Part-A: 1-Mark Questions

- 1. If the Hamiltonian of a classical particle is $H=\frac{p_x^2+p_y^2}{2m}+xy$, then $\langle x^2+xy+y^2\rangle$ at temperature T is equal to
 - (A) k_BT .
 - (B) $\frac{1}{2} k_B T$.
 - (C) $2 k_B T$.
 - (D) $\frac{3}{2} k_B T$.
- 2. Two equal positive charges of magnitude +q separated by a distance d are surrounded by a uniformly charged thin spherical shell of radius 2d bearing a total charge -2q and centred at the midpoint between the two positive charges. The net electric field at distance r from the midpoint $(\gg d)$ is
 - (A) zero.
 - (B) proportional to d.
 - (C) proportional to $1/r^3$.
 - (D) proportional to $1/r^4$.
- 3. Let $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 11 \end{pmatrix}$ and $M = \begin{pmatrix} 10 & 3i \\ -3i & 2 \end{pmatrix}$. Similarity transformation of M to Λ can be performed by
 - (A) $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3i \\ 3i & 1 \end{pmatrix}$.
 - (B) $\frac{1}{\sqrt{9}} \begin{pmatrix} 1 & -3i \\ 3i & 11 \end{pmatrix}$.
 - (C) $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3i \\ -3i & 11 \end{pmatrix}$.
 - (D) $\frac{1}{\sqrt{9}} \begin{pmatrix} 1 & 3i \\ -3i & 1 \end{pmatrix}$.

- 4. After the detonation of an atom bomb, the spherical ball of gas was found to be of 15 meter radius at a temperature of 3×10^5 K. Given the adiabatic expansion coefficient $\gamma = 5/3$, what will be the radius of the ball when its temperature reduces to 3×10^3 K?
 - (A) 156 m
 - (B) 50 m
 - (C) 150 m
 - (D) 100 m
- 5. A possible Lagrangian for a free particle is

$$(A) L = \dot{q}^2 - q^2.$$

$$(B) L = \dot{q}^2 - q\dot{q}.$$

(C)
$$L = \dot{q}^2 - q$$
.

$$(D) L = \dot{q}^2 - \frac{1}{q}.$$

6. If the ground state wavefunction of a particle moving in a one dimensional potential is proportional to $\exp(-x^2/2)\cosh(\sqrt{2}x)$, then the potential in suitable units such that $\hbar = 1$, is proportional to (A) x^2 .

(B)
$$x^2 - 2\sqrt{2}x \tanh\left(\sqrt{2}x\right)$$
.

(C)
$$x^2 - 2\sqrt{2}x \tan\left(\sqrt{2}x\right)$$
.

(D)
$$x^2 - 2\sqrt{2}x \coth\left(\sqrt{2}x\right)$$
.

7. $\phi_0(x)$ and $\phi_1(x)$ are respectively the orthonormal wavefunctions of the ground and first excited states of a one dimensional simple harmonic oscillator. Consider the normalised wave function $\psi(x) = c_0\phi_0(x) + c_1\phi_1(x)$, where c_0 and c_1 are real. For what values of c_0 and c_1 will $\langle \psi(x)|x|\psi(x)\rangle$ be maximized?

(A)
$$c_0 = c_1 = +1/\sqrt{2}$$

(B)
$$c_0 = -c_1 = +1/\sqrt{2}$$

(C)
$$c_0 = +\sqrt{3}/2$$
, $c_1 = +1/2$

(D)
$$c_0 = +\sqrt{3}/2$$
, $c_1 = -1/2$

8. What is the equation of the plane which is tangent to the surface xyz = 4 at the point (1, 2, 2)?

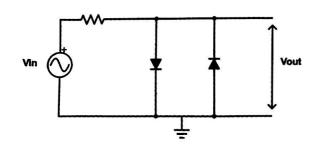
(A)
$$x + 2y + 4z = 12$$

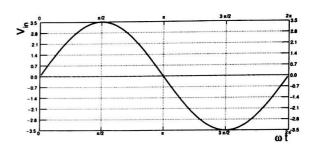
(B)
$$4x + 2y + z = 12$$

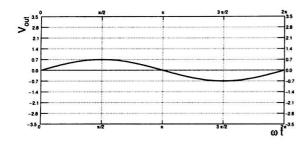
(C)
$$x + 4y + z = 0$$

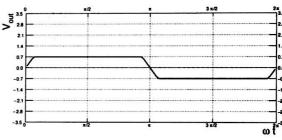
(D)
$$2x + y + z = 6$$

9. In the following silicon diode circuit ($V_B = 0.7 \text{ V}$), determine the output voltage waveform (V_{out}) for the given input wave.

