
AlgorithmsAlgorithmsAlgorithms

Published By:

 Physics Wallah

ISBN: 978-93-94342-39-2

Mobile App: Physics Wallah (Available on Play Store)

Website: www.pw.live

Email: support@pw.live

Rights

All rights will be reserved by Publisher. No part of this book may be used or reproduced in any manner

whatsoever without the written permission from author or publisher.

In the interest of student's community:

Circulation of soft copy of Book(s) in PDF or other equivalent format(s) through any social media channels,

emails, etc. or any other channels through mobiles, laptops or desktop is a criminal offence. Anybody

circulating, downloading, storing, soft copy of the book on his device(s) is in breach of Copyright Act. Further

Photocopying of this book or any of its material is also illegal. Do not download or forward in case you come

across any such soft copy material.

Disclaimer

A team of PW experts and faculties with an understanding of the subject has worked hard for the books.

While the author and publisher have used their best efforts in preparing these books. The content has been

checked for accuracy. As the book is intended for educational purposes, the author shall not be responsible for

any errors contained in the book.

The publication is designed to provide accurate and authoritative information with regard to the subject matter

covered.

This book and the individual contribution contained in it are protected under copyright by the publisher.

(This Module shall only be Used for Educational Purpose.)

http://www.pw.live/
mailto:support@pw.live

Design Against Static Load

1. Asymptotic Notation ... 6.1 – 6.18

2. Divide and Conquer .. 6.19 – 6.25

3. Greedy Technique ... 6.26 – 6.29

4. Dynamic Programming ... 6.30 – 6.34

INDEX

GATE-O-PEDIA COMPUTER SCIENCE & INFORMATION TECHNOLOGY

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.1

Algorithm

1

ASYMPTOTIC
NOTATION

1.1 Introduction of Course

1.2 Algorithm Concept and Life Cycle Steps

1.2.1 Algorithm

• An Algorithm consists finite number of steps to solve any problem.

• Every step involves some operations and each operation must be definite and effective.

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.2

Algorithm

1.2.2 Life Cycle Steps

1.3 Needs of Analysis

In performance comparison comparing different algorithms for optimal solution.

1.3.1 Time Complexity

Time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the input size.

1.3.2 Space Complexity

Space complexity of an algorithm quantifies the amount of space or memory taken by an algorithm to run as a function of input

size.

Note:

To find the time complexity of an algorithm, find the loops and also consider larger loops.

Space complexity is dependent on two things input size and some extra space (stack space link, space list etc).

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.3

Algorithm

1.4 Methodology of Analysis

1.5 Types of Analysis

Worst Case

The input class for which the algorithm does maximum work and hence, take maximum time.

Best Case

The input class for which the algorithm does minimum work hence, take minimum time.

Average Case

Average case can be calculated form best case to worst case.

1.6 Asymptotic Notations

Suppose, T(n) be a function of time for any algorithm.

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.4

Algorithm

1.7 Types of Asymptotic Notations

1.7.1 Big O – Notation

 Two Functions (), ()f n g n

 () (())f n O g n=

When the growth of ()g n is same or higher than ()f n like ba 

Example:

2() 3 10, () 2 5f n n g n n n= + = + +

 () O(())f n g n=

1.7.2 Ω - Notation

 () (())f n g n= 

 () () ()f n C g n a b   

Example: 3 (2)n n= 

1.7.3  - Notation

If f(n) ≤ g(n)

 And

 f(n) ≥ g(n)

 f(n) = g(n)

∴ f(n) = (g(n))

Example:

 f(n) = 2n2, g(n) = n+10

 f(n) > g(n) here

so, f(n) = Ω(g(n)) or g(n)=O(f(n))

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.5

Algorithm

1.7.4. Properties with respect to asymptotic notations

 Reflexive Symmetric Transitive Transpose symmetric

Big oh (O)  ×  

Big omega ()  ×  

Theta ()    ×

Small oh (o) × ×  

Small omega () × ×  

Example 1. Consider the following function

1

()
n

p

f n p q

=

= =

Which of the following is/are true for ‘q’

 (a) (n4) (b) (n5) (c) O(n5) (d) (n3)

Solution: (a, c, d)

 f (n) = 3

P 1

P
n

=



 = 13 + 23 + 33 + 43 + n3

 =

2
1

2

n
n

 + 
  

  

 = O(n4) or  (n4)

 =  (n4)

Example 2. Consider the following functions:

 f (n) = ½

1

n

P

P
=

 = q

Find the value of q in terms of asymptotic notation.

