1.1 Introduction of Course 

 
 

1.2  Algorithm Concept and Life Cycle Steps 

1.2.1 Algorithm 

• An Algorithm consists finite number of steps to solve any problem. 

• Every step involves some operations and each operation must be definite and effective. 
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1.2.2 Life Cycle Steps 

 

1.3 Needs of Analysis 

 

 
 

In performance comparison comparing different algorithms for optimal solution. 

1.3.1 Time Complexity 

Time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the input size. 

 

1.3.2 Space Complexity 

Space complexity of an algorithm quantifies the amount of space or memory taken by an algorithm to run as a function of input 

size. 

 

Note: 

To find the time complexity of an algorithm, find the loops and also consider larger loops. 

Space complexity is dependent on two things input size and some extra space (stack space link, space list etc). 
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1.4 Methodology of Analysis 

 

 
 

1.5 Types of Analysis 

Worst Case 

The input class for which the algorithm does maximum work and hence, take maximum time. 

Best Case 

The input class for which the algorithm does minimum work hence, take minimum time. 

Average Case 

Average case can be calculated form best case to worst case. 

1.6 Asymptotic Notations 

Suppose, T(n) be a function of time for any algorithm. 
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1.7 Types of Asymptotic Notations 

 

1.7.1 Big O – Notation 

 Two Functions ( ), ( )f n g n  

 ( ) ( ( ))f n O g n=  

When the growth of ( )g n is same or higher than ( )f n  like ba   

Example: 

 
2( ) 3 10, ( ) 2 5f n n g n n n= + = + +  

 ( ) O( ( ))f n g n=  

 

1.7.2 Ω - Notation 

 ( ) ( ( ))f n g n=   

 ( ) ( ) ( )f n C g n a b     

Example: 3 (2 )n n=   

 

1.7.3  - Notation 

If  f(n) ≤ g(n) 

           And  

  f(n) ≥ g(n)   

  

 f(n) = g(n)   

∴    f(n) = (g(n)) 

 

Example:   

 f(n) = 2n2, g(n) = n+10 

 f(n) > g(n) here 

so,  f(n) = Ω(g(n)) or g(n)=O(f(n)) 
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1.7.4. Properties with respect to asymptotic notations 

 Reflexive Symmetric Transitive Transpose symmetric 

Big oh (O)  ×   

Big omega ()  ×   

Theta ()    × 

Small oh (o) × ×   

Small omega () × ×   

 

Example 1.  Consider the following function 

 
1

( )
n

p

f n p q

=

= =  

Which of the following is/are true for ‘q’ 

 (a)  (n4) (b) (n5) (c) O(n5) (d) (n3) 

Solution: (a, c, d) 

  f (n) = 3

P 1

P
n

=

  

         = 13 + 23 + 33 + 43 ................. + n3 

         = 

2
1

2

n
n

 + 
  

  
 

         = O(n4) or  (n4) 

         =  (n4) 

Example 2.  Consider the following functions: 

                 f (n) = ½

1

n

P

P
=

 = q 

Find the value of q in terms of asymptotic notation. 

Solution:   f (n) = ½

1

n

P

P
=

  

         = ( ) ( )
½ ½

1 2 3 .......+ + +  

         = 
3

2
2

1
3

n −
  

 

         = 
3

2
2 2

3 3
n −  

         = O(n1.5) 

         = O( )n n  

Example 3. Arrange the following functions in increasing order. 

 1 2 3 4 5 6 7 8log , , 2 , 3 , !, , log , 100 logn n nf n n f n f f f n f n f n f n n= = = = = = = =  

 → 7 2 8 3 4 5 6f f fl f f f f f  =      
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Example 4. Arrange the following functions in increasing order. 

  
2 2

1 2 3 4 510, , loglog , (log ) ,f f n f n f n f n= = = = =  

 
2

6 7 8 9 10log , !, 2 , , logn nf n n f n f f n f n n= = = = =  

 → 1 3 4 2 6 5 10 8 7 9f f f f f f f f f f          

Example 5.  Arrange the following functions in increasing order. 