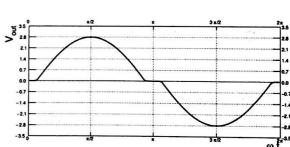












10. (Q_1, Q_2, P_1, P_2) and (q_1, q_2, p_1, p_2) are two sets of canonical coordinates, where Q_i and q_i are the coordinates and P_i and p_i are the corresponding conjugate momenta. If $P_1 = q_2$ and $P_2 = p_1$, then which of the following relations is true?

(B)

(D)

(A)
$$Q_1 = q_1, Q_2 = p_2$$

(A)

(C)

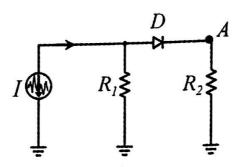
(B)
$$Q_1 = p_2$$
, $Q_2 = q_1$

(C)
$$Q_1 = -p_2$$
, $Q_2 = q_1$

(D)
$$Q_1 = q_1, Q_2 = -p_2$$

- 11. A bead of mass M slides along a parabolic wire described by $z=2(x^2+y^2)$. The wire rotates with angular velocity Ω about the z-axis. At what value of Ω does the bead maintain a constant nonzero height under the action of gravity along $-\hat{z}$?
 - (A) $\sqrt{3g}$
 - (B) \sqrt{g}
 - (C) $\sqrt{2g}$
 - (D) $\sqrt{4g}$
- 12. A thin air film of thickness d is formed in a glass medium. For normal incidence, the condition for constructive interference in the reflected beam is (in terms of wavelength λ and integer m=0,1,2...)
 - (A) $2d = (m-1/2)\lambda$.
 - (B) $2d = m\lambda$.
 - (C) $2d = (m-1)\lambda$.
 - (D) $2\lambda = (m 1/2)d$.
- 13. Consider magnetic vector potential \vec{A} and scalar potential Φ which define the magnetic field \vec{B} and electric field \vec{E} . If one adds $-\vec{\nabla}\lambda$ to \vec{A} for a well-defined λ , then what should be added to Φ so that \vec{E} remains unchanged up to an arbitrary function of time, f(t)?
 - (A) $\frac{\partial \lambda}{\partial t}$
 - (B) $-\frac{\partial \lambda}{\partial t}$
 - (C) $\frac{1}{2} \frac{\partial \lambda}{\partial t}$
 - (D) $-\frac{1}{2}\frac{\partial \lambda}{\partial t}$
- 14. $\int_{-\infty}^{+\infty} (x^2 + 1) \, \delta(x^2 3x + 2) \, dx = ?$
 - (A) 1
 - **(B)** 2
 - (C) 5
 - (D) 7

15. Consider the circuit shown in the figure where $R_1 = 2.07k\Omega$ and $R_2 = 1.93k\Omega$. Current source I delivers 10 mA current. The potential across the diode D is 0.7 V. What is the potential at A?



- (A) 10.35 V
- (B) 9.65 V
- (C) 19.30 V
- (D) 4.83 V
- 16. Suppose that we toss two fair coins hundred times each. The probability that the same number of heads occur for both coins at the end of the experiment is

(A)
$$\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} \binom{100}{n}$$

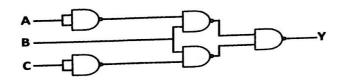
(B)
$$2 \left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$$

(C)
$$\frac{1}{2} \left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$$

(D)
$$\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$$

- 17. If the mean square fluctuations in energy of a system in equilibrium at temperature T is proportional to T^{α} , then the energy of the system is proportional to
 - (A) $T^{\alpha-2}$.
 - (B) $T^{\frac{\alpha}{2}}$.
 - (C) $T^{\alpha-1}$.
 - (D) T^{α} .