Solution: f (n) = ½

1

n

P

P
=



 = () ()
½ ½

1 2 3+ + +

 =
3

2
2

1
3

n −
  

 =
3

2
2 2

3 3
n −

 = O(n1.5)

 = O()n n

Example 3. Arrange the following functions in increasing order.

 1 2 3 4 5 6 7 8log , , 2 , 3 , !, , log , 100 logn n nf n n f n f f f n f n f n f n n= = = = = = = =

 → 7 2 8 3 4 5 6f f fl f f f f f  =    

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.6

Algorithm

Example 4. Arrange the following functions in increasing order.

2 2

1 2 3 4 510, , loglog , (log) ,f f n f n f n f n= = = = =

2

6 7 8 9 10log , !, 2 , , logn nf n n f n f f n f n n= = = = =

 → 1 3 4 2 6 5 10 8 7 9f f f f f f f f f f        

Example 5. Arrange the following functions in increasing order.

 1 9log log log logf n f n n= =

2

2 10log logf n f n n= =

2 3

3 11(log)f n f n= =

 4 12log 2nf n f= =

1/10

5 13
nf n f e= =

 6 14 !f n f n= =

2

7 15
nf n f n= =

3/2

8 16logf n n f n= =

 f1 < f4 < f2 < f3 < f5 < f6 < f9 < f8 < f16 < f7 < f10 < f11 < f12 < f13 < f14 < f15

log log
b b

c aa c

 22
log log 22 n n n  =

Example 6. Arrange the following functions in increasing order.

 1 !f n= , 2
nf n=

 1 (1)(2) ... 3 2 1f n n n=  − −    

 2 ...f n n n n n n n=       

 2 1f f

 1 2O()f f =

 2 3 4 !n n n nn n   

Question.

 Which of following is TRUE?

(1) 2log 22 O(n)n = TRUE

 (2) 23log2 52 O()nn n = TRUE

 (3)
22 O(2)n n= TRUE

 (4) log O(log log)n n= FALSE

 (5) log log O(log)n n n= TRUE

Solution:

 (1) 2log 22 O(n)n =

 2log 2n=

 n=

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.7

Algorithm

2O()n n= =

 (2) 23log2 52 O()nn n =

 23log 22n n= 

 2 3n n= 

 5n=

5 5O()n n= =

(3)

2

2

2

2 2

2 2 .2

2 2

2 (2) True

n n

n n n

n n

n nO

=

=



=

 (4) log loglog

log (log)

False

n n

n O n





 (5) log log log

loglog (log)

True

n n n

n O n n



=

1.8. Analysis of an Algorithm

 Algorithms

 Without Loop Interactive Algorithm Recursive Algorithm

1.8.1 Without loop

Example: int fun (in + n)

 {

 return n*(n+1)/2;

 }

Solution.

 Here 1 multiply, 1 division, 1 addition

 ⸫ O (1) [no loops, no recursion]

1.8.2. Iterative Algorithm Analysis

Example 1:

 for (i =1; i ≤ n; i=i*2)

printf(“Sushil”)

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.8

Algorithm

Solution.

 i=1, 2, 22, 23 ..., 2k

 →

 2k ≤ n

 k log 2 ≤ log n

 k ≤
log

log 2

n

 ⸫ k ≤ 2log n

 k = 2log n  

 So, this will execute 2log n   +1 time and Complexity O (2log n)

Example 2:

 For (i=1; i ≤ n; i=i*3)

printf(“Aaveg”);

Solution.

 So, this will execute 3log 1n +   time and complexity O (3log n)

➢ i = 1→2→4→8→16→...→n

 i = n→n/2→n/4→n/8→...1

Example 3:

 for (i = 1; i ≤ n; i++)

 {

 for (j=1; j ≤ 10; j++)

 {

 printf(“Dhananjay”);

 }

 }

Solution.

