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Design Against Static Load 

12.1 

1 
BASIC CALCULUS 

1.1 Introduction 

1.1.1 Limits, Continuity and Differentiability 

a.  As x tends to a (x → a)    x is moving towards a  

A value l is said to be limit of a function f(x) at x → a if f(x) → l as x → a.  

It is mathematically defined as  

 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑙 = 𝑙𝑖𝑚
𝑥→𝑎−

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)  

A function f(x) is said to be continuous at x = a if 

  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑙 = 𝑓(𝑎) = 𝑓(𝑥)|𝑥=𝑎 

Note:  

 For 𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) to exist, the function need not be continuous at x = a. 

 But for f(x) to be continuous at x = a, 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑎) should exist.  

 
Fig. 1.1 
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b.  Concept of differentiability  

A continuous function f(x) is said to be differentiable at x = a if  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 exists.  

 𝑓′(𝑥)|𝑥=𝑎 = 𝑓′(𝑎) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
     

𝑓′(𝑎) = 𝑡𝑎𝑛 𝜃 where 𝜃 is the angle made by the tangent to the curve at x=a with x – axis. 

c.  Some Standard Derivatives   

(i) 
𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛. 𝑥𝑛−1  

(ii) 
𝑑

𝑑𝑥
(𝑠𝑖𝑛 𝑥) = 𝑐𝑜𝑠 𝑥 

(iii) 
𝑑

𝑑𝑥
(𝑐𝑜𝑠 𝑥) = − 𝑠𝑖𝑛 𝑥 

(iv) 
𝑑

𝑑𝑥
(𝑡𝑎𝑛 𝑥) = 𝑠𝑒𝑐2 𝑥 

(v) 
𝑑

𝑑𝑥
(𝑐𝑜𝑡 𝑥) = − 𝑐𝑜𝑠 𝑒 𝑐2𝑥 

(vi) 
𝑑

𝑑𝑥
(𝑠𝑒𝑐 𝑥) = 𝑠𝑒𝑐 𝑥 . 𝑡𝑎𝑛 𝑥 

(vii) 
𝑑

𝑑𝑥
(𝑐𝑜𝑠 𝑒 𝑐𝑥) = −𝑐𝑜𝑠 𝑒 𝑐𝑥 𝑐𝑜𝑡 𝑥 

(viii) 
𝑑

𝑑𝑥
(𝑠𝑖𝑛−1 𝑥) =

1

√1−𝑥2
; −1 < 𝑥 < 1 

(ix) 
𝑑

𝑑𝑥
(𝑐𝑜𝑠−1 𝑥) =

−1

√1−𝑥2
, −1 < 𝑥 < 1 

(x) 
𝑑

𝑑𝑥
(𝑡𝑎𝑛−1 𝑥) =

1

1+𝑥2 

(xi) 
𝑑

𝑑𝑥
(𝑐𝑜𝑡−1 𝑥) =

−1

1+𝑥2 

(xii) 
𝑑

𝑑𝑥
(𝑠𝑒𝑐−1 𝑥) =

1

|𝑥|√𝑥2−1
 

(xiii) 
𝑑

𝑑𝑥
(𝑐𝑜𝑠 𝑒 𝑐−1𝑥) =

−1

|𝑥|√𝑥2−1
 ; |x| > 1  

(xiv) 
𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑎 𝑥) =

1

𝑥 𝑙𝑜𝑔𝑒 𝑎
 

(xv) 
𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑒 𝑥) =

1

𝑥
 

(xvi) 
𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥 . 𝑙𝑜𝑔𝑒 𝑎 

(xvii) 
𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥 

(xviii)  
𝑑

𝑑𝑥
(|𝑥|) =

|𝑥|

𝑥
(𝑥 ≠ 0) 

(xix) 
𝑑

𝑑𝑥
(𝑥𝑥) = 𝑥𝑥(1 + 𝑙𝑜𝑔𝑒 𝑥) 

(xx) 
𝑑

𝑑𝑥
(𝑠𝑖𝑛ℎ 𝑥) = 𝑐𝑜𝑠 ℎ 𝑥 
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d.  Product rule of differentiation  

 
𝑑

𝑑𝑥
(𝑓(𝑥). 𝑔(𝑥)) = 𝑓(𝑥). 𝑔′(𝑥) + 𝑓′(𝑥). 𝑔(𝑥)  

 𝑑(𝑢𝑣𝑤) = 𝑢𝑣𝑤′+ 𝑢𝑣′𝑤 + 𝑢′𝑣𝑤  

e.  Quotient rule of differentiation 

 
𝑑

𝑑𝑥
(

𝑓(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥).𝑓′(𝑥)−𝑓(𝑥).𝑔′(𝑥)

(𝑔(𝑥))
2 , (𝑔(𝑥) ≠ 0) 

f.  Greatest Integer function / step function / integer part function  

𝑓(𝑥) = [𝑥] = 𝑛, ∀ 𝑛 ≤ 𝑥 < 𝑛 + 1where𝑛 ∈ 𝑍                                       

𝑙𝑖𝑚
𝑥→𝑎

[𝑥] = ∄  if a is an integer 

L.H.L. = 𝑙𝑖𝑚
𝑥→𝑎−

[𝑥] = 𝑎 − 1 

R.H.L. = 𝑙𝑖𝑚
𝑥→𝑎+

[𝑥] = 𝑎 

 
Fig.1. 2 Greatest Integer 

g.  Properties of Limits 

(i) 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥) ± 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) ± 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) 

(ii) 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥). 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥). 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) 

(iii) 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥)
(𝑙𝑖𝑚

𝑥→𝑎
𝑔(𝑥) ≠ 0) 
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(iv) If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) exists and 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = ∄, then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥). 𝑔(𝑥) MAY exist  

Ex:  let 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥, 𝑔(𝑥) =
1

𝑥
, 𝑙𝑖𝑚

𝑥→0
𝑓(𝑥) = 0,  𝑙𝑖𝑚

𝑥→0

1

𝑥
= ∄  

But  𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛 𝑥 .
1

𝑥
= 1 

(v) If  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

0

0
(or)

∞

∞
, then 𝑙𝑖𝑚

𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
≠ (

0

0
) 

 If 𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
=

0

0
(or)

∞

∞
, then 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′′(𝑥)

𝑔′′(𝑥)
and so on  

(vi) If 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥). 𝑔(𝑥)) = 0 × ∞ ⇒ 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

(
1

𝑔(𝑥)
)

=
0

0
 (Apply L- Hospital Rule again) 

h.  Some Standard Limits 

(i) 𝑙𝑖𝑚
𝑥→𝑎

𝑠𝑖𝑛 𝑥

𝑥
= 1 

(ii) 𝑙𝑖𝑚
𝑥→𝑎

𝑡𝑎𝑛 𝑥

𝑥
= 1 

(iii) 𝑙𝑖𝑚
𝑥→0

1−𝑐𝑜𝑠 𝑎𝑥

𝑥2 =
𝑎2

2
 

(iv) 𝑙𝑖𝑚
𝑥→∞

𝑠𝑖𝑛 𝑥

𝑥
= 0 

(v) 𝑙𝑖𝑚
𝑥→∞

𝑐𝑜𝑠 𝑥

𝑥
= 0 

(vi) 𝑙𝑖𝑚
𝑥→0

(1 + 𝑎𝑥)𝑏/𝑥 = 𝑒𝑎𝑏 

(vii) 𝑙𝑖𝑚
𝑥→∞

(1 +
𝑎

𝑥
)

𝑏𝑥
= 𝑒𝑎𝑏 

(viii) 𝑙𝑖𝑚
𝑥→0

(
𝑎𝑥+𝑏𝑥

2
)

1/𝑥

= √𝑎𝑏 

(ix) 𝑙𝑖𝑚
𝑥→0

(
1𝑥+2𝑥+3𝑥+....+𝑛𝑥

𝑛
)

1/𝑥

= √𝑛!
𝑛

 

(x) 𝑙𝑖𝑚
𝑥→0

𝑎𝑥−1

𝑥
= 𝑙𝑜𝑔𝑒 𝑎 ; 𝑙𝑖𝑚

𝑥→0

𝑒𝑥−1

𝑥
= 1 

(xi) 𝑙𝑖𝑚
𝑥→0

𝑥. 𝑠𝑖𝑛 (
1

𝑥
) = 0 

1.2 Mean Value Theorems 

1.2.1 Lagrange’s Mean Value Theorem (LMVT):  

If 𝑓(𝑥) is continuous in [a, b] and it is differentiable in (a, b) then ∃ at least one point ‘C’ such that  C   (a, b) and  

𝑓′(𝐶) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
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Here 𝑓′(𝐶) slope of tangent to f(x) at x = C. 

Tangent at x = c is parallel to the line connecting the points A and B  

 
Fig.1.3 LMVT 

 1.2.2 Rolle’s Mean Value Theorem 

If 𝑓(𝑥) is continuous is [a, b] and differentiable in (a, b) and f(a) = f(b) then  at least one-point C (a, b) such that 

𝑓′(𝐶) = 0.                    

 
Fig.1.4 Rolle’s mean value 

1.2.3 Cauchy’s Mean Value Theorem 

If f(x) and g(x) are continuous in [a, b] and differentiable in (a, b) then  at least one value of ‘C’ such that C   

(a, b) and  
𝑔′(𝐶)

𝑓′(𝐶)
=

𝑔(𝑏)−𝑔(𝑎)

𝑓(𝑏)−𝑓(𝑎)
 

1.3 Increasing and Decreasing Functions 

1.3.1 Increasing Functions  

A function f(x) is said to be increasing if 𝑓(𝑥1) < 𝑓(𝑥2) ∀ 𝑥1 < 𝑥2 

  Or 
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 A function f(x) is said to be increasing if f(x) increases as x increases.  

 For a function 𝑓(𝑥) to be increasing at the point x=a, 𝑓′(𝑎) > 0. 

Example:  

 ex, log ex   →  Monotonically increasing functions 

 sin x in (0, /2) → non-monotonic functions 

1.3.2 Decreasing Functions 

A function f(x) is said to be a decreasing function if 𝑓(𝑥1) > 𝑓(𝑥2)∀𝑥1 < 𝑥2 

A function 𝑓(𝑥) is said to be decreasing function if 𝑓(𝑥) decreases as x increases.  

Example: 𝑒−𝑥 →Monotonically decreasing function sin x in (
𝜋

2
, 𝜋)  

1.4 Concept of Maxima and Minima 

Let f(x) be a differentiable function, then to find the maximum (or) minimum of f(x). 

(1)  Find stationary points from the equation f'(x) = 0. Let ‘x0’ be the stationary point.  

(2) Find the value of f''(x0) 

Case (i): If 𝑓"(𝑥0) < 0, then the function 𝑓(𝑥) has maximum at x = x0 and the maximum value of the function is 𝑓(𝑥0).  

Case (ii): If 𝑓"(𝑥0) > 0, then the function 𝑓(𝑥) has minimum value at x = x0 and the minimum value is 𝑓(𝑥0).  

Case (iii): If 𝑓"(𝑥0) =0, then the we cannot comment on the existence of maximum (or) minimum of f(x) at x = x0. 

Such points are called points of inflection (or) Critical points.       

Example: x = 0 is a critical point of f(x) = x3 

 

Fig. 1.5 Graph of 𝒙𝟑 

𝑓(𝑥) = 𝑥3 

  𝑓′(𝑥) = 3𝑥2 = 0       x = 0 

 𝑓′′(𝑥) = 6𝑥 ⇒ 𝑓′′(0) = 6(0) = 0 
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1.5 Taylor Series  

If f(x) is continuously differentiable (𝑓′(𝑥), 𝑓"(𝑥), 𝑓′′′(𝑥), . . . . . exists) then the Taylor series expansion of f(x) about 

the point x = a is given by 

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3. +. . . ∞ 

If a = 0, then 𝑓(𝑥) = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
+. . . . . ∞ 

The coefficient of (x – a)n in the Taylor series expansion of f(x) is 
𝑓𝑛(𝑎)

𝑛!
. 

The general expansion of Taylor series is given by 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ.
𝑓′(𝑥)

1!
+ ℎ

2.
𝑓′′(𝑥)

2!
+ ℎ

3.
𝑓′′′(𝑥)

3!
+. . . . . .∞   

• Finding the expansion of ex about x = 0  

   𝑓(𝑥) = 𝑒𝑥 ⇒ 𝑓(0) = 𝑒0 = 1  

𝑓′(𝑥) = 𝑒𝑥 ⇒ 𝑓′(0) = 𝑒0 = 1; 𝑓"(0) = 𝑓′′′(0) = 𝑓′′′′(0) =. . . . . = 1  

𝑓(𝑥) = 𝑒𝑥 = 1 + (𝑥 − 0)
1

1!
+ (𝑥 − 0)2.

1

2!
+ (𝑥 − 0)3.

1

3!
+. . . . ..   

   𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+. . . ..  