18. What is Y for the circuit shown below?



(A)
$$Y = \overline{(A + \bar{B})(\bar{B} + C)}$$

(B)
$$Y = \overline{(A + \bar{B})(B + C)}$$

(C)
$$Y = \overline{(\bar{A} + B)(\bar{B} + C)}$$

(D)
$$Y = \overline{(A+B)(\bar{B}+C)}$$

19. What is the dimension of $\frac{\hbar}{i} \frac{\partial \psi}{\partial x}$, where ψ is a wavefunction in two dimensions?

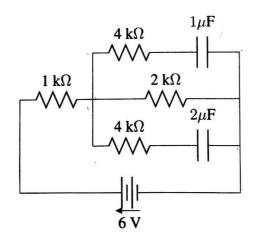
(A) kg
$$m^{-1}$$
 s⁻²

(B)
$$\mathrm{kg}\ \mathrm{s}^{-2}$$

(C) kg
$$m^2 s^{-2}$$

(D)
$$kg s^{-1}$$

20. Consider the following circuit in steady state condition. Calculate the amount of charge stored in 1μ F and 2μ F capacitors respectively.



(A) 4
$$\mu$$
C and 8 μ C

(B)
$$8 \mu C$$
 and $4 \mu C$

(C)
$$3 \mu$$
C and 6μ C

(D) 6
$$\mu$$
C and 3 μ C

- 21. Which one is the image of the complex domain $\{z|xy \geq 1, x+y > 0\}$ under the mapping $f(z) = z^2$, if z = x + iy?
 - (A) $\{z|xy \ge 1, x+y > 0\}$
 - (B) $\{z|x \ge 2, x+y > 0\}$
 - (C) $\{z|y\geq 2\ \forall\ x\}$
 - (D) $\{z|y \ge 1 \ \forall \ x\}$
- 22. A rod of mass m and length l is suspended from two massless vertical springs with a spring constants k_1 and k_2 . What is the Lagrangian for the system, if x_1 and x_2 be the displacements from equilibrium position of the two ends of the rod?

(A)
$$\frac{m}{8}(\dot{x}_1^2 + 2\dot{x}_1\dot{x}_2 + \dot{x}_2^2) - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2x_2^2$$

(B)
$$\frac{m}{2}(\dot{x}_1^2 + \dot{x}_1\dot{x}_2 + \dot{x}_2^2) - \frac{1}{4}(k_1 + k_2)(x_1^2 + x_2^2)$$

(C)
$$\frac{m}{6}(\dot{x}_1^2 + \dot{x}_1\dot{x}_2 + \dot{x}_2^2) - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2x_2^2$$

(D)
$$\frac{m}{4}(\dot{x}_1^2 - 2\dot{x}_1\dot{x}_2 + \dot{x}_2^2) - \frac{1}{4}(k_1 - k_2)(x_1^2 + x_2^2)$$

23. A plane electromagnetic wave propagating in air with $\vec{E} = (8\hat{i} + 6\hat{j} + 5\hat{k})e^{i(\omega t + 3x - 4y)}$ is incident on a perfectly conducting slab positioned at x = 0. \vec{E} field of the reflected wave is

(A)
$$(-8\hat{i} - 6\hat{j} - 5\hat{k})e^{i(\omega t + 3x + 4y)}$$
.

(B)
$$(-8\hat{i} + 6\hat{j} - 5\hat{k})e^{i(\omega t + 3x + 4y)}$$
.

(C)
$$(-8\hat{i} + 6\hat{j} - 5\hat{k})e^{i(\omega t - 3x - 4y)}$$
.

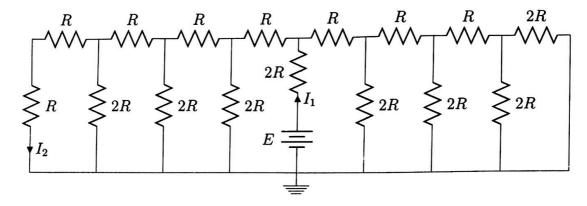
(D)
$$(-8\hat{i} - 6\hat{j} - 5\hat{k})e^{i(\omega t - 3x - 4y)}$$
.