 This will execute 10⸳n times and complexity O(n)

Example 4:

 for (i = 1; i <= n; i = i*3)

 for (j = 1; j ≤ n; j++)

 printf(“Prapti”);

Solution.

 Total ()3log 1n n +   time execute and Complexity = O (3logn n)

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.9

Algorithm

1.8.3. Recursive Algorithm Analysis

Example 1:

 void fun (in + n) T(n)

 {

 if (n > 0) 1 compare; C1 time

 {

 if (“% d”, n); C2 time

 fun (n - 1); T(n-1)

 }

 }

Let T(n) be the Complexity time taken by algo for n size i/p

Solution.

T(n) = C1+C2+T(n-1)

 T(n) =T(n-1) + C n > 0

 T (0) = C Constant

T(n) = C; n = 0

T(n) = T (n - 1) + C; n > 0

 Example 2:

 void fun (in + n) T (n)

 {

 if (n > 0) C1 time

 {

 for (i = 1; i <= n; i + 1) n time

 printf(“Hello”);

 fun (n - 1); T (n - 1)

 }

 }

Solution.

 T(n) = C1 + n - 1 + T (n - 1)

 = T (n - 1) + n n > 0

 T (0) = C n = 0

 Example 3:

 void fun (in + n) T(n)

 {

 if (n > 0) C1

 {

 for (i = 1; i < = n; i = i*2) 2log n  

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.10

Algorithm

 printf(“Divyajyoti”);

 fun (n - 1); T (n - 1)

 }

 }

Solution. T (n) = T (n - 1) + O (2log n); n > 0

 or

 T (n) = T (n - 1) + 2log n

 T (0) = C or n = 0

 T (0) = O (1)

1.9 Solving Recurrence Relation

1.9.1 Substitution Method

Example: (1)

 T (n) = T (n - 1) + C

 T (1) = C

n size on problem n – 1 size x1 convert them

 T (n) = T (n -1) + C

 [T (n - 2) + C] + C

 T (n) = T (n - 2) + 2C

 = T (n - 3) +3C

 T (n) = T (n - k) + kC

 ⸫ n – k = 1

 T (n) = T (1) + (n - 1) C

 = C + (n - 1) C

 T (n) = O (n)

Example (2)

 T (n) = T (n - 1) + C⸳n

 T (1) = C

 Solution.

 ⸫ T (n) = T (n - 1) + C⸳n

 = [T (n - 2) + C⸳(n – 1)] + C⸳n

 = [T (n - 3) + C⸳(n – 2)] + C (n - 1) + C⸳n

 = T (n - 3) + (n - 2)⸳C + (n - 1)⸳C + n⸳C

 = T (n - k) + C (n – k +1) + C (n – k + 2) + ... + C (n – k + k)

 ⸫ n – k =1

 T (n) = T (1) + T (2) + C (3) + C (4) + ... + C (n - 1) + C (n)

 = C + C (2) + (3) C + 4 (C) + ... + (n - 1) C + (n)⸳C

 = C [1 + 2 + 3 + ... + n]

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.11

Algorithm

 = C⸳n
(1)

2

n +

 = O (n2)

Example (3)

 T (n) = T (n/2) + C

 T (1) = 1

Solution.

 T (n) = T (n/2) + C

 = [T (n/22) + C] + C

 = T (n/4) + 2C

 = T (n/23) + 3C

 T (n) = T (n/2k) + kC

 = (n/2k) = 2

 T (n) = T (2) + (2log n - 1) C

 = 1 + (2log n - 1) C

 = O (log n)

Example (4)

 T (1) = 1

 T (n)= 2T (n/2) + C

Solution. T(n) = 2
2

2T C C
2

n  
+ +  

  

 =
2 2

2
2 T 2 C + C

2

n 
+ 

 

 =
2

3
2 2T C 2C C

2

n  
+ + +  

  

 =
3 2

3
2 T 2 C + 2C + C

2

n 
+ 

 

 =
k k 1 k 2 1

k
2 T 2 C + 2 C ... 2 C C

2

n − − 
+ + +  + 

 