 1 9log log log logf n f n n= =  

 
2

2 10log logf n f n n= =  

 
2 3

3 11(log )f n f n= =  

 4 12log 2nf n f= =  

 
1/10

5 13
nf n f e= =  

 6 14 !f n f n= =  

 
2

7 15
nf n f n= =  

 
3/2

8 16logf n n f n= =  

 f1 < f4 < f2 < f3 < f5 < f6 < f9 < f8 < f16 < f7 < f10 < f11 < f12 < f13 < f14 < f15 

log log
b b

c aa c  

 22
log log 22 n n n  =  

 

Example 6.  Arrange the following functions in increasing order. 

 1 !f n= , 2
nf n=  

 1 ( 1)( 2) ... 3 2 1f n n n=  − −      

 2 ...f n n n n n n n=         

 2 1f f  

 1 2O( )f f =   

  2 3 4 !n n n nn n      

Question. 

 Which of following is TRUE? 

(1) 2log 22 O(n )n =   TRUE 

 (2) 23log2 52 O( )nn n =   TRUE 

 (3) 
22 O(2 )n n=    TRUE 

 (4) log O(log log )n n=   FALSE 

 (5) log log O( log )n n n=   TRUE 

Solution: 

 (1)  2log 22 O(n )n =  

  2log 2n=  

  n=  
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2O( )n n= =  

 (2) 23log2 52 O( )nn n =  

  23log 22n n=   

  2 3n n=   

  5n=  

   
5 5O( )n n= =  

 

(3)

       

2

2

2

2 2

2 2 .2

2 2

2 (2 ) True

n n

n n n

n n

n nO

=

=



=

 

 

 (4)    log loglog

log (log )

False

n n

n O n





 

 (5)   log log log

loglog ( log )

True

n n n

n O n n



=

 

1.8.   Analysis of an Algorithm 

 

      Algorithms 

 

 Without Loop   Interactive Algorithm   Recursive Algorithm 

 

1.8.1 Without loop  

 

Example: int fun (in + n) 

  { 

   return n*(n+1)/2; 

  } 

  

Solution. 

    Here 1 multiply, 1 division, 1 addition 

  ⸫ O (1) [no loops, no recursion] 

1.8.2.  Iterative Algorithm Analysis 

Example 1: 

  for (i =1; i ≤ n; i=i*2) 

printf(“Sushil”) 
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Solution. 

 i=1, 2, 22, 23 ..., 2k 

 →  

 2k ≤ n 

 k log 2 ≤ log n 

 k ≤ 
log

log 2

n
 

 ⸫ k ≤ 2log n   

 k = 2log n    

 So, this will execute 2log n   +1 time and Complexity O ( 2log n ) 

 

Example 2: 

  For (i=1; i ≤ n; i=i*3) 

printf(“Aaveg”);  

 

Solution. 

 So, this will execute 3log 1n +    time and complexity O ( 3log n ) 

➢ i = 1→2→4→8→16→...→n 

 i = n→n/2→n/4→n/8→...1 

 

Example 3: 

  for (i = 1; i ≤ n; i++) 

 { 

  for (j=1; j ≤ 10; j++) 

   { 

    printf(“Dhananjay”); 

   } 

  } 

 

Solution. 

 This will execute 10⸳n times and complexity O(n) 

 

Example 4: 

  for (i = 1; i <= n; i = i*3) 

 for (j = 1; j ≤ n; j++) 

  printf(“Prapti”); 

Solution. 

 Total ( )3log 1n n +   time execute and Complexity = O ( 3logn n ) 
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1.8.3.  Recursive Algorithm Analysis 

Example 1: 

   void fun (in + n) T(n)    

  { 

   if (n > 0)  1 compare; C1 time  

   { 

    if (“% d”, n);   C2 time 

    fun (n - 1);  T(n-1) 

   } 

  } 

Let T(n) be the Complexity time taken by algo for n size i/p 

Solution. 

T(n) = C1+C2+T(n-1) 

      T(n) =T(n-1) + C   n > 0 

       

 T (0) = C   Constant 

 

T(n) = C;  n = 0  

T(n) = T (n - 1) + C; n > 0 

  

 

 Example 2: 

   void fun (in + n) T (n) 

  { 

    if (n > 0)  C1 time 

     { 

    for (i = 1; i <= n; i + 1)    n time 

     printf(“Hello”); 

    fun (n - 1);  T (n - 1) 

      } 

  }  

Solution. 