1.6 Integral Calculus  

If F(x) is anti-derivative of f(x) that is continuous and differentiable in (a, b), then we write ∫ 𝑓(𝑥)
𝑥=𝑏

𝑥=𝑎
𝑑𝑥 = 𝐹(𝑏) −

𝐹(𝑎). Here f(x) is integrand 

If 𝑓(𝑥) > 0 ∀𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡ℎ𝑒 ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
 represents the shaded area in the given figure. 

y = f x( )

x=a x=b  
Fig.1.6 Integration of continuous function 

1.6.1 Mean Value Theorem of Integration  

If f(x) is continuous in [a, b] and differentiable in (a, b) then ‘’ atleast one-point C (a, b) such that   

  𝑓′(𝐶) =
∫ 𝑓(𝑥)

𝑏
𝑎

𝑑𝑥

(𝑏−𝑎)
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Fig.1.7 Mean value of integration 

1.7 Newton-Leibnitz Rule  

 If f(x) is continuously differentiable and (x), (x) are two functions for which the 1st derivative exists, then  

𝑑

𝑑𝑥
(∫ 𝑓(𝑥)𝑑𝑥

𝜓(𝑥)

𝜙(𝑥)

) = 𝑓(𝜓(𝑥)). 𝜓′(𝑥) − 𝑓(𝜙(𝑥)). 𝜙′(𝑥) 

Ex. 
𝑑

𝑑𝑥
(∫ 𝑠𝑖𝑛 𝑥

𝑥2

𝑥
𝑑𝑥) = 𝑠𝑖𝑛(𝑥2) . 2𝑥 − 𝑠𝑖𝑛 𝑥 . 1 = 2𝑥 𝑠𝑖𝑛(𝑥2) − 𝑠𝑖𝑛 𝑥  

1.8 Some Standard Integrals  

1. ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶(𝑛 ≠ −1) 

2. ∫
1

𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑒 | 𝑥| + 𝐶 

3. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 = −𝑐𝑜𝑠 𝑥 + 𝐶 

4. ∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑠𝑖𝑛 𝑥 + 𝐶 

5. ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑓(𝑥)| + 𝐶 

6. ∫ 𝑡𝑎𝑛 𝑥 𝑑𝑥 = − ∫ −
𝑠𝑖𝑛 𝑥

𝑐𝑜𝑠 𝑥
𝑑𝑥 = − 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠 𝑥| + 𝐶 

  ∫ 𝑡𝑎𝑛 𝑥 𝑑𝑥 = 𝑙𝑜𝑔𝑒 | 𝑠𝑒𝑐 𝑥 | + 𝐶 

7. ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥 = ∫
𝑐𝑜𝑠 𝑥

𝑠𝑖𝑛 𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑠𝑖𝑛 𝑥| + 𝐶 = − 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠 𝑒 𝑐𝑥| + 𝐶 

8. ∫ 𝑠𝑒𝑐 𝑥 𝑑𝑥 = 𝑙𝑜𝑔𝑒 | 𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥 | + 𝐶 

 ∫ 𝑠𝑒𝑐 𝑥 𝑑𝑥 = ∫
𝑠𝑒𝑐 𝑥(𝑠𝑒𝑐 𝑥+𝑡𝑎𝑛 𝑥)

(𝑠𝑒𝑐 𝑥+𝑡𝑎𝑛 𝑥)
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥| + 𝐶 

9. ∫ 𝑐𝑜𝑠 𝑒 𝑐𝑥𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠 𝑒 𝑐𝑥 − 𝑐𝑜𝑡 𝑥| + 𝐶 

10. ∫ 𝑎𝑥𝑑𝑥 =
𝑎𝑥

𝑙𝑜𝑔𝑒 𝑎
+ 𝐶 
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11. ∫
1

𝑥.𝑙𝑜𝑔𝑒 𝑎
𝑑𝑥 = 𝑙𝑜𝑔𝑎 𝑥 + 𝐶 

12. ∫ 𝑥𝑥(1 + 𝑙𝑜𝑔𝑒 𝑥) 𝑑𝑥 = 𝑥𝑥 + 𝐶 

13. ∫ 𝑓(𝑥) . 𝑓′(𝑥)𝑑𝑥 =
1

2
(𝑓(𝑥))

2
+ 𝐶 

14. ∫
𝑓′(𝑥)

√𝑓(𝑥)
𝑑𝑥 = 2. √𝑓(𝑥) + 𝐶 

15. If f(x), g(x) are two functions. that are differentiable, then  

 ∫ 𝑓(𝑥) . 𝑔(𝑥)𝑑𝑥 = 𝑓(𝑥). ∫ 𝑔(𝑥) − ∫ 𝑓′(𝑥) (𝑔(𝑥)𝑑𝑥)𝑑𝑥 + 𝐶 

 Before integrating the product, the functions f(x) and g(x) are to be arranged according to the ILATE Principle.  

 Here, ILATE stands for INVERSE LOGARITHMIC ALGEBRAIC TRIGONOMETRIC EXPONENTIAL.   

1.9 Properties of Definite Integrals  

1. If f(x) is differentiable in interval (a, b), then  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = − ∫ 𝑓(𝑥)

𝑎

𝑏
𝑑𝑥   

2. If  a point C  (a, b) such that f(x) is not differentiable, then  

  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(𝑥)

𝑐

𝑎
𝑑𝑥 + ∫ 𝑓(𝑥)

𝑏

𝑐
𝑑𝑥  

3. If f(x) is continuously differentiable function,  

  ∫ 𝑓(𝑥)
𝑎

−𝑎
𝑑𝑥 = 2 × ∫ 𝑓(𝑥)

𝑎

0
𝑑𝑥; if 𝑓(−𝑥) = 𝑓(𝑥) 

⇒  f(x)" is even function") 

  0;  if 𝑓(−𝑥) = −𝑓(𝑥)(⇒ 𝑓(𝑥) is odd function)   

4. ∫ 𝑓(𝑥)
2𝑎

0
𝑑𝑥 = 2 × ∫ 𝑓(𝑥)

𝑎

0
𝑑𝑥 if 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥) 

5. ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(𝑎 + 𝑏 − 𝑥)

𝑏

𝑎
𝑑𝑥       

6. ∫
𝑓(𝑥)

𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥)

𝑏

𝑎
= (

𝑏−𝑎

2
) 

Ex. 

(i) ∫
𝑠𝑖𝑛 𝑥

𝑠𝑖𝑛 𝑥+𝑐𝑜𝑠 𝑥
=

𝜋

4

𝜋/2

0
 

(ii) ∫
1

1+√𝑡𝑎𝑛 𝑥
𝑑𝑥 = ∫

1

1+(
√𝑠𝑖𝑛 𝑥

√𝑐𝑜𝑠 𝑥
)

𝑑𝑥 = ∫
√𝑐𝑜𝑠 𝑥

√𝑐𝑜𝑠 𝑥+√𝑠𝑖𝑛 𝑥
𝑑𝑥 =

𝜋

4

𝜋/2

0

𝜋/2

0

𝜋/2

0
 

(iii) ∫
√𝑥

√𝑥+√5−𝑥

3

2
= (

3−2

2
) =

1

2
 

(iv) ∫
√𝑡𝑎𝑛 𝑥

√𝑡𝑎𝑛 𝑥+√𝑐𝑜𝑡 𝑥

𝜋/2

0
𝑑𝑥 =

𝜋

4
 

7. ∫ 𝑠𝑖𝑛𝑚 𝑥
𝜋/2

0
𝑑𝑥 = ∫ 𝑐𝑜𝑠𝑚 𝑥  𝑑𝑥

𝜋/2

0
=

(𝑚−1)×(𝑚−3)×(𝑚−5)

𝑚×(𝑚−2)×(𝑚−4)
×. . . (

1

2
) (or)

2

3
× 𝐾 

 Where K = /2 if m is even  

    = 1 if m is odd.  

8. ∫
𝑑𝑥

𝑎2 𝑐𝑜𝑠2 𝑥+𝑏2 𝑠𝑖𝑛2 𝑥

𝜋

0
=

𝜋

𝑎𝑏
 

9. ∫
𝑑𝑥

𝑎2 𝑐𝑜𝑠2 𝑥+𝑏2 𝑠𝑖𝑛2 𝑥

𝜋/2

0
=

𝜋

2𝑎𝑏
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1.10 Length of a Curve  

If 𝑦 = 𝑓(𝑥) is a differentiable function in (a, b), then the length L of the curve 𝑦 = 𝑓(𝑥) between x = a and x = b is 

given by  

 𝐿 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2𝑥=𝑏

𝑥=𝑎
𝑑𝑥  

 
Fig.1.8 Length of the curve  

1.11  Surface Area of Solid generated by revolving a curve about a fixed axis.  

Elemental Surface Area  

  𝑑𝐴 = 2𝜋𝑦 × 𝑑𝑠 = 2𝜋𝑦𝑑𝑠  

 Total surface area = A = ∫ 2𝜋𝑦
𝑥=𝑏

𝑥=𝑎
√1 + (

𝑑𝑦

𝑑𝑥
)

2
𝑑𝑥  

 
Fig.1.9 Surface area 
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1.12 Volume of the solid 

The volume of the solid obtained by revolving the curve y = f (x) between the lines x = a and x = b is given by  

 𝑉 = ∫ 𝑑𝑉
𝑥=𝑏

𝑥=𝑎
= ∫ 𝜋𝑦2𝑑𝑠

𝑥=𝑏

𝑥=𝑎
 = ∫ 𝜋𝑦2. √1 + (

𝑑𝑦

𝑑𝑥
)

2
𝑑𝑥

𝑥=𝑏

𝑥=𝑎
  

 𝑉 ≈ ∫ 𝜋𝑦2𝑑𝑥
𝑥=𝑏

𝑥=𝑎
 

 
Fig.1.10 Volume of the solid 

1.13 Gamma Function  

The integral ∫ 𝑒−𝑥 . 𝑥𝑛−1∞

0
𝑑𝑥(𝑛 > 0) is called Gamma function of n. It is denoted by Γ𝑛 = ∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥

∞

0
 . 

1.13.1 Properties of Gamma Function     

(i) Γ𝑛 = (𝑛 − 1)! 

(ii) Γ(𝑛 + 1) = (𝑛)! 

(iii) Γ(𝑛 + 1) = 𝑛Γn 

(iv) Γ (
1

2
) = √𝜋  

1.14 Beta Function 

The function  (m, n) = ∫ 𝑥𝑚−1. (1 − 𝑥)𝑛−11

0
𝑑𝑥 (m, n > 0) is called  function of m and n.  

1.14.1 Properties of  function 

(i) 𝛽(𝑚, 𝑛) =
Γ𝑚.Γ𝑛

Γ(m+𝑛)
 

(ii) 𝛽(𝑚, 𝑛) = 𝛽(𝑛, 𝑚) 

(iii) 𝛽(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

0
𝑑𝑥 

 𝛽(𝑛, 𝑚) = ∫
𝑥𝑛−1

(1+𝑥)𝑚+𝑛

∞

0
𝑑𝑥 

(iv) 𝑠𝑖𝑛𝑝𝜃. 𝑐𝑜𝑠𝑞 𝜃 𝑑𝑥 =
1

2
𝛽 (

𝑝+1

2
,

𝑞+1

2
) (𝑝, 𝑞 > −1)   
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1.15 Area under the curves 

 If the function f(x) > g(x) for all values of x between x=a and x=b then  

 𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
− ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

⇒ 𝐴 = ∫ (𝑓(𝑥) − 𝑔(𝑥))
𝑏

𝑎
𝑑𝑥  

 
Fig.1.11 Area under curve 

1.16 Multi Variable Calculus 

a.  Continuity of a function  

A function f(x, y) is said to be continuous at (a, b) if 𝑙𝑖𝑚
𝑥→𝑎
𝑦→𝑏

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏)   

b.  Differentiation of a two-variable function  

If f(x, y) is a continuous function, then the derivative of f(x, y) with respect to x treating y as constant is given by p 

= 
𝜕𝑓

𝜕𝑥
= 𝑙𝑖𝑚

ℎ→0

𝑓(𝑥+ℎ,𝑦)−𝑓(𝑥,𝑦)

ℎ
  

The derivative of f(x, y) with respect to y treating x as constant is given by 𝑞 =
𝜕𝑓

𝜕𝑦
= 𝑙𝑖𝑚

𝑘→0

𝑓(𝑥,𝑦+𝑘)−𝑓(𝑥,𝑦)

𝑘
 

c.  Homogenous Function  

A function f (x, y) is said to be homogenous function of degree ‘n’ if 𝑓(𝑘𝑥, 𝑘𝑦) = 𝑘𝑛. 𝑓(𝑥, 𝑦).  

Ex. 𝑓(𝑥, 𝑦) = 𝑥3 − 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

 𝑓(𝑘𝑥, 𝑘𝑦) = (𝑘𝑥)3 − 3(𝑘𝑥)2(𝑘𝑦) + 3(𝑘𝑥). (𝑘𝑦)2 + (𝑘𝑦)3 

=  𝑘3(𝑥3 − 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3) 

= 𝑘3. 𝑓(𝑥, 𝑦)    𝑓(𝑥, 𝑦) is a homogenous function of degree ‘3’.  

d. Euler’s Theorem 

If f (x, y) is a homogeneous function of degree ‘n’ then  

(i) 𝑥.
𝜕𝑓

𝜕𝑥
+ 𝑦.

𝜕𝑓

𝜕𝑦
= 𝑛𝑓  

(ii) 𝑥2.
𝜕2𝑓

𝜕𝑥2 + 2𝑥𝑦
𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑦2 𝜕2𝑓

𝜕𝑦2 = 𝑛(𝑛 − 1)𝑓 
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If f(x, y) = g(x, y) + h(x, y) + (x, y) where g (x, y), h (x, y) and (x, y) are homogenous functions of degrees m, n and 

p respectively, then  

𝑥.
𝜕𝑓

𝜕𝑥
+ 𝑦.

𝜕𝑓

𝜕𝑦
= 𝑚. 𝑔(𝑥, 𝑦) + 𝑛. ℎ(𝑥, 𝑦) + 𝑝. 𝜙(𝑥, 𝑦)  

𝑥2.
𝜕2𝑡

𝜕𝑥2 + 2𝑥𝑦.
𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑦2.