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.12

Algorithm

 k

k
1 2

2

n
n=  =

 → T (n) = nT (1) + 2k - 1⸳ C + 2k - 2⸳ C + ... + 2C + C

 = 2k + 2k - 1⸳ C + 2k – 2 + ... + 2C + C

 = 2k + C (2k-1 + 2k-2 + ... + 21 + 20)

 = 2k + C
(2 1)

2 1

k −

−

 = 2k + C (2k - 1)

 = 2k + 2k⸳ C – C

 = n⸳C

 = O (n)

 1.9.2 Master’s Method

 T (n) = aT
n

b

 
 
 

+ Θ (nk (log n) p)

 a ≥ 1, b > 1, k ≥ 0, p = real number

 If a > bk or log kb a 

 T (n) = Θ ()logb an

Question 1. T (n) = 2T
2

n 
 
 

 + (n)0log n

Solution. a = 2, b = 2, k = 0

 a > bk; 2 > 20; 2 > 1

 T (n) = Θ (n)

Question 2. T (n) = 2T
2

n
n

 
+ 

 

Solution. a = 2, b = 2, k = 1, p = 0

 T(n) = Θ (n ⸳log n)

Question 3. T(n)=2
 

+ 
 

T log
2

n
n n

Solution. a = 2, b = 2, k = 1, p = 1

 ⸫ T (n) = Θ(n (log n)2)

 (b) If p < 0 then T (n)

 T (n) = O (nk)

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.13

Algorithm

Question 4.
 

= + 
 

T() T
2

n
n C

Solution.

 T(n) = Θ (n2log n)

1.9.3. Recursive Tree

(1) T() 2T C
2

n
n

 
= + 

 

T (1) = C

21 2 log
2

k

k

n
n k n= → = → =

 Total Work done = C + 2C + 22C + 23C + ... + 2kC

= C (1 + 2 + 22 + ... + 2k)

=
12 1

2 1

k

c
+ −

  − 

= C (2k+1 - 1

= C (2⸳2k - 1)

= C (2n - 1)

= O (n)

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK
6.14

Algorithm

(2) () 2
2

n
T n T n

 
= + 

 

 21; 2 ; log
2

k

k

n
n k n− − −

⸫ n + n + n + ... + n

= k n

= n 2 nlog n

 = 2)O(nlog n

(3) () 4
2

n
T n T n

 
= + 

 

n = 2k, k = log2 n

=
24 4 ... 4

2 2 2

kn n n
n

     
+ + + +     

     

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.15

=
2 31 2 2 2 ... 2kn + + + + +

 

=
12 1

2 1

k

n
+ −

  − 

= n (2  2k−1)

= n (2n) − 1

 = O (n2)

(4)
2

()
3 3

n n
T n T T n

   
= + +   

   
 T(1) = 1

31; 3 ; log
3

n
n i i n

i
− − − 3

= n + n +...+ log3 n T (n)

= (n + n + n +...+ log3 n) ≥ n + ... + log3 n

Ω(n⸳ log3/ 2 n)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.16

1.10 Recurrence Relations and their Time Complexity

T (n) = C; n = 2

T(n) = 2 T(√𝑛) + C; n > 2
O (logn)

T (n) = C; n = 2

T(n) = T(n – 1) + C ; n > 2
O(n)

T (n) = C; n = 1

T(n) = T(n – 1) + n + C ; n > 2
O(n2)

T (n) = C; n = 1

T(n) = 2T(n – 1) + C ; n > 1
O(2n)

T (n) = C; n = 1

T(n) = 2T
2

n 
 
 

 + C ; n > 1 (n)

T (n) = C; n = 1

T(n) = 2T
2

n 
 
 

 + n ; n > 1 (nlogn)

T (n) = C; n = 1

T(n) = T
2

n 
 
 

 + C; n > 1 (logn)

T (n) = 1; n = 2

T(n) = T ()n + C; n > 2 (loglogn)

1.11 Space Complexities

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.17

 Int n, A[n];

 Algorithm Rsum(A, n)

 {

 if (n = 1) return (A(1));

 else;

 return (A[n] + RSum(A, (n–1));

 }

• Time Complexity = O(n)

• Space Complexity

• We need stack space

• Stack is used to store activation records of function calls

• Size of activation records is trivial

• Stack size that we need = O(n)

• Space complexity = O(n)

 Algorithm A(n)