  T(n) = C1 + n - 1 + T (n - 1)  

        = T (n - 1) + n   n > 0 

  T (0) = C    n = 0 

  

 Example 3: 

  void fun (in + n)  T(n) 

  { 

    if (n > 0)  C1 

      { 

   for (i = 1; i < = n; i = i*2)  2log n    
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    printf(“Divyajyoti”); 

   fun (n - 1);  T (n - 1) 

        } 

  } 

 

Solution. T (n) = T (n - 1) + O ( 2log n );   n > 0 

   or 

  T (n) = T (n - 1) + 2log n  

  T (0) = C  or n = 0 

  T (0) = O (1) 

1.9 Solving Recurrence Relation 

1.9.1 Substitution Method 

Example: (1)  

  T (n) = T (n - 1) + C 

      T (1) = C 

 

n size on problem n – 1 size x1 convert them  

 T (n) = T (n -1) + C 

  

           [ T (n - 2) + C] + C 

 T (n) = T (n - 2) + 2C 

   

          = T (n - 3) +3C 

 T (n) = T (n - k) + kC 

 ⸫ n – k = 1 

 T (n) = T (1) + (n - 1) C 

 = C + (n - 1) C 

 T (n) = O (n)  

Example (2)  

  T (n) = T (n - 1) + C⸳n 

                T (1) = C 

  Solution.    

   ⸫ T (n)  = T (n - 1) + C⸳n 

  = [T (n - 2) + C⸳(n – 1)] + C⸳n 

  = [T (n - 3) + C⸳(n – 2)] + C (n - 1) + C⸳n 

  = T (n - 3) + (n - 2)⸳C + (n - 1)⸳C + n⸳C 

  = T (n - k) + C (n – k +1) + C (n – k + 2) + ... + C (n – k + k) 

    ⸫ n – k =1 

       T (n) = T (1) + T (2) + C (3) + C (4) + ... + C (n - 1) + C (n) 

  = C + C (2) + (3) C + 4 (C) + ... + (n - 1) C + (n)⸳C 

  = C [1 + 2 + 3 + ... + n] 
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  = C⸳n
( 1)

2

n +
 

  = O (n2) 

Example (3)  

  T (n) = T (n/2) + C 

          T (1) = 1 

Solution. 

       T (n)  = T (n/2) + C 

   

  = [T (n/22) + C] + C 

  = T (n/4) + 2C 

 

  = T (n/23) + 3C 

       T (n)  = T (n/2k) + kC 

  = (n/2k) = 2 

       T (n) = T (2) + ( 2log n  - 1) C 

  = 1 + ( 2log n  - 1) C 

  = O (log n) 

Example (4)  

  T (1) = 1  

  T (n)= 2T (n/2) + C 

Solution.     T(n) = 2 
2

2T C C
2

n  
+ +  

  
 

            = 
2 2

2
2 T 2 C + C

2

n 
+ 

 
 

                   =
2

3
2 2T C 2C C

2

n  
+ + +  

  
 

            = 
3 2

3
2 T 2 C + 2C + C

2

n 
+ 

 
 

           = 
k k 1 k 2 1

k
2 T 2 C + 2 C ... 2 C C

2

n − − 
+ + +  + 

 
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             k

k
1 2

2

n
n=  =  

            → T (n)         = nT (1) + 2k - 1⸳ C + 2k - 2⸳ C + ... + 2C + C 

          = 2k + 2k - 1⸳ C + 2k – 2 + ... + 2C + C 

          = 2k + C (2k-1 + 2k-2 + ... + 21 + 20) 

          = 2k + C 
(2 1)

2 1

k −

−
 

          = 2k + C (2k - 1) 

          = 2k + 2k⸳ C – C 

           = n⸳C 

           = O (n) 

 1.9.2 Master’s Method 

 T (n) = aT 
n

b

 
 
 

+ Θ (nk (log n) p) 

  a ≥ 1, b > 1, k ≥ 0, p = real number 

 

 

 

   If a > bk or log kb a   

   T (n) = Θ ( )logb an  

 

Question 1. T (n) = 2T 
2

n 
 
 

 + (n)0log n 

Solution. a = 2, b = 2, k = 0 

   a > bk; 2 > 20; 2 > 1 

   T (n) = Θ (n) 

Question 2.  T (n) = 2T 
2

n
n

 
+ 

 
 

Solution. a = 2, b = 2, k = 1, p = 0 

   T(n) = Θ (n ⸳log n) 

   

Question 3.   T(n)=2
 

+ 
 

T log
2

n
n n  

  

Solution. a = 2, b = 2, k = 1, p = 1 

   

   ⸫ T (n) = Θ( n (log n)2) 

 

        (b) If p < 0 then T (n) 

        T (n) = O (nk) 
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Question 4.  
 