- 24. Suppose the spin degrees of freedom of a 2-particle system can be described by a 21-dimensional Hilbert subspace. Which among the following could be the spin of one of the particles?
 - (A) $\frac{1}{2}$
 - **(B)** 3
 - (C) $\frac{3}{2}$
 - (D) 2

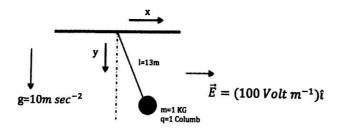
- 25. Water is poured at a rate of R m³/hour from the top into a cylindrical vessel of diameter D. The vessel has a small opening of area $a(\sqrt{a} \ll D)$ at the bottom. What should be the minimum height of the vessel so that water does not overflow?
 - (A) ∞
 - (B) $\frac{R^2}{2ga^2}$
 - (C) $\frac{R^2}{2gaD^2}$
 - (D) $\frac{8R^2}{\pi D^2 g^2}$

Part-B: 3-Mark Questions

1. For the circuit shown below, what is the ratio $\frac{I_1}{I_2}$?



- 2. Suppose that the number of microstates available to a system of N particles depends on N and the combined variable UV^2 , where U is the internal energy and V is the volume of the system. The system initially has volume $2m^3$ and energy 200J. It undergoes an isentropic expansion to volume $4m^3$. What is the final pressure of the system in SI units?
- 3. A sphere of inner radius 1 cm and outer radius 2 cm, centered at origin has a volume charge density $\rho_0 = \frac{K}{4\pi r}$, where K is a nonzero constant and r is the radial distance. A point charge of magnitude 10^{-3} C is placed at the origin. For what value of K in units of C/m², the electric field inside the shell is constant?
- 4. If $\hat{x}(t)$ be the position operator at a time t in the Heisenberg picture for a particle described by the Hamiltonian, $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$, what is $e^{i\omega t}\langle 0|\hat{x}(t)\hat{x}(0)|0\rangle$ in units of $\frac{\hbar}{2m\omega}$ where $|0\rangle$ is the ground state?
- 5. A simple pendulum has a bob of mass 1 Kg and charge 1 Coulomb. It is suspended by a massless string of length 13 m. The time period of small oscillations of this pendulam is T_0 . If an electric field $\vec{E} = 100\hat{x}$ V/m is applied, the time period becomes T. What is the value of $(T_0/T)^4$?



6. Let a particle of mass 1×10^{-9} Kg, constrained to have one dimensional motion, be initially at the origin(x=0 m). The particle is in equilibrium with a thermal bath ($k_BT=10^{-8}$ J). What is $\langle x^2 \rangle$ of the particle after a time t=5 s?

- 7. A ball of mass 0.1 kg and density 2000 kg/m³ is suspended by a massless string of length 0.5 m under water having density 1000 kg/m³. The ball experiences a drag force, $\vec{F}_d = -0.2(\vec{v}_b \vec{v}_w)$, where \vec{v}_b and \vec{v}_w are the velocites of the ball and water respectively. What will be the frequency of small oscillations for the motion of pendulum, if the water is at rest?
- 8. The temperature in a rectangular plate bounded by the lines x = 0, y = 0, x = 3 and y = 5 is $T = xy^2 x^2y + 100$. What is the maximum temperature difference between two points on the plate?
- 9. A particle is described by the following Hamiltonian

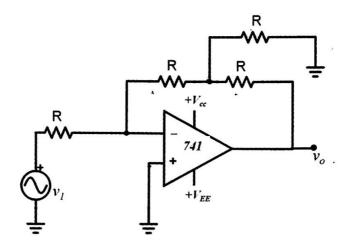
$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 + \lambda\hat{x}^4,$$

where the quartic term can be treated perturbatively. If ΔE_0 and ΔE_1 denote the energy correction of $O(\lambda)$ to the ground state and the first excited state respectively, what is the fraction $\Delta E_1/\Delta E_0$?

10. A solid, insulating sphere of radius 1 cm has charge 10^{-7} C distributed uniformly over its volume. It is surrounded concentrically by a conducting thick spherical shell of inner radius 2 cm, outer radius 2.5 cm and is charged with -2×10^{-7} C. What is the electrostatic potential in Volts on the surface of the sphere?

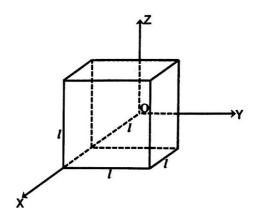
Part-C: 3-Mark Questions

1. Consider a 741 operational amplifier circuit as shown below, where $V_{CC}=V_{EE}=+15V$ and $R=2.2k\Omega$. If $v_I=2$ mV, what is the value of v_O with respect to the ground?