𝜕2𝑓

𝜕𝑦2 = 𝑚(𝑚 − 1). 𝑔(𝑥, 𝑦) + 𝑛(𝑛 − 1). ℎ(𝑥, 𝑦) + 𝑝(𝑝 − 1). 𝜙(𝑥, 𝑦)  

e. Concept of Maxima and Minima in Two Variables 

If f(x, y) is a two-variable differentiable function, then to find the maxima (or) minima. 

Step-1: Calculate 𝑝 =
𝜕𝑓

𝜕𝑥
 and 𝑞 =

𝜕𝑓

𝜕𝑦
 and equate p = 0, q = 0 

  Let (x0, y0) be a stationary point. 

Step-2: Calculate r, s, t where 𝑟 =
𝜕2𝑓

𝜕𝑥2|
(𝑥0,𝑦0)

;  𝑠 =
𝜕2𝑓

𝜕𝑥.𝜕𝑦
|

(𝑥0,𝑦0)
; 𝑡 =

𝜕2𝑓

𝜕𝑦2|
(𝑥0,𝑦0)

  

Case (i): If 𝑟𝑡 − 𝑠2 > 0 and r > 0, then the function f (x, y) has minimum at (x0, y0) and the minimum value is  

f(x0, y0). 

Case (ii): If 𝑟𝑡 − 𝑠2 > 0 and r < 0, then the function f (x, y) has maximum at (x0, y0) and the maximum value is 

 f(x0, y0). 

Case (iii): If 𝑟𝑡 − 𝑠2 ≤ 0 ; then we cannot comment on the existence of maxima and minima.  

Such stationary points where 𝑟𝑡 − 𝑠2 ≤ 0  are called saddle points. 

f.  Concept of Constraint Maxima and Minima (Method of Lagrange’s unidentified multipliers). 

If f(x, y, z) is a continuous and differentiable function, such that the variables x, y and z are related/constrained by the 

equation (x, y, z) = C then to calculate the extreme value of f(x, y, z) using Lagrange’s Method of unidentified multipliers.  

Step-1: Form the function F(x, y, z) = f(x, y, z) + {(x, y, z) – C} where 𝜆 is a multiplier. 

Step-2:  Calculate 
𝜕𝐹

𝜕𝑥
, 

𝜕𝐹

𝜕𝑦
 and 

𝜕𝐹

𝜕𝑧
 and equate them to zero  

Step-3:  Equate the values of  from the above 3 equations and obtain the relation between the variables x, y and z.  

Step-4:  Substitute the relation between x, y and z in (x, y, z) = C and get the values of x, y, z. Let they be (x0, y0, z0). 

Step-5:  Calculate f(x0, y0, z0) 

The value f(x0, y0, z0) is the extreme value of f(x, y, z). 

g. Multiple Integrals 

If f(x, y) is continuous and differentiable at every point within a region ‘R’ bounded by some curves is given by  

  𝐼 = ∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦   

If there is a double integral, 
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  𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦=𝜓(𝑥)

𝑦=𝜙(𝑥)

𝑥=𝑏

𝑥=𝑎
   [Let (x) > (x)]   

Then I = area of the region bounded by the curves y = (x); y = (x), x = a and x = b if f(x, y) = 1 

Value of x – co-ordinate of centroid of the region bounded by y = (x); y = (x); x = a, x = b  

if f(x, y) = x 

h. Change of Orders of Integration 

𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦=𝜓(𝑟)

𝑦=𝜙(𝑥)

𝑥=𝑏

𝑥=𝑎
   →  𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥=ℎ(𝑦)

𝑥=𝑔(𝑦)

𝑥=𝑑

𝑥=𝑐
 

In change of order of Integration, the order of the Integrating variables changes and the limits as well. 

 

❑❑❑ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

GATE WALLAH MECHANICAL HANDBOOK 
  

Design Against Static Load 
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2 
DIFFERENTIAL EQUATIONS 

2.1 Differential Equation 

 The equation involving differential coefficients is called a Differential Equation (DE).  

1.  𝑥2.
𝑑𝑦

𝑑𝑥
+ 𝑦2 = 0  

2.  
𝜕2𝑇

𝜕𝑥2 = 𝑘 ⋅
𝜕𝑇

𝜕𝑡
  

3. 𝑥2.
𝜕2𝑢

𝜕𝑥2 + 𝑦2.
𝜕2𝑢

𝜕𝑦2 = 0  

2.1.1 Ordinary Differential Equations (ODE) 

The DEs involving only one independent variable is called ordinary differential equation.  

Ex. 

(1) 𝑥2 𝑑𝑦

𝑑𝑥
+ 𝑦2 = 0;   

(2) 𝑒−𝑥 ⋅
𝑑𝑦

𝑑𝑥
+ 𝑦2 = 𝑒𝑥 

2.1.2 Partial Differential Equations  

The DEs involving two (or) more independent variables are called Partial Differential Equations (PDEs).  

Ex. 

 
𝜕2𝑢

𝜕𝑥2 = 𝐶2 ⋅
𝜕2𝑢

𝜕𝑡2  

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 =
1

𝐾
⋅

𝜕𝑢

𝜕𝑡
 

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 

2.1.3 Order and Degree of a Differential Equation 

Order of a DE 

The order of the highest derivative that occurs in a DE is called order of a DE. 
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Ex.  

(1) 
𝑑2𝑦

𝑑𝑥2 + (
𝑑𝑦

𝑑𝑥
)

3
− 𝑦 = 0  → Order = 2 

(2) 
𝑑𝑦

𝑑𝑥
+ 2 ⋅

𝑑2𝑦

𝑑𝑥2 +
𝑑3𝑦

𝑑𝑥3 − 3𝑥2 = 𝑒𝑥  → Order = 3 

(3) 
𝜕2𝑢

𝜕𝑥2 =
1

𝐶2 .
𝜕2𝑢

𝜕𝑡2    → Order = 2 

(4) 
𝜕2𝑢

𝜕𝑥2 =
1

𝛼

𝜕𝑢

𝜕𝑡
   → Order = 2 

2.1.4 Degree of a Differential Equation 

The Degree of the highest order derivative that occurs in a DE when the DE is free from fractional (or) radical powers. 

Ex. 

(1) The Degree of the DE (
𝑑2𝑦

𝑑𝑥2)
1

+ 2 (
𝑑𝑦

𝑑𝑥
)

3
− 3𝑦 = 0 is 1. 

(2) The Degree of the DE (
𝑑2𝑦

𝑑𝑥2)
1

+ √(
𝑑𝑦

𝑑𝑥
)

3
+ 4𝑦 = 0 is 2 

   (
𝑑2𝑦

𝑑𝑥2)
2

= (−√(
𝑑𝑦

𝑑𝑥
)

3
+ 4𝑦)

2

 

   (
𝑑2𝑦

𝑑𝑥2)
2

= (
𝑑𝑦

𝑑𝑥
)

3
+ 4𝑦 

2.2 Formation of Differential Equations 

If a solution y = f(x) contains n arbitrary constants in it, then differentiate y for n times and calculate 𝑦′, 𝑦", 𝑦′′′, . . . . 𝑦(𝑛) 

So, from the (n + 1) equations available,try to eliminate the arbitrary constants in y = f(x) 

• The different equation formed for the solution  𝑦 = 𝑐1𝑒𝐾1𝑥 + 𝐶2𝑒𝐾2𝑥 where C1, C2 are arbitrary constants is 

 
𝑑2𝑦

𝑑𝑥2 − (𝐾1 + 𝐾2)
𝑑𝑦

𝑑𝑥
+ (𝐾1. 𝐾2)𝑦  

• If the solution is 𝑦 = 𝐶1𝑒𝐾1𝑥 + 𝐶2𝑒𝐾2𝑥 + 𝐶3𝑒𝐾3𝑥 where C1, C2, C3 are arbitrary constants, then the DE is 𝑦′′′ −

(𝐾1 + 𝐾2 + 𝐾3)𝑦" + (𝐾1𝐾2 + 𝐾2𝐾3 + 𝐾3𝐾1)𝑦′ − (𝐾1𝐾2𝐾3)𝑦 = 0 

2.2.1 First Order DE 

The general form of a 1st order DE is given by 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 If  
𝑑𝑦

𝑑𝑥
= −

𝑀(𝑥,𝑦)

𝑁(𝑥,𝑦)
= 𝑓(𝑥, 𝑦)  

• 𝑁(𝑥, 𝑦)𝑑𝑦 + 𝑀(𝑥, 𝑦)𝑑𝑥 = 0  

• 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 where M, N are functions of x and y.  
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2.2.2 Linear ODE: 

A DE is said to be linear if it does not contain  the higher power terms of dependent variable 

(𝑦2, 𝑦3, 𝑦4, . . . . , (
𝑑𝑦

𝑑𝑥
)

2
, (

𝑑𝑦

𝑑𝑥
)

3
, . . . . ) and also the terms containing the product of dependent variable and its differential 

coefficient (𝑦.
𝑑𝑦

𝑑𝑥
, 𝑦2 𝑑𝑦

𝑑𝑥
, 𝑦 (

𝑑𝑦

𝑑𝑥
)

2
, . . . . . ) 

Ex. 

(1) 𝑥2.
𝑑2𝑦

𝑑𝑥2 − 5𝑥
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0 

(2) 
𝑑𝑦

𝑑𝑥
= 5𝑦 = 𝑠𝑖𝑛 𝑥 

• 
𝑑2𝑦

𝑑𝑥2 − 5.
𝑑𝑦

𝑑𝑥
+ 𝑠𝑖𝑛 𝑦 = 0  → Non-linear DE  

Here, 𝑠𝑖𝑛 𝑦 = 𝑦 −
𝑦3

3!
+

𝑦5

5!
. . .. 

• 
𝑑2𝑦

𝑑𝑥2 − 5.
𝑑𝑦

𝑑𝑥
+ 𝑠𝑖𝑛 𝑥 = 4𝑦  → Linear DE 

   

2.3 Solving of Differential Equations  

2.3.1 Solving of 1st Order DE 

(i)  Variable-separable form 

If the 1st order DE is given by 
𝑑𝑦

𝑑𝑥
= 𝜙(𝑥). 𝜓(𝑦) 

 ∫
1

𝛹(𝑦)
𝑑𝑦 = ∫ 𝜙(𝑥)𝑑𝑥 

On integrating we have solution of the given DE 

(ii)  Homogenous 1st Order 

 If the 1st order DE is of the form 
𝑑𝑦

𝑑𝑥
=

𝑀(𝑥,𝑦)

𝑁(𝑥,𝑦)
 

 Such that both M(x, y) and N(x, y) are homogenous functions of same degree, then we say that the DE is 

homogeneous. 

Ex. 

(1) 
𝑑𝑦

𝑑𝑥
=

𝑥2+𝑦2

𝑥𝑦
 

(2) 
𝑑𝑦

𝑑𝑥
=

𝑎𝑥+𝑏𝑦

𝑎′𝑥+𝑏′𝑦
 

(a and b are not zero at the same time; a and b are not zero at the same time) 

If the DE 
𝑑𝑦

𝑑𝑥
=

𝑀(𝑟,𝑦)

𝑁(𝑥,𝑦)
 is a homogeneous DE, then the equation can be converted to Variable Separable form if we 

substitute y = Vx 
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2.3.2 Exact Differential Equations  

The DE  Mdx + Ndy = 0 where M, N are functions of x and y is said to be an Exact Differential Equation if there exist 

a function f(x, y) such that Mdx + Ndy = 𝑑(𝑓(𝑥, 𝑦)) 

Mathematical condition to check the Exactness of a differential equation is  

 
𝜕𝑁

𝜕𝑥
=

𝜕𝑀

𝜕𝑦
   

(i)  Solution of an Exact DE 

If M(x, y) dx + N (x, y) dy = 0 is an Exact differential Equation, then the solution of the DE is given by 

∫ 𝑀(𝑥, 𝑦)𝑑𝑥
𝑦=const

+ ∫(terms not containing  x in 𝑁) 𝑑𝑦 = 𝐶  

(ii)  Integrating Factor   

The function which, when multiplied to a non-exact DE converts the DE to exact DE.  

Ex. 

(1) 
1

𝑦2 is an integrating factor of 𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0 

(2) 
1

𝑦
 is an integrating factor of 𝑥2𝑑𝑦 − 𝑥𝑦𝑑𝑥 = 0 

 

2.3.3 Methods of Writing the Integrating Factors (I.F.) 

(i) If M(x, y)dx + N(x, y)dy = 0 is a homogeneous DE, then I.F.  =  
1

𝑀𝑥+𝑁𝑦
  (𝑀𝑥 + 𝑁𝑦 ≠ 0) 

(ii)If 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 is of the form 𝑦𝑓(𝑥𝑦)𝑑𝑥 + 𝑥𝑔(𝑥𝑦)𝑑𝑦 = 0 then I.F. = 
1

𝑀𝑥−𝑁𝑦
, (𝑀𝑥 − 𝑁𝑦 ≠ 0) 

(iii)For a DE, 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, If 
1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) = 𝑓(𝑥), then 𝑒∫ 𝑓(𝑥)𝑑𝑥 is the integrating factor. 

(iv)For the DE, 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, if 
1

𝑀
(

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
) = 𝑔(𝑦) then 𝑒∫ 𝑔(𝑦)𝑑𝑦 is the integrating factor.  