= + 
 

T( ) T
2

n
n C  

Solution.   

   T(n) = Θ (n2log n) 

 

1.9.3.  Recursive Tree 

(1) T( ) 2T C
2

n
n

 
= + 

 
 

T (1) = C 

 
 

  

21 2 log
2

k

k

n
n k n= → = → =  

    Total Work done = C + 2C + 22C + 23C + ... + 2kC 

= C (1 + 2 + 22 + ... + 2k) 

=
12 1

2 1

k

c
+ −

  − 

= C (2k+1 - 1 

= C (2⸳2k - 1) 

= C (2n - 1) 

= O (n) 
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(2)  ( ) 2
2

n
T n T n

 
= + 

 
 

   21; 2 ; log
2

k

k

n
n k n− − −  

⸫ n + n + n + ... + n 

= k n 

= n 2   nlog n  

          = 2 )O(    nlog n  

(3) ( ) 4
2

n
T n T n

 
= + 

 
 

 

 

n = 2k, k = log2 n 

= 
24 4 ... 4

2 2 2

kn n n
n

     
+ + + +     

     
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= 
2 31 2 2 2 ... 2kn + + + + +

 
 

= 
12 1

2 1

k

n
+ −

  − 
 

= n (2  2k−1 ) 

= n ( 2n ) − 1 

                                          = O (n2 ) 

 

(4) 
2

( )
3 3

n n
T n T T n

   
= + +   

   
  T(1) = 1 

 

31; 3 ; log
3

n
n i i n

i
− − −  3 

= n + n +...+ log3  n T (n)  

= (n + n + n +...+ log3 n) ≥ n + ... + log3 n 

Ω(n⸳ log3/ 2  n ) 
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1.10  Recurrence Relations and their Time Complexity 

T (n) = C; n = 2 

T(n) = 2 T(√𝑛) + C; n > 2 
O (logn) 

T (n) = C; n = 2 

T(n) = T(n – 1) + C ; n > 2 
O(n) 

T (n) = C; n = 1 

T(n) = T(n – 1) + n + C ; n > 2 
O(n2) 

T (n) = C; n = 1 

T(n) = 2T(n – 1) + C ; n > 1 
O(2n) 

T (n) = C; n = 1 

T(n) = 2T
2

n 
 
 

 + C ; n > 1 (n) 

T (n) = C; n = 1 

T(n) = 2T
2

n 
 
 

 + n ; n > 1 (nlogn) 

T (n) = C; n = 1 

T(n) = T
2

n 
 
 

 + C; n > 1 (logn) 

T (n) = 1; n = 2 

T(n) = T ( )n  + C; n > 2 (loglogn) 

 

1.11 Space Complexities 
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 Int n, A[n]; 

 Algorithm Rsum(A, n) 

 { 

    if (n = 1) return (A(1)); 

    else; 

    return (A[n] + RSum(A, (n–1)); 

  } 

 

• Time Complexity = O(n) 

• Space Complexity 

• We need stack space 

• Stack is used to store activation records of function calls 

• Size of activation records is trivial 

• Stack size that we need = O(n) 

• Space complexity = O(n) 

 

 Algorithm A(n) 

  { 

     if (n = 1) return; 

     else; 

  { 

     A
2

n 
 
 

; 

   } 

   } 

 

 Recurrence relation  

         T(n) = C; n = 1 

                                          T(n) = T
2

n 
 
 

+ C; n > 1 

 Time Complexity = O(log n) 

Space Complexity 

• Space complexity will depend on number of activation record pushed into the stack 

Suppose, n = 16 

A (1) 

For n = 2K we are pushing 

the ‘K’ activation record 

A (2) 

A (4) 

A (8) 

A (16) 
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  Space Complexity 

    

   n = 2K 

                             log n = 
2

Klog 2  

   K = 
2

log n  

                        Space Complexity O(log )n=   

Example 3 

 Algorithm A(n) 

  { 

     if (n = 2) return; 

    else; 

    return (A n ); 