- (A) 1 mV
- (B) 2 mV
- (C) 3 mV
- (D) 4 mV
- 2. The integral $I = \int_1^\infty \frac{\sqrt{x-1}}{(1+x)^2} dx$ is
 - (A) $\frac{\pi}{\sqrt{2}}$.
 - (B) $\frac{\pi}{2\sqrt{2}}$.
 - (C) $\frac{\sqrt{\pi}}{2}$.
 - (D) $\sqrt{\frac{\pi}{2}}$.

3. For an electric field $\vec{E} = k\sqrt{x}\hat{x}$ where k is a non-zero constant, total charge enclosed by the cube as shown below is



- (A) 0.
- (B) $k\epsilon_0 l^{5/2} (\sqrt{3} 1)$.
- (C) $k\epsilon_0 l^{5/2} (\sqrt{5} 1)$.
- (D) $k\epsilon_0 l^{5/2} (\sqrt{2} 1)$.
- 4. Consider a particle confined by a potential V(x) = k|x|, where k is a positive constant. The spectrum E_n of the system, within the WKB approximation, is proportional to
 - (A) $(n+\frac{1}{2})^{3/2}$.
 - (B) $(n+\frac{1}{2})^{2/3}$.
 - (C) $(n+\frac{1}{2})^{1/2}$.
 - (D) $(n+\frac{1}{2})^{4/3}$.
- 5. A cylinder at temperature T=0 is separated into two compartments A and B by a free sliding piston. Compartments A and B are filled by Fermi gases made of spin 1/2 and 3/2 particles respectively. If particles in both the compartments have same mass, the ratio of equilibrium density of the gas in compartment A to that of gas in compartment B is
 - (A) 1.
 - (B) $\frac{1}{3^{2/5}}$.
 - (C) $\frac{1}{2^{2/5}}$.
 - (D) $\frac{1}{2^{2/3}}$.

6. Consider the Hamiltonian

$$H(t) = \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \beta(t) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -2 \end{pmatrix}.$$

The time dependent function $\beta(t) = \alpha$ for $t \le 0$ and zero for t > 0. Find $|\langle \Psi(t < 0) | \Psi(t > 0) \rangle|^2$, where $|\Psi(t < 0)\rangle$ is the normalized ground state of the system at a time t < 0 and $|\Psi(t > 0)\rangle$ is the state of the system at t > 0.

(A)
$$\frac{1}{2}(1+cos(2\alpha t))$$

(B)
$$\frac{1}{2}(1 + cos(\alpha t))$$

(C)
$$\frac{1}{2}(1 + sin(2\alpha t))$$

(D)
$$\frac{1}{2}(1+sin(\alpha t))$$

7. If $\rho = [I + \frac{1}{\sqrt{3}}(\sigma_x + \sigma_y + \sigma_z)]/2$, where σ 's are the Pauli matrices and I is the identity matrix, then the trace of ρ^{2017} is

(A)
$$2^{2017}$$
.

(B)
$$2^{-2017}$$
.

(D)
$$\frac{1}{2}$$
.

8. Consider a grounded conducting plane which is infinitely extended perpendicular to the y-axis at y = 0. If an infinite line of charge per unit length λ runs parallel to x-axis at y = d, then surface charge density on the conducting plane is

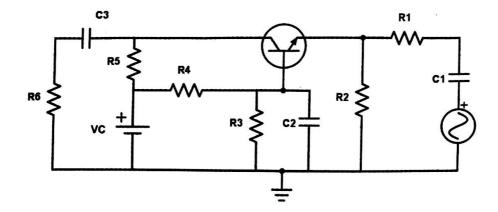
$$(A) \frac{-\lambda d}{(x^2+d^2+z^2)}.$$

(B)
$$\frac{-\lambda d}{(x^2+d^2+z^2)}.$$

(C)
$$\frac{-\lambda d}{\pi \left(x^2 + d^2 + z^2\right)}.$$

(D)
$$\frac{-\lambda d}{2\pi (x^2 + d^2 + z^2)}$$
.