2.3.4 Leibnitz Linear Equation 

The DE of the form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄where P, Q are functions of x alone, is called Leibnitz Linear Equation 

Integrating factor of the equation is 𝑒∫ 𝑃𝑑𝑥 

Solution of the Differential Equation is  : 𝑦. 𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄. (𝑒∫ 𝑃𝑑𝑥) 𝑑𝑥+ C where C is arbitrary constant. 
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2.3.5. Non-linear Equations Convertible to Leibnitz Linear Form 

 Bernoulli’s Equation  

Case-I 

  
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄. 𝑦𝑛(𝑛 > 1, 𝑛 ≠ 1)  

(P, Q are functions of x alone) 

 
1

𝑦𝑛

𝑑𝑦

𝑑𝑥
+

1

𝑦𝑛 𝑃𝑦′ =
𝑄𝑦𝑛

𝑦𝑛  

 𝑦−𝑛 ⋅
𝑑𝑦

𝑑𝑥
+ 𝑦1−𝑛 ⋅ 𝑃 = 𝑄  

Let  𝑦1−𝑛 = 𝑧 

 (1 − 𝑛)𝑦−𝑛 𝑑𝑦

𝑑𝑧
=

𝑑𝑧

𝑑𝑥
 

 𝑦−𝑛 𝑑𝑦

𝑑𝑥
=

1

(1−𝑛)

𝑑𝑧

𝑑𝑥
 

 
1

(1−𝑛)

𝑑𝑧

𝑑𝑥
+ 𝑧𝑃 = 𝑄 

 
𝑑𝑧

𝑑𝑥
+ (1 − 𝑛)𝑃𝑧 = (1 − 𝑛)𝑄    [Leibnitz Linear Equation] 

Case-II 

𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
+ 𝑃𝑓(𝑦) = 𝑄   

where P, Q are functions of x alone.  

Let 𝑓(𝑦) = 𝑧  

 𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
=

𝑑𝑧

𝑑𝑥
  

 
𝑑𝑧

𝑑𝑥
+ 𝑃𝑧 = 𝑄 [Leibnitz Linear Equation] 

 

2.3.6 Applications of 1st order DE 

Newton’s Law of Cooling 

The rate of change of temperature of a body placed in an ambience of temperature T is directional proportional to 

the temperature difference between the body and the ambient.  

 
𝑑𝑇

𝑑𝑡
∝ −(𝑇 − 𝑇∞)  where T → Ambient Temperature (T > T)  

 
𝑑𝑇

𝑑𝑡
∝ (𝑇∞ − 𝑇) 

 
𝑑𝑇

𝑑𝑡
= −𝐾(𝑇 − 𝑇∞) 
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Radioactive Growth / Decay 

The rate of growth/decay on any radioactive substance at any instant is directly proportional to concentration of the 

substance that is available at that instant.  

 

• 
𝑑𝑁

𝑑𝑡
∝ 𝑁  → For growth  

 
𝑑𝑁

𝑑𝑡
= 𝐾𝑁 

 ∫
1

𝑁
𝑑𝑁 = ∫ 𝐾𝑑𝑡 

• 
𝑑𝑁

𝑑𝑡
∝ −𝑁   → For decay 

 
𝑑𝑁

𝑑𝑡
= −𝐾𝑁 

 𝑙𝑜𝑔𝑒 𝑁 = 𝐾𝑡 + 𝐶 

 𝑁 = 𝑒𝐾𝑡𝐶 

2.4 Higher Order Differential Equations 

The general form of Higher order Differential Equations is given by  

𝐾1
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝐾2
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝐾3
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 +. . . . +𝐾𝑛𝑦 = 𝑋  …(1) 

If K1, K2, K3, K4, ….Kn, X are functions of x alone then (1) is called Linear Higher Order Linear DE with variable 

coefficients.  

If K1, K2, K3, K4, ….Kn are constants and X is a function of ‘x’ alone, then (1) is called Higher Order Linear DE with 

constant coefficients.   

2.5 Higher Order Linear Differential Equations with Constant Coefficients  

The DE 𝐾1
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝐾2
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝐾3
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 +. . . . +𝐾𝑛𝑦 = 𝑋 …. (1) is said to be a higher order linear DE with constant 

coefficients if K1, K2, K3, K4, ….Kn are constants and ‘X’ is a function of x alone. 

If X = 0, then (1) is called Homogeneous DE   

If X  0, then (1) is called Non-Homogeneous DE.  

 

2.5.1 Solution of Higher order Linear Differential Equation 

  Y =yc + yp  

 𝑦𝑐 → Complimentary function;  𝑦𝑝 → Particular Integral  

(Solution of homogeneous part; (X = 0); (Solution of Non-Homogeneous Part; (X  0)) 

If 𝐾1
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝐾2
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 +. . . . +𝐾𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝐾𝑛𝑦 = 𝑋 …. (1) is a linear DE with constant coefficients.  
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2.5.2 Rules for Writing the Complete Solution of (𝒇(𝑫))𝒚 = 𝑿: 

(i) Form the auxiliary equation of (𝑓(𝐷))𝑦 = 𝑋 i.e. 𝑓(𝑀) = 0    

(ii) Depending on the roots of the auxiliary equation (𝑓(𝑀) = 0), we write the complimentary function.  

(iii) Calculate the Particular Integral 𝑦𝑃 =
1

(𝑓(𝐷))
𝑋. 

(iv) Write the total solution of the equation 𝑦 = 𝑦𝐶 + 𝑦𝑃. 

2.5.3 Rules for Writing the Complementary Function 

(i) If the roots of 𝑓(𝑀) = 0 are 𝑀1, 𝑀2, 𝑀3, …. (𝑀1, 𝑀2, 𝑀3, …   Rational) 

 Then 𝑦𝐶 = 𝐶1𝑒𝑀1𝑥 + 𝐶2𝑒𝑀2𝑥 + 𝐶3𝑒𝑀3𝑥+. . . .. where C1, C2, C3,…. Are arbitrary constants)   

(ii) If the roots of 𝑓(𝑀) = 0 are 𝑀1, 𝑀1, 𝑀3. . . . . . (𝑀1, 𝑀3. . . . . . ∈  Rational) 

 Then 𝑦𝐶 = (𝐶1𝑥 + 𝐶2)𝑒𝑀1𝑥 + 𝐶3. 𝑒𝑀3𝑥+. . . . .. Where C1, C2, C3, …. are arbitrary constants). 

(iii) If the roots of 𝑓(𝑀) = 0 are 𝑀1, 𝑀1, 𝑀1, 𝑀4. . .. (Where  𝑀1, 𝑀4. . . . . ∈ Rational) 

 Then 𝑦𝐶 = (𝐶1𝑥2 + 𝐶2𝑥 + 𝐶3)𝑒𝑀1𝑥 + 𝐶4𝑒𝑀4𝑥+. . . . .. (where C1, C2, C3 …. Are arbitrary constants) 

(iv) If the roots of 𝑓(𝑀) = 0 are 𝛼 + 𝑖𝛽, 𝛼 − 𝑖𝛽, 𝑀3, 𝑀4. . . .. then 𝑦𝐶 = 𝑒𝛼𝑥(𝐶1 𝑐𝑜𝑠 𝛽 𝑥 + 𝐶2 𝑠𝑖𝑛 𝛽 𝑥) + 𝐶3𝑒𝑀3𝑥 +

𝐶4𝑒𝑀4𝑥+. . . .. 

(v) If the roots of 𝑓(𝑀) = 0 are 𝛼 + 𝑖𝛽, 𝛼 − 𝑖𝛽, 𝛼 + 𝑖𝛽, 𝛼 − 𝑖𝛽, 𝑀5, 𝑀6, . . .. then   

 𝑦𝑐 = 𝑒𝛼𝑥((𝐶1𝑥 + 𝐶2) 𝑐𝑜𝑠 𝛽 𝑥 + (𝐶3𝑥 + 𝐶4) 𝑠𝑖𝑛 𝛽 𝑥) + 𝐶5𝑒𝑀5𝑥 + 𝐶6𝑒𝑀6𝑥+. . . .. 

(vi) If the roots of 𝑓(𝑀) = 0 are 𝛼 + √𝛽, 𝛼 − √𝛽, M3, M4, …. then  𝑦𝐶 = 𝑒𝛼𝑥{𝐶1 𝑠𝑖𝑛ℎ√𝛽 𝑥 + 𝐶2 𝑐𝑜𝑠ℎ√𝛽 𝑥} +

𝐶3𝑒𝑀3𝑥 + 𝐶4𝑒𝑀4𝑥+. . . .. 

(vii) If the roots of 𝑓(𝑀) = 0 are 𝛼 + √𝛽, 𝛼 − √𝛽, 𝛼 + √𝛽, 𝛼 − √𝛽, 𝑀5, 𝑀6, . . .. then 𝑦𝐶 = 𝑒𝛼𝑥{(𝐶1𝑥 +

𝐶2) 𝑠𝑖𝑛ℎ√𝛽 𝑥 + (𝐶3𝑥 + 𝐶4) 𝑐𝑜𝑠ℎ√𝛽 𝑥} + 𝐶5𝑒𝑀5𝑥 + 𝐶6. 𝑒𝑀6𝑥+. . .. 

2.5.4 Rules for writing the particular Integral  

(i)  If 𝑋 = 𝑒𝑎𝑥,  

𝑦𝑃 =
1

𝑓(0)
𝑒𝑎𝑥 =

1

𝑓(𝑎)
𝑒𝑎𝑋(if𝑓(𝑎) ≠ 0)  

If 𝑓(𝑎) = 0, then 𝑦𝑃 = 𝑥
1

𝑓′(𝑎)
𝑒𝑎𝑥 (if 𝑓′(𝑎) ≠ 0) 

If 𝑓′(𝑎) = 0, then 𝑦𝑝 = 𝑥2.
1

𝑓"(𝑎)
𝑒𝑎𝑥 (if 𝑓"(𝑎) ≠ 0) and so on. 

Solve 
𝑑2𝑦

𝑑𝑥2 − 5.
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 𝑒2𝑥 

Sol. Aux. Eqn →𝑀2 − 5𝑀 + 6 = 0 ⇒ 𝑀 = 2,3  

𝑦𝐶 = 𝐶1𝑒2𝑥 + 𝐶2𝑒3𝑥  

𝑦𝑃 =
1

𝐷2−5𝐷+6
𝑒2𝑥  𝑠𝑖𝑛𝑐𝑒 𝑓(2) = 0  

 𝑦𝑃 = 𝑥
1

(2𝐷−5)
𝑒2𝑥 = 𝑥.

1

(2(2)−5)
𝑒2𝑥  

  
𝑥

−1
𝑒2𝑥 = −𝑥. 𝑒2𝑥 
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(ii)  If 𝑋 = 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) (𝑜𝑟) cos(𝑎𝑥 + 𝑏)  

 𝑦𝑃 =
1

𝑓(𝐷)
𝑠𝑖𝑛(𝑎𝑥 + 𝑏)  

Replace D2 by –a2 in f(D)  

If the denominator is the form CD + d then rationalize the denominator and replace D2 by –a2   

Solve 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 𝑠𝑖𝑛(2𝑥 + 3) 

 𝑦𝑝 =
1

𝐷2−5𝐷+6
⋅ 𝑠𝑖𝑛(2𝑥 + 3) 

 a = 2   – a2 = – 4 

 𝑦𝑝 =
1

−4−5𝐷+6
𝑠𝑖𝑛(2𝑥 + 3) 

 𝑦𝑝 =
1

2−5𝐷
×

2+5𝐷

2+5𝐷
. 𝑠𝑖𝑛(2𝑥 + 3) 

 𝑦𝑝 =
2+5𝐷

4−25𝐷2 𝑠𝑖𝑛(2𝑥 + 3)=
2+5𝐷

4−25(−4)
sin(2𝑥 + 3) =

1

104
(2. sin(2𝑥 + 3) + 10. cos (2𝑥 + 3)) 

(iii) If  𝑋 = 𝑥𝑚  

𝑦𝑃 =
1

𝑓(𝐷)
𝑥𝑚   

 𝑦𝑃 = [𝑓(𝐷)]−1𝑥𝑚  

Calculate 𝑦𝑃 for the DE 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 𝑥2  

 𝑦𝑃 =
1

𝐷2−5𝐷+6
𝑥2 

 =
1

6(1+(
𝐷2−5𝐷

6
))

𝑥2 

 =
1

6
(1 + (

𝐷2−5𝐷

6
))

−1

𝑥2 

 = 
1

6
. {1 − (

𝐷2−5𝐷

6
) + (

𝐷2−5𝐷

6
)

2

− (
𝐷2−5𝐷

6
)

3

+. . . . . . } 𝑥2 

 = 
1

6
{𝑥2 −

1

6
(2 − 5(2𝑥)) +

1

36
{25(2)}} 

 = 
1

6
𝑥2 −

1

18
+

5𝑥

18
+

25

108
 

 = 
1

6
𝑥2 +

5𝑥

18
+

19

108
 

(iv) If 𝑋 = 𝑒𝑎𝑥𝑉, then  

𝑦𝑃 =
1

𝑓(𝐷)
⋅ 𝑒𝑎𝑥 ⋅ 𝑉 = 𝑒𝑎𝑥 1

𝑓(𝐷+𝑎)
𝑉  
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2.6 Method of Variation of Parameters 