 {

 if (n = 1) return;

 else;

 {

 A
2

n 
 
 

;

 }

 }

 Recurrence relation

 T(n) = C; n = 1

 T(n) = T
2

n 
 
 

+ C; n > 1

 Time Complexity = O(log n)

Space Complexity

• Space complexity will depend on number of activation record pushed into the stack

Suppose, n = 16

A (1)

For n = 2K we are pushing

the ‘K’ activation record

A (2)

A (4)

A (8)

A (16)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.18

 Space Complexity

 n = 2K

 log n =
2

Klog 2

 K =
2

log n

 Space Complexity O(log)n=

Example 3

 Algorithm A(n)

 {

 if (n = 2) return;

 else;

 return (A n);

 }

Solution:

 T (n) = 1; n =2

 T (n) = T ()n +C; n > 2

 Time Complexity = O (loglogn)

Space Complexity

Suppose n = 16

A(1)

A(2)

A(4)

A(16)

 For 22
n

k
manner we are pushing in stack

 22 2
n

k


2 2

log 2 log 2
2k

n


 n  2K

 K 
2

log n

 ()2
Space complexity O log n=

❑❑❑

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.19

2
DIVIDE AND CONQUER

2.1 DAC Application

2.2 Finding Maximum Minimum element

Recurrence Relation:

1 if 1 or 2

()
2 1; 2

2

n n

T n n
T n

= = 
 

=   
+   

  

Time Complexity:

 () ()T n O n=

• Time complexity is same for every case (Best case/Worst case).

Space Complexity:

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.20

Space Complexity

() (log)

()

O n O n

O n

= +

=

Number of comparisons to find maximum / minimum element on an given array of n elements:

 Comparison =
3

2
2

n
−

2.3 Power of an Element

Recurrence relation:

1 if 1

()
1; 1

2

n

T n n
T n

= 
 

=   
+   

  

Time Complexity:

()

2

() (log)

n
T n T C

T n O n

 
= + 

 

=

Space Complexity:

Space Complexity = 4B + O(logn)

 = O(logn)

Number of multiplications to find an

Multiplication = O(logn)

2.4 Binary Search

Given a sorted array and an element x, need to return the index of element x if it is present then 1, otherwise – 1.

Recurrence relation:

1; 1

()
; 1

2

n

T n n
T C n

= 
 

=   
+   

  

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.21

Time Complexity:

Space Complexity:

Space complexity = O(n) + O(1)

 = O (n)

2.5 Merge Algorithm

• Merging two sorted sub arrays of input size m,n.

• Number of comparisons to merge two sorted sub arrays of size m,n.

 Comparisons = m + n – 1 (worst case)

 Number of moves =m + n (Outplace Algorithm)

Number of comparisons in best case of merging two sorted subarrays of size m, n.

 comparisons = min (m, n)

 Moves = m + n (Always)

Note:

Best Case comes in comparisons no effect on moves.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.22

2.5.1 Merge Sort Algorithm:

Note:

• In GATE exam if merge sort given then always consider outplace.

• If array size very large, merge sort preferable.

• If array size very small, then prefer insertion sort.

• Merge sort is stable sorting technique.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.23

2.6 Quick Sort Algorithm

Example 1: In Quick for sorting n elements, the

th

16

n 
 
 

smallest element is selected as pivot. what is the worst-case time

Complexity?

Solution.

 T (n) = T
16

n 
 
 

 + T
15

16

n 
 
 

+O (n)

 = (solve by recursive tree method)

Example 2: The median of n elements can be found in O (n) time then, what is the time complexity of quick sort algo in

which median selected as pivot?

Solution.

 T (n) = O (n) + C + O (n) + T (n/2) + T (n/2)

 Find median swap median Partition algo

 with last

 = 2T (n/2) + C ∙ n

 = O(n log n)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.24

2.6.1 Randomized Quick Sort

• In Randomized quick short algorithm selection of pivot element can be taken randomly.

2.7 Counting Number of Inversion

• Counting number of inversion on given an array of an element.

Time complexity T(n) = O(nlogn)

2.8 Selection Procedure

Find Kth smallest on given an array of an element and integer K.