   } 

Solution: 

                           T (n) = 1; n =2 

         T (n) = T ( )n +C; n > 2 

        Time Complexity = O (loglogn) 

Space Complexity 

Suppose n = 16 

  

A(1) 

A(2) 

A(4) 

A(16) 

 For 22
n

k
manner we are pushing in stack 

  22 2
n

k
   

  
2 2

log 2 log 2
2k

n
    

 n  2K   

 K  
2

log n  

     ( )2
Space complexity O log n=  

❑❑❑ 
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2 
DIVIDE AND CONQUER 

 

2.1 DAC Application 

 

2.2 Finding Maximum Minimum element 

Recurrence Relation: 

  

1 if 1 or 2

( )
2 1; 2

2

n n

T n n
T n

= = 
 

=   
+   

  

 

Time Complexity: 

  ( ) ( )T n O n=  

• Time complexity is same for every case (Best case/Worst case). 

 

Space Complexity: 
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Space Complexity

  
( ) (log )

( )

O n O n

O n

= +

=
  

 

Number of comparisons to find maximum / minimum element on an given array of n elements: 

                          Comparison =  
3

2
2

n
−  

2.3 Power of an Element 

Recurrence relation:  

  

1 if 1

( )
1; 1

2

n

T n n
T n

= 
 

=   
+   

  

 

Time Complexity: 

  
( )

2

( ) (log )

n
T n T C

T n O n

 
= + 

 

=

 

Space Complexity:  

 

Space Complexity  = 4B + O(logn) 

  = O(logn) 

Number of multiplications to find an  

Multiplication = O(logn) 

2.4 Binary Search 

Given a sorted array and an element x, need to return the index of element x if it is present then 1, otherwise – 1.  

Recurrence relation: 

   

1; 1

( )
; 1

2

n

T n n
T C n

= 
 

=   
+   

  
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Time Complexity: 

 

Space Complexity: 

 

Space complexity = O(n) + O(1) 

          = O (n) 

2.5 Merge Algorithm 

• Merging two sorted sub arrays of input size m,n. 

• Number of comparisons to merge two sorted sub arrays of size m,n. 

 Comparisons = m + n – 1 (worst case) 

     Number of moves =m + n (Outplace Algorithm) 

 
Number of comparisons in best case of merging two sorted subarrays of size m, n. 

 comparisons = min (m, n) 

          Moves = m + n (Always) 

Note: 

Best Case comes in comparisons no effect on moves. 
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2.5.1 Merge Sort Algorithm: 

 

 

 

Note: 

• In GATE exam if merge sort given then always consider outplace.  

• If array size very large, merge sort preferable.  

• If array size very small, then prefer insertion sort.  

• Merge sort is stable sorting technique. 
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2.6 Quick Sort Algorithm 

 

Example 1: In Quick for sorting n elements, the 

th

16

n 
 
 

smallest element is selected as pivot. what is the worst-case time       

Complexity? 

Solution. 

   T (n) = T 
16

n 
 
 

 + T 
15

16

n 
 
 

+O (n) 

        = (solve by recursive tree method) 

Example 2: The median of n elements can be found in O (n) time then, what is the time complexity of quick sort algo in 

which median selected as pivot? 

Solution. 

 T (n) = O (n)         +         C         +            O (n)           + T (n/2) + T (n/2) 

               

                     Find median     swap median         Partition algo 

                                       with last 

 = 2T (n/2) + C ∙ n 

 = O(n log n)  
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2.6.1 Randomized Quick Sort 

• In Randomized quick short algorithm selection of pivot element can be taken randomly.  

 

2.7 Counting Number of Inversion 

• Counting number of inversion on given an array of an element. 

Time complexity T(n) = O(nlogn)  

2.8 Selection Procedure 

Find Kth smallest on given an array of an element and integer K. 