If the second order linear DE with constant coefficients is given by 
𝑑2𝑦

𝑑𝑥2 + 𝑃
𝑑𝑦

𝑑𝑥
+ 𝑞𝑦 = 𝑋, and if 𝑦𝐶 = 𝐶1𝑦1 + 𝐶2𝑦2  

then 𝑦𝑃 (Particular integral of the DE) is given by  

  𝑦𝑃 = −𝑦1 ∫
𝑦2𝑋

𝑊
𝑑𝑥 + 𝑦2 ∫

𝑦1𝑋

𝑊
𝑑𝑥  

Where W →  Wronskian of the solution, 𝑊 = |
𝑦1 𝑦2

𝑦′1 𝑦′2
| 

2.7 Euler Cauchy Equation (Higher order linear DE with Variable Coefficients) 

The DE of the form 𝑥𝑛 𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝐾1 ⋅ 𝑥𝑛−1 ⋅
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑘2 ⋅ 𝑥𝑛−2 ⋅
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 +. . . . . +𝐾𝑛−1 ⋅ 𝑥 ⋅
𝑑𝑦

𝑑𝑥
+ 𝐾𝑛𝑦 = 𝑋  Where 

𝐾1, 𝐾2, 𝐾3, . . . . 𝐾𝑛 are constants is called Euler-Cauchy Equation  

2.7.1 Procedure to solve Euler Cauchy Equations   

Let 𝑥𝑛 ⋅
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝐾1𝑥𝑛−1 𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝐾2 ⋅ 𝑥𝑛−2 ⋅
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 +. . . . . +𝐾𝑛−1 ⋅ 𝑥 ⋅
𝑑𝑦

𝑑𝑥
+ 𝐾𝑛𝑦 = 𝑋 …(1) 

(𝑥𝑛 ⋅
𝑑𝑛

𝑑𝑥𝑛 + 𝐾1𝑥𝑛−1 𝑑𝑛−1

𝑑𝑥𝑛−1 + 𝐾2 ⋅ 𝑥𝑛−2 ⋅
𝑑𝑛−2

𝑑𝑥𝑛−2 +. . . . . +𝐾𝑛−1 ⋅ 𝑥 ⋅
𝑑

𝑑𝑥
+ 𝐾𝑛) 𝑦 = 𝑋 

Let 𝑥 = 𝑒𝑧    𝑧 = log𝑒 𝑥  

  𝑥
𝑑

𝑑𝑥
=

𝑑

𝑑𝑧
= 𝐷  

  𝑥2 ⋅
𝑑2

𝑑𝑥2 =
𝑑

𝑑𝑧
(

𝑑

𝑑𝑧
− 1) = 𝐷(𝐷 − 1)  

𝑥3 ⋅
𝑑3

𝑑𝑥3 = 𝐷(𝐷 − 1)(𝐷 − 2) and so, on 

(1)  {𝐷(𝐷 − 1)(𝐷 − 2). . . . . . . (𝐷 − (𝑛 − 1) + 𝐾1𝐷(𝐷 − 1)(𝐷 − 2). . . . . 𝐷 − (𝑛 − 2)+. . . . . 𝐾𝑛−1𝐷 + 𝐾𝑛)}𝑦 = 𝑋 

Where 𝐷 =
𝑑

𝑑𝑧
 

  (𝑓(𝐷))𝑦 = 𝑧 → Higher order linear DE with constant  

  𝑓(𝐷)  →  Polynomial in terms of D with constant coefficients. 

2.8 Partial differential equation 

2.8.1 The general form of a 2nd order Partial differential equation  

The general form of a 2nd order Partial differential equation is given by  

2 2 2

2 2
A. B C D E F u =G

u u u u u

xdy x yx y

    
+ + + + +

   
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For the nature of the above equation to be  

(a)  Elliptic → 
2B 4AC 0−   

(b)  Parabolic → 
2B 4AC 0− =  

(c)  Hyperbolic → 
2B 4AC 0−   

2.9 Heat Equation 

The heat equation in 1 – D is of the form, 
2

2 2

1u u

tx c

 
=


. Where ‘c’ is a constant.  

Solution of heat equation is given by u (x, t) = (c1 cos Px + c2. s in Px). 
2 2c pte−

 

2. 10 Laplace equation 

The Laplace equation is 2-D is given by 
2 2

2 2
0

u u

x y

 
+ =

 
. 

2.10.1 Possible solution of Laplace equation 

Possible solution of Laplace equation is given by  

u (x, y) = ( )2
1 3 uc c e .(c cosPy c sinPy)Px pxe −+ +  

u (x, y) = ( )1 2 3c cos c sinpx .(c . . )py PyPx e cy e−+ +  

u (x, y) = ( )1 2 3c c .(c . )ux y c+ +  

Where c1, c2, c3, c4 are arbitrary constants and the solution is picked depending on boundary conditions.  

 

 

 

 

❑❑❑ 
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3 
VECTOR CALCULUS 

3.1 Vector Product / Cross Product 

If �⃗� and �⃗⃗� are two vectors, then the cross product of the two vectors is denoted by �⃗� × �⃗⃗� and it is given by �⃗� × �⃗⃗� =

|�⃗�| ⋅ |�⃗⃗�| ⋅ 𝑠𝑖𝑛 𝜃 ⋅ �̂� 

 
Fig. 3.1 Cross product 

�̂� → unit vector passing through the point of intersection of �⃗� and �⃗⃗� and lying perpendicular to the plane containing 

�⃗� and �⃗⃗�.  

If   �⃗� = 𝑎1𝑖̂ + 𝑎2𝑗̂ + 𝑎3�̂� and �⃗⃗� = 𝑏1𝑖̂ + 𝑏2𝑗̂ + 𝑏3�̂� then  �⃗� × �⃗⃗� = |
𝑖̂ 𝑗̂ �̂�

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

| 

3.2 Dot / Scalar Product 

If �⃗� and �⃗⃗� are two vectors, then the dot /scalar product of the two vectors is denoted by �⃗�. �⃗⃗� and it is given by  �⃗�. �⃗⃗� =

|�⃗�| ⋅ |�⃗⃗�| ⋅ 𝑐𝑜𝑠 𝜃 where 𝜃is the angle between the vectors �⃗� 𝑎𝑛𝑑 �⃗⃗�. 

 

Note: 

 |(�⃗� ⋅ �⃗⃗�)|
2

+ |�⃗� × �⃗⃗�|
2

= |�⃗�|2 ⋅ |�⃗⃗�|
2

. 𝑐𝑜𝑠2 𝜃 + |�⃗�|2 ⋅ |�⃗⃗�|
2

⋅ 𝑠𝑖𝑛2 𝜃 = |�⃗�|2 ⋅ |�⃗⃗�|
2
 

 If �⃗� = 𝑎1𝑖̂ + 𝑎2𝑗̂ + 𝑎3�̂� 

 �⃗⃗� = 𝑏1𝑖̂ + 𝑏2𝑗̂ + 𝑏3�̂� 

  𝑐 = 𝑐1𝑖̂ + 𝑐2𝑗̂ + 𝑐3�̂� then �⃗� ⋅ (�⃗⃗� × 𝑐) = [�⃗��⃗⃗�𝑐]   [�⃗��⃗⃗�𝑐] = |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| 
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3.3 Differentiation of Vector Point functions 

If �⃗⃗�(𝑡) is a vector point function, then the derivative of �⃗⃗�(𝑡) is given by   

 
𝑑�⃗⃗�(𝑡)

𝑑𝑡
= 𝑙𝑖𝑚

𝛥𝑡→0

�⃗⃗�(𝑡+𝛥𝑡)−�⃗⃗�(𝑡)

𝛥𝑡
  

If  �⃗⃗�(𝑡) = 𝑓(𝑡) 𝑖̂ + 𝑔(𝑡) 𝑗 ̂ then 
𝑑�⃗⃗�(𝑡)

𝑑𝑡
= 𝑓′(𝑡)𝑖̂ + 𝑔′(𝑡)𝑗̂ 

Ex. 

If �⃗⃗�(𝑡) = 𝑠𝑖𝑛 𝑡 𝑖̂ + 𝑐𝑜𝑠 𝑡 𝑗 ̂ 
𝑑�⃗⃗�(𝑡)

𝑑𝑡
= 𝑐𝑜𝑠 𝑡 𝑖̂ − 𝑠𝑖𝑛 𝑡 𝑗 ̂ 

 
Fig. 3.2  

3.3.1 Differentiation of Product of two vectors 

  
𝑑

𝑑𝑡
(�⃗�(𝑡) ⋅ �⃗⃗�(𝑡)) = �⃗�(𝑡) ⋅

𝑑�⃗⃗�(𝑡)

𝑑𝑡
+

𝑑�⃗⃗�(𝑡)

𝑑𝑡
. �⃗⃗�(𝑡)  

  
𝑑

𝑑𝑡
(�⃗�(𝑡) × �⃗⃗�(𝑡)) = �⃗�(𝑡) ×

𝑑�⃗⃗�(𝑡)

𝑑𝑡
+

𝑑�⃗⃗�(𝑡)

𝑑𝑡
× �⃗⃗�(𝑡)  

If �⃗�(𝑡) is a vector point function with constant magnitude, then �⃗�(𝑡) ⋅
𝑑

𝑑𝑡
�⃗�(𝑡) = 0. 

          If �⃗�(𝑡) is a vector point function with constant direction, then �⃗�(𝑡) ×
𝑑

𝑑𝑡
�⃗�(𝑡) = 0⃗⃗. 

3.4 Del operator 

The Vector operator 
∂

∂𝑥
𝑖 +

∂

∂𝑦
𝑗 +

∂

∂𝑧
�⃗⃗� is called the differential operator in vector and it denoted as Del (or) ∇ 

 ∇=
∂

∂𝑥
𝑖 +

∂

∂𝑦
𝑗 +

∂

∂𝑧
�⃗⃗�.  

3.4.1 Gradient of a Scalar Point Function 

If 𝜙(𝑥, 𝑦, 𝑧) is a Scalar Point function, then the gradient (change) of  𝜙(𝑥, 𝑦, 𝑧) is denoted by grad 𝜙(𝑜𝑟)∇𝜙 and it is 

given by 

 ∇𝜙 = (
∂

∂𝑥
𝑖 +

∂

∂𝑦
+

∂

∂𝑧
�⃗⃗�) 𝜙 =

∂𝜙

∂𝑥
𝑖 +

∂𝜙

∂𝑦
𝑗 +

∂𝜙

∂𝑧
�⃗⃗�.  

 ∇𝜙 =
∂𝜙

∂𝑥
𝑖 +

∂𝜙

∂𝑦
𝑗 +

∂𝜙

∂𝑧
�⃗⃗�.  
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Note:  

If �⃗�(𝑥, 𝑦, 𝑧) is irrotational vector field (∇ × �⃗� = 0⃗⃗), then definitely there exists a scalar point function ∅(𝑥, 𝑦, 𝑧) 

such that �⃗�(𝑥, 𝑦, 𝑧) = 𝑔𝑟𝑎𝑑 ∅. 

If 𝜙(𝑥, 𝑦, 𝑧) = 𝑐 is a level surface then ∇𝜙|𝑃(𝑥0,𝑦0,𝑧0) gives the gradient of 𝜙(𝑥, 𝑦, 𝑧) at Point ' 𝑃 '. 

 |∇𝜙|𝑃 ∣= √(
∂𝜙

∂𝑥
|

𝑃
)

2
+ (

∂𝜙

∂𝑦
|

𝑃
)

2

+ (
∂𝜙

∂𝑧
|

𝑃
)

2
.   

 
Fig. 3.3 

→ ∇𝜙|𝑝 gives the change of 𝜙(𝑥, 𝑦, 𝑧) in the direction Normal to the surface 𝜙(𝑥, 𝑦, 𝑧) = 𝑐 at 𝑃(x, y, z). 

3.5 Directional Derivative 

If 𝜙(𝑥, 𝑦, 𝑧) = 𝑐  is a level surface, then the derivative of 𝜙(𝑥, 𝑦, 𝑧) at Point ' 𝑃  ' in the direction of �⃗�  is called 

Directional Derivative of 𝜙(𝑥, 𝑦, 𝑧) in the direction of �⃗�.  

It is given by  

Direction Derivative = ∇𝜙|𝑝 ⋅ �̂� 

        
cos

cos
p pp

a
a

a a


=  =    =       

Directional Derivative of 𝜙(𝑥, 𝑦, 𝑧) at 𝑃 in the direction of �⃗� is 
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Fig.3.4  

Directional derivative 

𝐷𝐷 = |∇𝜙|𝑝 ∣⋅ cos 𝜃 where ' 𝜃 ' is angle between ∇𝜙 ∣𝑝 and �⃗�.  

For 𝐷irectional derivative to be maximum cos 𝜃 = 1 ⇒ 𝜃 = 0° 

  The change of 𝜙(𝑥, 𝑦, 𝑧) at Point ' 𝑃 ' is Maximum in the direction of Normal to 𝜙(𝑥, 𝑦, 𝑧) 

Maximum Change of 𝜙(𝑥, 𝑦, 𝑧) at  ′𝑝′ = |∇𝜙|𝑝| 

 

3.5.1 Del operated-on Vector Point functions 

If 𝐷𝑒𝑙 is a differential operator and  �⃗�(𝑥, 𝑦, 𝑧) is a vector Point function then the Del operator is operated on �⃗�(𝑥, 𝑦, 𝑧) 

in two Ways. 