Time Complexity:

 T(n) = O(n2)

Space complexity:

 Space Complexity = O(n)

2.9 Strassen’s matrix Multiplication

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.25

2.10 Comparison Based Sorting Algorithms

Sorting

Algorithm

Basic logic of sorting Algo BC AC WC Stable

sorting

Inplace

sorting

Quick sort Choose pivot element place in

correct position

(nlogn) (nlogn) (n2) No Yes

Merge sort Divide to equal parts recursively sort

each sub part & marge them

(nlogn) (nlogn) =

n logn

(nlogn) = n

log n

Yes No

Heap sort Build heap(max) delete max place (nlogn) (nlogn) (nlogn) No Yes

Bubble sort Compare exchange (n) (n2) (n2) Yes Yes

Selection sort Find position of min element

from [1 to n]

(n2) (n2) (n2) No Yes

Insertion sort Insert a [i + 1] into correct position (n) (n2) (n2) Yes Yes

❑❑❑

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.26

3

GREEDY
TECHNIQUE

3.1 Greedy Technique

• Greedy method is an algorithm design strategy used for solving problems where solution are seen as result of making

a sequence of decisions.

• A problem may contain more than one solution.

3.2 Terminology

3.3 Applications of greedy

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.27

3.4 Knapsack Problem

 Time complexity T(n) = O(nlogn)

3.5 Job Sequence with Deadline

• Single CPU only.

• Arrival time of each job is same.

• No pre-emption.

3.6 Optimal Merge Pattern

• This is a problem related to merging of files. Given a set of n-files in sorted order. It is required to merge

them into a single sorted file with 2-way merging.

• This problem is like merging process in merge sort. In merge sort we were interested in number of

comparisons but in optimal merge pattern we are interested in record movement (i.e moving a record from

one file to another file).

o If file F1 has 'n' records and file 'F2 ' has 'm' records then number of record movement will be 'm+n'. 1 2

The problem of optimal merge pattern involves merging of n-files (n≥2).

• At any point choose two records with least weight merge them and put them in list and continue it until all records are

merged.

• Time complexity T(n) = O(nlogn)

• Space complexity = O(n)

3.7 Huffman Coding

• Huffman coding is essentially a non-uniform encoding with convention that the character with higher

frequency (probability) of occurrence will be enclosed with less number of bits.

• It comes under data compression technique.

• Time complexity T(n) = O(nlogn)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.28

3.8 Minimum Cost Spanning Tree

3.8.1 Graph

 Graph (V., E)

 Set of vertices set of edges

• Let G(V, E) be a simple graph then

 Maximum edges =
V(V-1)

2

 E
V(V-1)

2


 E  C.V2 C is constant

Note:

 E = O(V2)

 Log E = O(logV)

 3.8.2 Graph Representation

 Graph Representation

Adjacency matrix Adjacency list

• For more edges (Dense Graph) Adj. matrix is better (density more).

• For less edge (sparse graph) Adj list is better.

(1) Finding degree of vertex Time Complexity

Matrix List

O(V) Every Case O(1) Best Case

O(V1) Worst Case

(2)Finding total edges  Time Complexity
O(V2) Every Case O(V+2E) Worst Case

O(V) Best Case

(3) Finding 2-vertices adjacent (or)not  Time Complexity

O(1) O(V-1) Worst Case

O(1) Best Case

(4) G(V,E)  space
O(V2) Every Case O(V+E) Every Case

3.8.3 What is Spanning Tree

A subgraph T(V, E’) of G(V, E) where E’ is the subset of (Eʹ E) is a spanning tree iff ‘T’ is a tree.

A sub graph G(‘V, E’) of G(V, E) is said to be spanning tree.

(1) T’ should contain all vertices of G

(2) T’ should contain (V-1) edged where V is number of vertices without cycle.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.29

(3) T’ should connected.

3.8.4 Minimum Cost Spanning Tree

Minimum cost spanning tree is the one in which cost of the spanning tree formed should be minimum.