Time Complexity: 

 T(n) = O(n2) 

Space complexity: 

 Space Complexity = O(n) 

 

2.9 Strassen’s matrix Multiplication 
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2.10 Comparison Based Sorting Algorithms 

Sorting 

Algorithm 

Basic logic of sorting Algo BC AC WC Stable 

sorting 

Inplace 

sorting 

Quick sort Choose pivot element place in 

correct position 

(nlogn) (nlogn) (n2) No Yes 

Merge sort Divide to equal parts recursively sort 

each sub part & marge them 

(nlogn) (nlogn) = 

n logn 

(nlogn) = n 

log n 

Yes No 

Heap sort Build heap(max) delete max place (nlogn) (nlogn) (nlogn) No Yes 

Bubble sort Compare exchange (n) (n2) (n2) Yes Yes 

Selection sort Find position of min element 

from [1 to n] 

(n2) (n2) (n2) No Yes 

Insertion sort Insert a [i + 1] into correct position (n) (n2) (n2) Yes Yes 

 

❑❑❑ 
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3 

GREEDY 
TECHNIQUE 

 

3.1 Greedy Technique 

• Greedy method is an algorithm design strategy used for solving problems where solution are seen as result of making 

a sequence of decisions. 

• A problem may contain more than one solution. 

3.2 Terminology 

 

3.3 Applications of greedy 
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3.4 Knapsack Problem 

  Time complexity T(n) = O(nlogn) 

3.5 Job Sequence with Deadline 

• Single CPU only. 

• Arrival time of each job is same. 

• No pre-emption.  

 

3.6 Optimal Merge Pattern 

• This is a problem related to merging of files. Given a set of n-files in sorted order. It is required to merge 

them into a single sorted file with 2-way merging. 

• This problem is like merging process in merge sort. In merge sort we were interested in number of 

comparisons but in optimal merge pattern we are interested in record movement (i.e moving a record from 

one file to another file). 

o If file F1 has 'n' records and file 'F2 ' has 'm' records then number of record movement will be 'm+n'. 1 2 

The problem of optimal merge pattern involves merging of n-files (n≥2). 

• At any point choose two records with least weight merge them and put them in list and continue it until all records are 

merged. 

• Time complexity T(n) = O(nlogn) 

• Space complexity = O(n) 

3.7 Huffman Coding 

• Huffman coding is essentially a non-uniform encoding with convention that the character with higher 

frequency (probability) of occurrence will be enclosed with less number of bits. 

• It comes under data compression technique. 

• Time complexity T(n) = O(nlogn) 

 



  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK  

Algorithm 

6.28 

3.8 Minimum Cost Spanning Tree   

3.8.1 Graph 

   Graph (V., E) 

 

     Set of vertices      set of edges 

•  Let G(V, E) be a simple graph then 

    Maximum edges = 
V(V-1)

2
 

         E 
V(V-1)

2
  

        E  C.V2 C is constant 

Note: 

           E = O(V2)               

           Log E = O(logV) 

    3.8.2 Graph Representation 

      Graph Representation 

   

Adjacency matrix      Adjacency list 

• For more edges (Dense Graph) Adj. matrix is better (density more). 

• For less edge (sparse graph) Adj list is better. 

(1) Finding degree of vertex Time Complexity   

Matrix List 

O(V) Every Case O(1) Best Case 

O(V1) Worst Case 

(2)Finding total edges  Time Complexity  
O(V2) Every Case O(V+2E) Worst Case  

O(V) Best Case 

(3) Finding 2-vertices adjacent (or)not  Time Complexity 

O(1)  O(V-1) Worst Case 

O(1) Best Case 

(4) G(V,E)  space 
O(V2) Every Case O(V+E) Every Case 

 

3.8.3 What is Spanning Tree 

A subgraph T(V, E’) of G(V, E) where E’ is the subset of (Eʹ E) is a spanning tree iff ‘T’ is a tree. 

A sub graph G(‘V, E’) of G(V, E) is said to be spanning tree.  

(1) T’ should contain all vertices of G 

(2) T’ should contain (V-1) edged where V is number of vertices without cycle. 
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(3) T’ should connected. 

3.8.4 Minimum Cost Spanning Tree 

Minimum cost spanning tree is the one in which cost of the spanning tree formed should be minimum. 