(i) 𝛻 ⋅ �⃗�→ Divergence  

(ii) 𝛻 × �⃗�→Curl 

(i) Divergence of a Vector Point function: 

If �⃗�(𝑥, 𝑦, 𝑧) is a Vector Point function, then the divergence of �⃗�(𝑥, 𝑦, 𝑧) is denoted by div �⃗�(or)∇ ⋅ �⃗� and for any 

�⃗�(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗� the divergence is given by  

div ⋅ �⃗� = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
�⃗⃗�) ⋅ (𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗�) =

𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
 

If div ⋅ �⃗� = 0, then �⃗�(𝑥, 𝑦, 𝑧) is called Solenoidal (or) Incompressible flow Vector. 

(ii)  Curl of a Vector Point Function: 

If �⃗�(𝑥, 𝑦, 𝑧) is a Vector Point function, then the curl of  �⃗�(𝑥, 𝑦, 𝑧) is denoted by 𝐶𝑢𝑟𝑙 �⃗�(𝑜𝑟)𝛻 × 𝐹 ⃗⃗⃗⃗ and for any        

�⃗�(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗�, the curl of �⃗�(𝑥, 𝑦, 𝑧)is given by  

curl �⃗� = 𝛻 × �⃗� = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
�⃗⃗�) × (𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗�) = |

𝑖 𝑗 �⃗⃗�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹𝑥 𝐹𝑦 𝐹𝑧

| 

If curl �⃗� = 0⃗⃗; then �⃗� is called Irrotational Flow Vector.  
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(iii) Properties of div, Curl & Grad: 

If 𝜙(𝑥, 𝑦, 𝑧) and �⃗�(𝑥, 𝑦, 𝑧) are a scalar point function and a vector point function respectively, then  

(a)  curl (grad 𝜙)=0⃗⃗ 

(b)  div(curl �⃗�) = 0 

(c)  div(grad 𝜙) =
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 = 𝛻2𝜙  

(iv) Angle between two Intersecting Surfaces:  

If 𝜙1(𝑥, 𝑦, 𝑧) = 𝑐1 & 𝜙2(𝑥, 𝑦, 𝑧) = 𝑐2 are two surfaces intersecting at ‘P’, then the angle of Intersection ‘’ is given 

by  

 𝑐𝑜𝑠 𝜃 =
𝛻𝜙1|𝑝⋅𝛻𝜙2|𝑝

|𝛻𝜙1|𝑝|⋅|𝛻𝜙2|𝑝|
  

 3.6 Vector Integration 

3.6.1 Line Integrals 

If �⃗�(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗� is a continuous & differentiable Vector Point function at every point along the path 

C , then the Integral of �⃗�(𝑥, 𝑦, 𝑧) from Point ‘A’ to point ‘B’ along a path is given by ∫ �⃗� ⋅ 𝑑𝑟
𝐵

𝐴,𝐶
  

where 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧�⃗⃗�. 

∫ �⃗� ⋅ 𝑑𝑟 =
𝐵

𝐴,𝐶

∫ (𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗�)
𝐵

𝐴,𝐶

⋅ (𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧�⃗⃗�) 

 
Fig.3.5 Line Integral 

If �⃗�(𝑥, 𝑦, 𝑧)  is Irrotational Vector Point Function, (i.e., Curl �⃗� = 0⃗⃗ ) then ∫ �⃗� ⋅ 𝑑𝑟
𝐵

𝐴
 is independent of the path 

followed between the points A and B. 

    If �⃗�(𝑥, 𝑦, 𝑧) is Irrotational Vector Point Function, then  

 ∫ �⃗� ⋅ 𝑑𝑟 = ∫ 𝛻𝜙 ⋅ 𝑑𝑟  where�⃗� = 𝛻𝜙
𝐵

𝐴

𝐵

𝐴
 

   = 𝜙|𝐵 − 𝜙|𝐴  
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3.6.2 Surface Integral 

If �⃗�(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗� is a continuous & differentiable Vector Point function at every point on a surface ‘S’, 

then the surface integral of �⃗�(𝑥, 𝑦, 𝑧) on the surface ‘S’ is given by ∫ �⃗� ⋅ 𝑑𝑠
 

𝑆
  

Where 𝑑𝑠 = 𝑑𝑠. �̂� and �̂� is the outward unit normal vector to the surface at 𝑑𝑠 and  

 𝑑𝑠 =  
𝑑𝑥.𝑑𝑦

|�̂�.𝑘|̂
=

𝑑𝑦.𝑑𝑧

|�̂�.𝑖|̂
=

𝑑𝑥.𝑑𝑧

|�̂�.𝑗|̂
: 

3.6.3 Volume Integral 

If �⃗�(𝑥, 𝑦, 𝑧) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧 �⃗⃗� is a continuous & differentiable Vector Point function at every point over a volume 

V, then the volume integral of �⃗�(𝑥, 𝑦, 𝑧) on the volume ‘V’ is given by ∫ �⃗� ⋅ 𝑑𝑣
 

𝑉
. 

 

3.6.4 Greens Theorem: (Connects closed line Integral to surface Integral) 

If �⃗�(𝑥, 𝑦) = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 and if the first order derivatives of 𝐹𝑥& 𝐹𝑦are continuous at every point with in a region ‘R’ 

bounded by a closed path ‘C’, then  

∳�⃗�𝑑𝑟
𝐶

= ∮ 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 = ∬ (
𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
) 𝑑𝑥𝑑𝑦

𝑅𝐶

 

∳(𝑀𝑑𝑥 + 𝑁𝑑𝑦) = ∬ (
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
) 𝑑𝑥𝑑𝑦

𝑅𝐶

 

3.6.5 Gauss – Divergence Theorem: (Connects closed surface integral to a Volume Integral) 

If ‘S’ is a closed surface enclosing a volume ‘V’ and �⃗� is continuous and differentiable at every point on the closed 

surface ‘S’, then the closed surface integral ∮ �⃗�. 𝑑𝑠
 

𝑠
=  ∭ 𝑑𝑖𝑣 �⃗�. 𝑑𝑉

 

𝑉
 

 

3.6.7 Stokes Theorem: (Connect Closed line integral to surface Integral) 

If �⃗�  is continuous and differentiable at every point within a region ‘R’ (on a surface S) bounded by a closed path ‘C’, 

then  

   ∳ �⃗�𝑑𝑟
𝐶

= ∬ 𝑐𝑢𝑟𝑙 �⃗�
 

𝑅
. 𝑑𝑆  

 

❑❑❑
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4 
LINEAR ALGEBRA 

 Matrix 

An array of elements in horizontal lines (Rows) and Vertical Lines (Columns) is called a Matrix. 

Ex.    𝐴 =  [
𝑖 𝑛 𝑑 𝑖 𝑎
𝑗 𝑎 𝑝 𝑎 𝑛

]  

4.1.1 Size of Matrix  

If a matrix has 'm' rows and 'n' columns, then we say that the size of the matrix is m × n (read as m by n) 

 𝐴 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13. . . . . . . . . 𝑎1𝑛

𝑎21 𝑎22 𝑎23. . . . . . . . . 𝑎2𝑛

. . . .

. . . .
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3. . . . . . . . . 𝑎𝑚𝑛]

 
 
 
 

 ;  𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
  such that 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  and 𝑎𝑖𝑗 = 𝑓(𝑖, 𝑗) 

  

4.1.2 Addition of Matrices 

(i) Two matrices 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
 & 𝐵 = [𝑏𝑖𝑗]𝑝×𝑞

can be added only if m = p & n = q. 

(ii) Matrix Addition is commutative (A + B = B + A) 

(iii) Matrix Addition is Associative.  A + (B + C) = (A + B) + C 

 

4.1.3 Multiplication of Matrices 

The multiplication of two matrices 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
 and 𝐵 = [𝑏𝑖𝑗]𝑝×𝑞

 (⇒ 𝐴𝐵𝑚×𝑞) is feasible only if n = P. 

    𝐴𝑚×𝑛 ⋅ 𝐵𝑝×𝑞 = 𝐶  

 

A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]

3×3

   𝐵 = [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

]

3×2

    

𝐴3×3𝐵3×2 = [

𝑎11. 𝑏11 + 𝑎12 ⋅ 𝑏21 + 𝑎13. 𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

𝑎21. 𝑏11 + 𝑎22. 𝑏21 + 𝑎23. 𝑏31 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32

𝑎31.𝑏11 + 𝑎32 ⋅ 𝑏21 + 𝑎33 ⋅ 𝑏31 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32

]

3×2
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4.1.4 Properties of Multiplication of Matrices 

(i) Matrix Multiplication Need not be commutative. 

(ii) Matrix Multiplication is Associative (A(BC)) = ((AB)C) 

(iii) Matrix Multiplication is distributive (A(B + C) = AB + AC) 

(iv) The product of two Matrices 𝐴𝑚×𝑛, 𝐵𝑛×𝑞 (i.e. 𝐴𝐵𝑚×𝑞) can be a zero matrix even if 𝐴 ≠ 𝑂&𝐵 ≠ 𝑂. 

 Ex. 𝐴 = [
3 0
0 0

] ; 𝐵 = [
0 0
0 4

] ⇒ 𝐴𝐵 = [
0 0
0 0

] 

• For the multiplication of two matrices 𝐴𝑚×𝑛 & 𝐵𝑛×𝑞  

(i)  The No. of Multiplications required = m n q 

(ii)  The No. of Additions required = m (n –1) q   

4.2 Types of Matrices 

(1) Upper triangular Matrix: A matrix 𝐴 = [𝑎𝑖𝑗]; 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be an upper triangular matrix if  

      𝑎𝑖𝑗 = 0 ∀ 𝑖 > 𝑗  

(2) Lower Triangular Matrix: A matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
; 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be a lower Triangular Matrix  

      if 𝑎𝑖𝑗 = 0∀𝑖 < 𝑗 

(3) Diagonal Matrix: A matrix 𝐴 = [𝑎𝑖𝑗], ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be diagonal matrix if 𝑎𝑖𝑗 = 𝑂∀𝑖 ≠ 𝑗 

 Ex. 𝐴 = [

𝑑1 𝑂 𝑂
𝑂 𝑑2 𝑂
𝑂 𝑂 𝑑3

]. Diagonal Matrix is also denoted as 𝐴 = 𝑑𝑖𝑎𝑔[𝑑1, 𝑑2, 𝑑3] 

(4) Scalar Matrix: A Matrix 'A' = [𝑎𝑖𝑗] ;  1 ≤ 𝑖, 𝑗 ≤ 𝑛is said to be a scalar Matrix if 𝑎𝑖𝑗 = {
𝑘; 𝑖 = 𝑗
𝑂; 1 ≠ 𝑗

  

  If K = 1, then A → Identity Matrix,   

  If K = O, then A → Null Matrix. 

(5) Idempotent Matrix: 

 A Matrix '𝐴𝑛×𝑛 ' is said to be an idempotent matrix if 𝐴2 = 𝐴. 

 Ex. 𝐴 = [
4 −1
12 −3

] 

 ⇒ 𝐴2𝐴 ⋅ 𝐴 = [
4 −1
12 −3

] [
4 −1
12 −3

] = [
4 −1
12 −3

] = 𝐴 

(6) Nilpotent Matrix: A non-zero matrix '𝐴𝑛×𝑛 ' is said to be Nilpotent Matrix. if  ∃ a value 'n' such that 𝑛 ∈ 𝑍+ and 

𝐴𝑛 = 𝑂. 

 Ex. [
4 −1
16 −4

] = 𝐴 ⇒ 𝐴2 = [
4 −1
16 −4

] = [
0 0
0 0

] ⇒ 𝐴2 = 𝑂 

  The least of 'n' for which 𝐴𝑛 = 0 is called Index of the Nilpotent Matrix. 

(7) Orthogonal Matrix: A matrix A is said to be orthogonal if A. AT = I 

 Ex. [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] = 𝐴 

(8) Involutory Matrix: A matrix A is said to be involutory if A2 = I 

 Ex. [
2 3

−1 −2
] = 𝐴 
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4.3 Transpose of a Matrix 

For a given matrix 𝐴 = [𝑎𝑖𝑗];  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 , we say that 'B' where 𝐵 = [𝑏𝑖𝑗] , 𝑖 ≤ 𝑖 ≤ 𝑛 

𝑖 ≤ 𝑗 ≤ 𝑚  is transpose of the Matrix 'A' if 𝑎𝑖𝑗 = 𝑏𝑗𝑖 

4.3.1 Properties of Transpose of a Matrix 

(i) (𝐴𝑇)𝑇 = 𝐴  

(ii) (𝐴𝐵)𝑇 = 𝐵𝑇 ⋅ 𝐴𝑇 

(iii) (𝐾𝐴)𝑇 = 𝐾𝐴𝑇 where 'K' is a scalar. 

4.4 Determinant 

The summation of product of element of a row(or) column of a matrix with their corresponding Co-factors. 

𝐴 ⋅ 𝑎𝑑𝑗(𝐴) = |𝐴| ⋅ I 

4.4.1 Properties of Determinants 

(i)  If 'A' is a Square Matrix of size ' 𝑛 × 𝑛 ' and 'k' is a Scalar then 

(a)  |𝐾 ⋅ 𝐴𝑛×𝑛| = 𝐾𝑛 ⋅ |𝐴𝑛×𝑛| 

(b)  |𝑎𝑑𝑗(𝐴)| = |𝐴|(𝑛−1) 

(c)  |𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴))| = (|𝐴)(𝑛−1)2  

(ii)  |𝐴𝐵| = |𝐴| ⋅ |𝐵| 

(iii) |(𝐴𝐵)𝑇| = |𝐵𝑇| ⋅ |𝐴𝑇| 

(iv) If two rows (or) two columns of a determinant are interchanged, then determinant changes its sign. 