3.8.5 Prims Algorithm

• Select Any vertex

 Time complexity = V + VlogV + 2E + ElogV

 = O(E + V)logV

Using Sorted Array & Adjacency List

V + 2E + E × V = O(EV)

Using Sorted Array & Adjacency List

V × O(1) + V2 + E × V= O(EV)

3.8.6 Kruskal algorithm

• Take first minimum edge

 Time complexity = E log E + (V + E)

 = O(E log E) = O(ElogV)

 If edges are already sorted

 TC = O(E + V)

3.9 Single Source Shortest Path

3.9.1 Dijkstra Algorithm

• Using min heap & adjacency list = O(E + V)logV

• Using adjacency Matrix & Min heap = O(V
2

 ElogV)

• Using adjacency list & Unsorted Array = O(V
2

)

• Using adjacency list & Sorted Doubly Linked List = O(EV)

3.9.2 Bellman-Ford

• Time Complexity = O(EV)

• If negative edge weight cycle then for some vertices Incorrect answer.

❑❑❑

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.30

4

DYNAMIC
PROGRAMMING

4.1 Dynamic Programming

In dynamic programming for optimal solution always computes distinct function calls.

4.2 Terminology

4.3 Application of Dynamic Programming

4.4 Fibonacci Series

• Time complexity T(n) = O(nlogn)

• Computes distinct function calls.

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.31

4.5 Job Sequence with Deadline

• Single CPU only

• Arrival time of each job is same

• No pre-emption

4.6 Longest Common Sub sequence (LCS)

• For common subsequence always consider two strings:

• P = <ABCDB> – Q = <BDCABA>

• Common subsequences for both ‘p’ are

• S = <A>

• S = <AB>

• S = <CAB>

• S = <BDAB>

• A common subsequence of longest length is known as longest common subsequence.

• For above problem longest common subsequence will be of length u.

4.6.1 Applications of LCS

1. Genomics

2. Software engineering applications

3. Plagiarism

4. Data gathering system of search engines

4.6.2 Algorithm for LCS

LCS (p,q)

{

1.

0 1

[1] 0

For i to n

L i

 −

− =

2.

0 1

[1,] 0

For j to m

L j

 −

− =

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.32

3.

0 1

0 1

For i to n

For j to m

 −

 −

 

([] [])

[,] 1 (1, 1];

[,] { , 1 , [1,]}

If p i q j then

L i j L i j

else

L i j max L i j L i j

=

= + − −

= − −

}

• Time complexity of step 1 = O(n)

• Time complexity of step 2 = O(m)

• Time complexity of step 3 = O(mn)

• Total Time complexity = O(n) + O(m) + O(mn)

 = O(mn)

• Space complexity = O[(M+1).(n+1)]

 = O(mn)

4.7 Matrix Chain Multiplications

Two matrices ‘A’ and ‘B’ are compatible if and only number of column of first matrix must be equal to number of rows of

second matrix.

4.7.1 Brute force method

Number of parenthesizing for a given chain is given by Catalan number:
21

1

n

nC
n

 
 

+  

Time complexity = O(nn)

Space complexity = O(n)

4.7.2 Algorithm For Matrix Chain Multiplication

The time complexity of multiply the given chain of n matrices <A1, A2 A3…. An> using dynamic programming (district

function call) is O(n3)

Space complexity = O(n2)

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.33

4.8 O/1 Knapsack Problem

The maximum profit can be achieved by O/1 knapsack problem where capacity of problem is ‘p’ and number of objects are

‘q’.

4.9 Sum of Subset Problem

• Given n-elements and an integer 'm', it is required to determine whether there exists a subset of given n elements, whose

sum equal M.

• This is a decision problem (True/False).

4.9.1 Algorithm for Sum of Subset Problem

SoS(n, M, A)

// A [1 . . . n] is an array of elements

 {

1. for i = 0 to n

 for j = 0 to M

 if (i > =0 and j = 0)

 SoS [i, j] = T

 else

 if (i = 0 and j > 0)

 SoS [i, j] = F;

 else

 if (A[i] > j)

 SoS [i, j] = SoS [i – 1, j]

 else

 SoS [i, j] = SoS [i – 1, j] or

 SoS [i – 1, j – A[i]]

 }

GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK

Algorithm

6.34

4.9.2 Time Complexity of SoS

Two for loops are there thus repeating for (n * m) times. Thus, time complexity = O(n * m)

Time complexity of SoS becomes exponential if M = 2n

 T.C = O(n × 2n)