9. What is the DC base current (approximated to nearest integer value in μA) for the following *n-p-n* silicon transtisor circuit, given $R_1=75\Omega,\ R_2=4.0k\Omega,\ R_3=2.1k\Omega,\ R_4=2.6k\Omega,\ R_5=6.0k\Omega,\ R_6=6.8k\Omega,\ C_1=1\mu F,\ C_2=2\mu F,\ V_C=+15V$ and $\beta_{dc}=75?$



- (A) 20
- (B) 24
- (C) 16
- (D) 32
- 10. The Fourier transform of the function $\frac{1}{x^4 + 3x^2 + 2}$ up to a proportionality constant is

(A)
$$\sqrt{2} \exp(-k^2) - \exp(-2k^2)$$
.

(B)
$$\sqrt{2} \exp(-|k|) - \exp(-\sqrt{2}|k|)$$
.

(C)
$$\sqrt{2} \exp\left(-\sqrt{|k|}\right) - \exp\left(-\sqrt{2|k|}\right)$$

(D)
$$\sqrt{2} \exp(-\sqrt{2}k^2) - \exp(-2k^2)$$
.

11. Consider a point particle A of mass m_A colliding elastically with another point particle B of mass m_B at rest, where $m_B/m_A=\gamma$. After collision, the ratio of the kinetic energy of particle B to the initial kinetic energy of particle A is given by

$$(A) \frac{4}{\gamma + 2 + 1/\gamma}.$$

(B)
$$\frac{2}{\gamma + 1/\gamma}$$
.

(C)
$$\frac{2}{\gamma + 2 - 1/\gamma}.$$

(D)
$$\frac{1}{\gamma}$$
.

12. Two classical particles are distributed among N (> 2) sites on a ring. Each site can accommodate only one particle. If two particles occupy two nearest neighbour sites, then the energy of the system is increased by ϵ . The average energy of the system at temperature T is

(A)
$$\frac{2\epsilon e^{-\beta\epsilon}}{(N-3)+2e^{-\beta\epsilon}}.$$

(B)
$$\frac{2N\epsilon e^{-\beta\epsilon}}{(N-3)+2e^{-\beta\epsilon}}$$
.

(C)
$$\frac{\epsilon}{N}$$
.

(D)
$$\frac{2\epsilon e^{-\beta\epsilon}}{(N-2)+2e^{-\beta\epsilon}}.$$

13. The function $f(x) = \cosh x$ which exists in the range $-\pi \le x \le \pi$ is periodically repeated between $x = (2m-1)\pi$ and $(2m+1)\pi$, where $m = -\infty$ to $+\infty$. Using Fourier series, indicate the correct relation at x = 0.

(A)
$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1-n^2} = \frac{1}{2} \left(\frac{\pi}{\cosh \pi} - 1 \right)$$

(B)
$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1-n^2} = 2\frac{\pi}{\cosh \pi}$$

(C)
$$\sum_{n=-\infty}^{\infty} \frac{(-1)^{-n}}{1+n^2} = 2 \frac{\pi}{\sinh \pi}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{1}{2} \left(\frac{\pi}{\sinh \pi} - 1 \right)$$

14. A system of particles on N lattice sites is in equilibrium at temperature T and chemical potential μ . Multiple occupancy of the sites is forbidden. The binding energy of a particle at each site is $-\epsilon$. The probability of no site being occupied is

(A)
$$\frac{1 - e^{\beta(\mu + \epsilon)}}{1 - e^{(N+1)\beta(\mu + \epsilon)}}.$$

(B)
$$\frac{1}{[1+e^{\beta(\mu+\epsilon)}]^N}.$$

(C)
$$\frac{1}{[1+e^{-\beta(\mu+\epsilon)}]^N}.$$

(D)
$$\frac{1 - e^{-\beta(\mu + \epsilon)}}{1 - e^{-(N+1)\beta(\mu + \epsilon)}}.$$

- 15. A toy car is made from a rectangular block of mass M and four disk wheels of mass m and radius r. The car is attached to a vertical wall by a massless horizontal spring with spring constant k and constrained to move perpendicular to the wall. The coefficient of static friction between the wheels of the car and the floor is μ . The maximum amplitude of oscillations of the car above which the wheels start slipping is
 - (A) $\frac{\mu g(M+2m)(M+4m)}{mk}$.
 - (B) $\frac{\mu g(M^2 m^2)}{Mk}.$
 - (C) $\frac{\mu g(M+m)^2}{2mk}$.
 - (D) $\frac{\mu g(M+4m)(M+6m)}{2mk}.$