(v) The determinant of an upper triangular Matrix/a lower triangular Matrix/a diagonal Matrix is product of the 

principal diagonal elements of the Matrix. 

(vi) The determinant of Every Skew-Symmetric Matrix of odd order (𝐴𝑛×𝑛)(′𝑛′𝑖𝑠𝑜𝑑𝑑) is zero 

(vii) The determinant of an orthogonal Matrix 𝐴𝑛×𝑛 is ±1 

(viii) The determinant of an Idempotent Matrix is either 0 (or) 1. 

(ix) The determinant of an Involuntary Matrix is ±1  

(x) The determinant of a Nilpotent Matrix is always zero. 

(xi) If the product of two Non-zero Matrices 𝐴𝑛×𝑛 ≠ 𝑂;𝐵𝑛×𝑛 ≠ 𝑂 is a zero Matrix ((𝐴𝐵)𝑛×𝑛 = 𝑂), then both |𝐴| =

0 & |𝐵| = 0.  

(xii) If two rows (or) two columns of a Matrix are either equal or Proportional, then the determinant of the Matrix is 

equal to zero. 

(xiii) The number of terms in the general expansion of a 'n × n' determinant is 𝑛!  
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4.5 Rank of a Matrix 

A real Number 'r' is said to be rank of a matrix '𝐴𝑚×𝑛 ' if  

(1)  All minors of order (𝑟 + 1) × (𝑟 + 1) and above are zeros and    

(2)  '∃' atleast one Non-zero minor of order '𝑟 × 𝑟' of the matrix 'A'. 

It is mathematically denoted by 𝜌(𝐴) = 𝑟  

  

4.5.1 Properties of Rank of a Matrix 

(i) 𝜌(𝐴𝑚×𝑛) ≤ (𝑚, 𝑛) 

(ii) 𝜌(𝐴𝐵) ≤ 𝑚𝑖𝑛  {𝜌(𝐴), 𝜌(𝐵)} 

 

4.5.2 Row Echleon Form 

A Matrix 𝐴𝑚×𝑛is said to be in row-echleon form if  

(i) Number of zeroes before the 1st Non-zero element in any row is less then number of such zeroes in its succeeding 

row. 

(ii) Zero rows (if any) should lie at the bottom of the Matrix. 

𝜌(𝐴𝑚×𝑛) = Number of non-zero rows in Row-Echleon form of A. 

  System of Equations 

The given system of equations 

𝑎11𝑥1 + 𝑎12𝑥12 + 𝑎13𝑥3 = 𝑏1  

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2  

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3  

can be written in Matrix form as 

 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝑥1

𝑥2

𝑥3

] = [

𝑏1

𝑏2

𝑏3

] 

 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝑥1

𝑥2

𝑥3

] = [

𝑏1

𝑏2

𝑏3

]  

                  Ax = B 

  

 Coefficient           Variable    Constants 

 Matrix Matrix      Matrix  

The system Ax = B is said to be homogeneous system if B = 0. 

The system of Ax = B is said to be non-homogeneous system if 𝐵 ≠ 0. 
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4.6.1 Consistency of a non-homogeneous system of Equations 

For above system of non – homogeneous equations, Ax = B; Augmented Matrix = [A/B] = [

𝑎11 𝑎12 𝑎13 𝑏1

𝑎21 𝑎22 𝑎23 𝑏2

𝑎31 𝑎32 𝑎33 𝑏3

] 

(i) If 𝜌(𝐴) = 𝜌(𝐴/𝐵) = Number of unknowns, then the system Ax = B has unique solution. 

(ii) If 𝜌(𝐴) = 𝜌(𝐴/𝐵) < Number of unknowns, then the system has infinitely many solutions. 

(iii) If 𝜌(𝐴) ≠ 𝜌(𝐴/𝐵), then the system has no solution.  

No. of linearly independent solutions for a system of 'n' equations given by Ax = B is 𝑛 − 𝜌(𝐴) 

4.6.2 Consistency of Homogeneous System of Equations 

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 0  

𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 0  

𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 = 0  

 

  Ax = 0 ⇒ [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] [𝐴/𝐵] = [

𝑎11 𝑎12 𝑎13 0
𝑎21 𝑎22 𝑎23 0
𝑎31 𝑎32 𝑎33 0

]

3×4

 

If 𝜌(𝐴) = 𝜌(𝐴/𝐵) = 𝑛 (𝑖. 𝑒 |𝐴| ≠ 0); the system has unique solution.  

(Trivial solution; x = 0, y = 0, z = 0)  

If 𝜌(𝐴) = 𝜌(𝐴/𝐵) < 𝑛(|𝐴| = 0); the system has infinitely many solutions (Non-trivial solution exists for the 

system)  

4.7 Linear Combination of Vectors 

If 𝑥1, 𝑥2, 𝑥3, . . . . . . , 𝑥𝑛 are 'n' rows vectors, then the combination 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛 is called linear   

combination of 𝑥1, 𝑥2, . . . . , 𝑥𝑛(𝑘1, 𝑘2, 𝑘3, . . . . . 𝑘𝑛 are scalars) 

(1)  The linear combination 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛is said to be linearly dependent if 𝑘1𝑥1 + 𝑘2𝑥2 +

𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛 = 0 when 𝑘1, 𝑘2, 𝑘3, . . . . . , 𝑘𝑛 (NOT All zeroes).  

 If 𝑥1 = [𝑎1 𝑏1 𝑐1]; 𝑥2[𝑎2 𝑏2 𝑐2]; 𝑥3 = [𝑎3 𝑏3 𝑐3], then the vectors 𝑥1, 𝑥2, 𝑥3are said to be linearly 

dependent if |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = 0. 

(2)  The combination 𝑘1𝑥1 + 𝑘2𝑥2+. . . . . . +𝑘𝑛𝑥𝑛is said to be linearly independent if 𝑘1𝑥1 + 𝑘2𝑥2+. . . . . . . . +𝑘𝑛𝑥𝑛 = 0 

when 𝑘1 = 𝑘2 = 𝑘3 =. . . . . 𝑘𝑛 = 0 

 

4.7.1 Eigen Values and Eigen Vectors 

For any square Matrix 𝐴𝑛×𝑛, the equation |𝐴 − 𝜆𝐼| = 0 where '' is a scalar is called the characteristic equation. 

The roots of the characteristic equation of a Matrix are called Eigen Values. 
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4.7.2 Properties of Eigen Values 

(i) If 𝜆1, 𝜆2, 𝜆3, . . . . . . , 𝜆𝑛are 'n' Eigen Values of 𝐴𝑛×𝑛, then  

(a)  Sum of Eigen Values of 'A' = 𝜆1, 𝜆2 + 𝜆3+. . . . +𝜆𝑛 = ∑ 𝜆𝑖 = 𝑡𝑟(𝐴)𝑛
𝑖=1  = Sum of Principal diagonal elements 

(b)  Product of all the Eigen Values of 'A' = 𝜆1 ⋅ 𝜆2 ⋅ 𝜆3 ⋅. . . . . . 𝜆𝑛 = ∏ 𝜆𝑖 = |𝐴|𝑛
𝑖=1  

(c)   Eigen Values of  𝐴𝑚 are 𝜆1
𝑚, 𝜆2

𝑚, 𝜆3
𝑚, . . . . . . 𝜆𝑛

𝑚 

(d)  Eigen Values of adj(A) are 
|𝐴|

𝜆1
,
|𝐴|

𝜆2
,
|𝐴|

𝜆3
, . . . . . . ,

|𝐴|

𝜆𝑛
 

(e)  Eigen Values of A & AT
 are same. 

(f)  Eigen Values of 𝑘1𝐴 + 𝑘2𝐼 (Where 𝑘1and 𝑘2are scalar) are  

𝑘1𝜆1 + 𝑘2, 𝑘1𝜆2 + 𝑘2, 𝑘1𝜆3 + 𝑘2, 𝑘1𝜆4 + 𝑘2, . . . . . . . . 𝑘1𝜆𝑛 + 𝑘2 

(ii) '0' is always an Eigen Value of an odd order Skew-Symmetric Matrix. 

(iii) Eigen Values of Real Symmetric Matrix are always real. 

(iv) Eigen Values of Skew-Symmetric Matrix are either zero (or) purely Imaginary. 

(v) The Eigen values of an Orthogonal Matrix are of unit modulus. 

(vi) If sum of all the elements in a row (or Column) is constant (= k) for all the rows (or columns) in the matrix 

respectively, then 'k' is an Eigen Value of the Matrix. 

Ex. If 𝐴 = [

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

] and if 𝑎1 + 𝑏1 + 𝑐1 = 𝑎2 + 𝑏2 + 𝑐2 = 𝑎3 + 𝑏3 + 𝑐3 = 𝑘,  

 then 'k' is an Eigen Value of 'A'. 

(vii) The Eigen Values of an upper triangular Matrix, a lower triangular Matrix, a diagonal Matrix are the Principal 

diagonal elements of the Matrix. 

 Eigen Vector 

A non-zero column vector 𝑋𝑛×1 is said to be an Eigen Vector of 𝐴𝑛×𝑛 corresponding to the Eigen Value '', if 𝐴𝑋 =

𝜆𝑋(𝑋 ≠ 0). 

4.8.1 Properties of Eigen Vectors 

(i) Eigen Vectors of A & AT are not same. 

(ii) Eigen Vectors of A & AM are same. 

(iii) The Eigen Vectors of a Real Symmetric Matrix are always orthogonal. 

(iv) The number of linearly independent Eigen Vectors of '𝐴𝑛×𝑛 ' is equal to number of distinct Eigen Values of '𝐴𝑛×𝑛'. 

4.8.2 Cayley Hamilton Theorem 

Every Matrix satisfies its own characteristic equation. 

❑❑❑
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5 

PROBABILITY AND 

STATISTICS 

5.1 Random Experiment 

The experiment in which the outcome is uncertain is called a Random Experiment (RE). 

Ex.  Flipping a coin, rolling a pair of dice, Picking a ball from a bag. 

5.1.1 Sample Space 

The set containing of all the possible outcomes of a random experiment. It is denoted by 'S'. 

If RE is flipping a coin, S = {Head, Tail} 

If RE is rolling a dice, S = {1,2,3,4,5,6} 

5.2 Event 

Any subset of sample space 'S' is called as Event. 

Ex.  If RE is flipping a coin, then occurring of a Head is an Event. 

If RE is rolling a dice, then getting an odd number is an Event.   

5.2.1 Probability of an Event 

If 'A' is any event with in the sample space 'S' of a Random experiment, then the probability of event 'A' is given by  

  𝑃(𝐴) =
𝑁𝑜.𝑜𝑓𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠𝑓𝑎𝑣𝑜𝑢𝑟𝑖𝑛𝑔𝑒𝑣𝑒𝑛𝑡′𝐴′𝑡𝑜ℎ𝑎𝑝𝑝𝑒𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 ′𝑆′
=

𝑛(𝐴)

𝑛(𝑆)
  

Probability of getting an Even Number when a dice is rolled. 

 P(Even Number) = 
3

6
= 0.5 

 S = {1,2,3,4,5,6},  A = {2,4,6} 

5.2.2 Axioms Probability 

(i)  If 'A' is any event with in the sample space 'S' of a RE, then 0 ≤ 𝑃(𝐴) ≤ 1 

 
0 n(A) n(S)

n(S) n(S) n(S)


 

 0 ≤ 𝑃(𝐴) ≤ 1   
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(ii) P(S) = 1 

 When a RE is conducted the experiment yields a possible outcome. 

5.2.3 Types of Events 

(i)  Mutually Exclusive Events: 

If A, B are two events within a sample space 'S', then A & B are said to be mutually exclusive if A∩B = . 

Ex. If 'A' is the event of getting a prime number when a dice is rolled and 'B' is the event of getting a composite number 

when a dice is rolled then  

 S = {1,2,3,4,5,6}, A = {2,3,5}, B = {4,6}  A  B =   P (A  B) = 0 

 
Fig. 5.1 Mutually exclusive event 

(ii) Mutually Exhaustive Events: 

If 'A', 'B' are two events with in a sample space 'S', then 'A' & 'B' are said to be mutually   exhaustive if A  B = S   

Ex.  If 'A' is the event of getting an odd number when a dice is rolled and 'B' is the event of getting an Even Number, 

then 

   = S  

S = {1,2,3,4,5,6} 

A = {1,3,5}, B ={2,4,6}                   

   B = S 

 
Fig. 5.2 Mutually exhaustive event 

(iii) Independent Events: 

Two events 'A' & 'B' with in the sample space 'S' (or) with in two different sample spaces 'S1' & 'S2' are said to be 

independent if P(  ) = P(A)  P(B). 

 

Fig. 5.3 Independent event  
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(iv) Impossible Event (): 

The event with zero probability is called on Impossible Event P() = 0. 

5.3 Addition Theorem of Probability 

If A, B are two events with a sample space 'S' of a Random Experiment, then 

 P(  ) = P(A) + P(B) – P(  ) 

 
n(A B) n(A) n(B) n(A B)

n(S) n(S) n(S) n(S)

 = + −
 

 

Fig. 5.4 Addition theorem 

 P(A  B) = P(A) + P(B) – P(A  B)   

When A, B are mutually exclusive event, A  B = . 