3.8.5 Prims Algorithm 

• Select Any vertex 

 Time complexity = V + VlogV + 2E + ElogV 

 = O(E + V)logV 

Using Sorted Array & Adjacency List 

V + 2E + E × V = O(EV) 

Using Sorted Array & Adjacency List 

V × O(1) + V2 + E × V= O(EV) 

3.8.6 Kruskal algorithm 

• Take first minimum edge 

 Time complexity = E log E + (V + E) 

  = O(E log E) = O(ElogV) 

 If edges are already sorted 

 TC = O(E + V) 

3.9 Single Source Shortest Path 

3.9.1 Dijkstra Algorithm  

• Using min heap & adjacency list  = O(E + V)logV 

• Using adjacency Matrix & Min heap = O(V
2

 ElogV) 

• Using adjacency list & Unsorted Array = O(V
2

) 

• Using adjacency list & Sorted Doubly Linked List = O(EV) 

3.9.2 Bellman-Ford 

• Time Complexity = O(EV) 

• If negative edge weight cycle then for some vertices Incorrect answer. 

❑❑❑ 
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4 

DYNAMIC 
PROGRAMMING 

 

4.1 Dynamic Programming 

In dynamic programming for optimal solution always computes distinct function calls. 

4.2 Terminology 

 

4.3 Application of Dynamic Programming 

 

4.4 Fibonacci Series 

• Time complexity T(n) = O(nlogn) 

• Computes distinct function calls.  
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4.5 Job Sequence with Deadline 

• Single CPU only 

• Arrival time of each job is same 

• No pre-emption  

 

4.6 Longest Common Sub sequence (LCS) 

• For common subsequence always consider two strings:  

• P = <ABCDB> – Q = <BDCABA>  

• Common subsequences for both ‘p’ are  

• S = <A>  

• S = <AB>  

• S = <CAB>  

• S = <BDAB>  

• A common subsequence of longest length is known as longest common subsequence. 

• For above problem longest common subsequence will be of length u. 

4.6.1 Applications of LCS 

1. Genomics  

2. Software engineering applications  

3. Plagiarism  

4. Data gathering system of search engines  

4.6.2 Algorithm for LCS 

LCS (p,q) 

{ 

1.
  

0 1

[ 1] 0

For i to n

L i

 −

− =
 

2.
  

0 1

[ 1, ] 0

For j to m

L j

 −

− =
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3. 
 

0 1

0 1

For i to n

For j to m

 −

 −
 

 

( [ ] [ ])

[ , ] 1 ( 1, 1];

[ , ] { , 1 , [ 1, ]}

If p i q j then

L i j L i j

else

L i j max L i j L i j

=

= + − −

= − −

 

} 

• Time complexity of step 1 = O(n) 

• Time complexity of step 2 = O(m) 

• Time complexity of step 3 = O(mn) 

• Total Time complexity = O(n) + O(m) + O(mn) 

  = O(mn) 

• Space complexity = O[(M+1).(n+1)] 

  = O(mn) 

4.7 Matrix Chain Multiplications 

Two matrices ‘A’ and ‘B’ are compatible if and only number of column of first matrix must be equal to number of rows of 

second matrix. 

4.7.1 Brute force method 

Number of parenthesizing for a given chain is given by Catalan number: 
21

1

n

nC
n

 
 

+  
 

Time complexity = O(nn)  

Space complexity = O(n) 

4.7.2 Algorithm For Matrix Chain Multiplication 

The time complexity of multiply the given chain of n matrices <A1, A2 A3…. An> using dynamic programming (district 

function call) is O(n3)  

Space complexity = O(n2) 
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4.8 O/1 Knapsack Problem 

The maximum profit can be achieved by O/1 knapsack problem where capacity of problem is ‘p’ and number of objects are 

‘q’. 

 

4.9 Sum of Subset Problem 

• Given n-elements and an integer 'm', it is required to determine whether there exists a subset of given n elements, whose 

sum equal M. 

• This is a decision problem (True/False). 

4.9.1 Algorithm for Sum of Subset Problem 

SoS(n, M, A) 

// A [1 . . . n] is an array of elements 

 { 

1. for i = 0 to n 

  for j = 0 to M 

  if (i > =0 and j = 0) 

  SoS [i, j] = T 

 else 

  if (i = 0 and j > 0) 

  SoS [i, j] = F; 

 else 

  if (A[i] > j) 

  SoS [i, j] = SoS [i – 1, j] 

 else 

  SoS [i, j] = SoS [i – 1, j] or 

  SoS [i – 1, j – A[i]] 

 } 
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4.9.2 Time Complexity of SoS 

Two for loops are there thus repeating for (n * m) times. Thus, time complexity = O(n * m) 

Time complexity of SoS becomes exponential if M = 2n 

  T.C = O(n × 2n) 

 

 

 

 

 

 

 