  P(A  B) = 0 

 P(  ) = P(A) + P(B) 

• If E1, E2, E3,…….En are mutually exclusive events (Ei  j = ), then P(E1  E2  E3  …….  En ) = ∑ 𝑃(𝐸𝑖)𝑛
𝑖=1  

= P(E1) + P(E2) + P(E3) + …… p(En) 

5.3.1 Conditional Probability 

The probability of heppening of event 'A' when it is known that event 'B' has already occurred is given by P(A/B) 

𝑃(𝐴/𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=

𝑛(𝐴 ∩ 𝐵)

𝑛(𝐵)
 

 

5.3.2 Multiplication Theorem of Probability 

If A, B are two events within a sample space 'S', then P(A/B)  P(B) = P(B/A)  P(A) 

P(A/B) = 
𝑃(𝐴∩𝐵)

𝑃(𝐵)
⇒ 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴/𝐵) ⋅ 𝑃(𝐵) → (1)   

P(B/A) = 
𝑃(𝐵∩𝐴)

𝑃(𝐴)
⇒ 𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵/𝐴) ⋅ 𝑃(𝐴) → (2) 

From (1) & (2)  

  𝑃(𝐴/𝐵) ⋅ 𝑃(𝐵) = 𝑃(𝐵/𝐴) ⋅ 𝑃(𝐴)  
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5.3.3 Total Theorem of Probability 

If E1, E2, E3,……En are 'n' mutually exclusive (𝐸𝑖 ∩ 𝐸𝑗 = 𝜙; ∀𝑖 ≠ 𝑗) and collectively exhaustive event (E1  E2  E3 

 ……  En = S) and 'A' is any event with in the sample space 'S', then 

 𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴/𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴/𝐸2)+. . . . . . +𝑃(𝐸𝑛) ⋅ 𝑃(𝐴/𝐸𝑛) 

1

( ) ( ) ( / )
n

i i
i

P A P E P A E
=

=   

  

5.3.4  Baye's Theorem 

If E1,E2,E3,……En are mutually exclusive (𝐸𝑖 ∩ 𝐸𝑗 = 𝜙∀𝑖 ≠ 𝑗) and collectively exhaustive event  

(𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪. . . . . . .∪ 𝐸𝑛 = 𝑆) and 'A' is any event with in the sample space 'S', then 

  

𝑃(𝐸𝑖/𝐴) =
𝑃(𝐸𝑖) ⋅ 𝑃(𝐴/𝐸𝑖)

∑ 𝑃(𝐸𝑖) ⋅ 𝑃(𝐴/𝐸𝑖)𝑛
𝑖=1

 

 
Fig. 5.5 Baye’s theorem 

5.4 Statistics 

Statistics → Collection and  Analysis of Data 

 

5.4.1 Analysis of Ungrouped Data 

If x1, x2, x3, …….,xn are 'n' observations, then  

(1)  The range of the data = R = max{x1, x2, …….,xn} – min{x1, x2, x3, ….., xn}  

(2)  Arithmetic mean : Mean of the data is equal to sum of observaions divided by the total number of observations. 

�̄�(𝑜𝑟)𝜇 =
𝑥1 + 𝑥2+. . . . . . +𝑥𝑛

𝑛
=

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
= �̄� = 𝜇  

• The mean of 1st 'n' natural numbers = 
(

𝑛(𝑛+1)

2
)

𝑛
=

𝑛+1

2
 

• The mean of 1st 'n' odd numbers = 
𝑛2

𝑛
= 𝑛 

• The mean of 1st 'n' even numbers = n +1 
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5.4.2 Median 

The middle most observation of the data (𝑥1, 𝑥2, 𝑥3, . . . . . 𝑥𝑛) When the data is arranged in either ascending or 

descending order. 

If 𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . . . . . 𝑥𝑛 are 'n' observations that are arranged in ascending/descending order then 

(i)  Median of the Data = (
𝑛+1

2
)

𝑡ℎ
observation, if 'n' is odd. 

(ii)  Median of the Data = Mean of (
𝑛

2
)

𝑡ℎ
& (

𝑛

2
+ 1)

𝑡ℎ
observations, if 'n' is even. 

5.4.3 Mode 

The observation with highest frequency is called mode. 

Any Data with two Modes is called → Bimodel Data 

If 𝑥1, 𝑥2,𝑥3, . . . . . . , 𝑥𝑛 are 'n' data points, �̄� = 𝜇 =
𝑥1+𝑥2+.......+𝑥𝑛

𝑛
  

Mean Deviation of the observation (𝑥𝑖) = 𝑑𝑖 = 𝑥𝑖 − �̄� 

 
Fig. 5.6 Discrete data 

Sum of derivations of all the observations = 𝛴𝑑𝑖 = (𝑥1 − �̄�) + (𝑥2 − �̄�)+. . . . . .0 + (𝑥𝑛 − �̄�) 

    = 𝛴𝑑𝑖 = (𝑥1 + 𝑥2+. . . . . +𝑥𝑛) − 𝑛�̄� 

𝛴𝑑𝑖 = 0  

The sum of mean deviations of all the observations is equal to zero. 

 

5.4.4 Absolute Mean Deviation 

If x1, x2, x3,…….,xn are 'n' data points with Mean = �̄�, then the absolute mean deviation of 𝑥𝑖  about �̄� is given by 

|𝑑𝑖| = |𝑥 − �̄�| 

The sum of absolute mean derivations of given data is not zero. 

(𝛴|𝑑𝑖| ≠ 0) ⇒ (|𝑥1 − �̄�| + |𝑥2 − �̄�|+. . . . . . . . +|𝑥𝑛 − �̄�| ≠ 0) 

5.4.5 Standard Deviation 

If x1, x2, x3,……,xn ('n' is very large), then the standard deviation of the data is given by 

Population Standard Deviation 𝜎 = √
1

𝑛
𝛴(𝑥𝑖 − �̄�)2  ,  n → size of population 

Sample Standard derivation: 𝜎 = √
1

(𝑛−1)
𝛴(𝑥𝑖 − �̄�)2 , n→ size of sample  

Generally (n > 29 → population) (n < 29 →sample) 
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5.5 Random Variables 

The variable that connects the outcome of a Random Experiment to a real number. 

Ex. 'x' is the value of the number that a dice shows when it is rolled. 

  Discrete RV     → The RV whose value is obtained by counting 

 Random Variable 

  Continuous RV→ The RV whose value is obtained by Measuring 

 

• If a data consists of 'f1' datapoints with value ′𝑥𝑖′, ′𝑓2′ data points with value ′𝑥2′. . . . . . ′𝑓𝑛′ data point with value ′𝑥𝑛
′ , 

then  

(i)  Expectation of 'x'  = 𝐸(𝑥) = ∑ 𝑥𝑖𝑃(𝑥 = 𝑥𝑖)𝑛
𝑖=1  

(ii)  Variance of ‘x’ = 𝜎2 = 𝐸(𝑥2) − (𝐸(𝑥))2 and 𝜎 is the standard deviation. 

5.5.1 Continuous RV 

The value of the Random Variable is obtained by Measuring. 

5.6 Probability distribution Function (Pdf) 

A continuous & differentiable function P(x) is said to be a probability distribution/density function of a continuous 

random variable 'x' if 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑃(𝑥)𝑑𝑥
𝑏

𝑎
   

5.6.1 Mean (or) Expectation 

If P(x) is a probability distribution/density function of a continuous Random Variable 'x' then the Mean of 'x' =  E(x) 

= ∫ 𝑥 ⋅ 𝑃(𝑥)𝑑𝑥
∞

−∞
  

 

5.6.2 Median  

The value of 'x' for which the total probability is exactly divided into two equal halves is called Median. 

 

5.6.3 Mode  

The valueof 'x' at which P(x) is maximum is called mode. 

 

5.6.4 Variance  

V = 𝜎2 = 𝐸(𝑥2) − (𝐸(𝑥))2 

⇒ 𝜎2 = ∫ 𝑥2 ⋅ 𝑃(𝑥)𝑑𝑥 − (∫ 𝑥 ⋅ 𝑃(𝑥)𝑑𝑥
∞

−∞

)
∞

−∞
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Fig.5.7 Continuous random variables 

5.7 Continous RV Distributions 

(1) Gaussian/Normal Distributon: 

If 'x' is a continuous Random variable with mean '' and standard deviation '', then the probability 

distribution/density function of normally distributed variable 'x' is given by  

 
Fig.5.8 Normal distribution 

Mean = Median = Mode =  

𝑃(𝜇 − 𝜎 ≤ 𝑥 ≤ 𝜇 + 𝜎) = 0.6828 

𝑃(𝜇 − 2𝜎 ≤ 𝑥 ≤ 𝜇 + 2𝜎) = 0.9544 

𝑃(𝜇 − 3𝜎 ≤ 𝑥 ≤ 𝜇 + 3𝜎) = 0.9973 

𝑃(𝑥) =
1

𝜎 ⋅ √2𝜋
. 𝑒

−(𝑥−𝜇)2

2𝜎2  
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(2)  Standard Normal Distribution: 

Assuming 𝑧 =
𝑥−𝜇

𝜎
; 𝜇 = 0; 𝜎 = 1, 𝑃(𝑧) =

1

√2𝜋
⋅ 𝑒

−𝑧2

2  

𝑃(−1 ≤ 𝑧 ≤ 1) = 0.6828 

𝑃(−2 ≤ 𝑧 ≤ 2) = 0.9544 

𝑃(−3 ≤ 𝑧 ≤ 3) = 0.9973 

Note: 

1. The normal distribution curve is bell shaped curve 

2. The points of infelection of the normal distribution curve are at 𝑥 = 𝜇 + 𝜎 𝑎𝑛𝑑 𝑥 = 𝜇 − 𝜎. 

3. The cumulative function graph is of ‘S’ Shape. 

4. For a given normal distribution, Mean = median = Mode 

(3)  Uniform Distribution: 

If 'x' is a uniformly distrbuted random variable such that 𝑎 ≤ 𝑥 ≤ 𝑏 then the Pdf is given by 

𝑃(𝑥) =
1

(𝑏 − 𝑎)
 

Mean = ∫ 𝑥 ⋅ 𝑃(𝑥)𝑑𝑥 =
𝑏

𝑎
∫ 𝑥 ⋅

1

𝑏−𝑎
𝑑𝑥 =

1

(𝑏−𝑎)

𝑏

𝑎
∫ 𝑥 ⋅ 𝑑𝑥

𝑏

𝑎
 

Mean
2

b a+ 
= 

 
 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
(𝑏−𝑎)2

12
  

 Std.deviation = 𝜎 =
(𝑏−𝑎)

√12
  

 
Fig.5.9 Uniform distribution 

5.7.1 Properties of Mean and Variance 

𝐸(𝑎𝑥 + 𝑏𝑦) = 𝑎 ⋅ 𝐸(𝑥) + 𝑏 ⋅ 𝐸(𝑦)  

𝑉(𝑎𝑥 + 𝑏𝑦) = 𝑎2 ⋅ 𝑉(𝑥) + 𝑏2 ⋅ 𝑉(𝑦) − 2𝑎𝑏𝐶𝑂𝑉(𝑥, 𝑦) 𝑤ℎ𝑒𝑟𝑒 𝐶𝑂𝑉(𝑥, 𝑦) = 𝐸(𝑥𝑦) − 𝐸(𝑥) ⋅ 𝐸(𝑦)  

If x,y are indpendent random variables, then 𝐸(𝑥𝑦) = 𝐸(𝑥) ⋅ 𝐸(𝑦) ⇒ 𝐶𝑂𝑉(𝑥, 𝑦) = 0 
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(1) Exponential Dirtibution: 

If 'x' is a contrinous random variable with mean as 
1

𝜆
 then the exponential distribution of 'x' is given by the function  

 𝑓(𝑥) = {𝜆 ⋅ 𝑒−𝜆𝑥 ; 𝑥 ≥ 0
0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Mean = 
1

𝜆
 

 𝜎2 =
1

𝜆2 

 Mean = Standard Deviation = 
1

𝜆
 

 

 

Fig.5.10 Exponential distribution 

5.8 Discrete Random Variable Distributions 

5.8.1 Binomial Distribution 

If a Random experiment has only two Possible outcomes, (one is Success & other is failure) and the Probability of 

Success doesn't depend on time, then the probability of occuring of exactly 'r-successes' in 'n-trials' is given by  

  𝑃(𝑋 = 𝑟) =𝑛 𝐶𝑟 ⋅ 𝑃𝑟 ⋅ 𝑞𝑛−𝑟  

Where, P → Probability of Success,  

            q → Probability of Failure 

  p + q = 1 

Mean = np,Variance = npq = 2, standard deviation = npq =  

 

5.8.2 Poisson Distribution 

If a random experiment has only two possible outcomes, and the average number of successes in a given time 't' is , 

then the probability that exactly 'r' successes occur within the same time 't' given by 

𝑃(𝑥 = 𝑟)
𝑒−𝜆⋅𝜆𝑟

𝑟!
  

Mean = . 

Mean = ∑ 𝑥 ⋅
𝑒−𝜆⋅𝜆𝑥

𝑥!(𝑥−1)!
∞
𝑥=0   𝐸(𝑥2) = ∑ 𝑥2 ⋅

𝑒−𝜆⋅𝜆𝑥

𝑥!
∞
𝑥=0   
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=𝑒−𝜆 ⋅ ∑
𝜆𝑥

(𝑥−1)!
∞
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= 𝑒−𝜆 ⋅ 𝜆 ⋅ 𝑒𝜆 = 𝜆 = 𝐸(𝑥)   = 𝑒−𝜆 ⋅ 𝜆{𝜆 ⋅ 𝑒𝜆 + 𝑒𝜆} = 𝜆2 + 𝜆  

𝜎2 = 𝐸(𝑥2) − (𝐸(𝑥))2   For Poisson distribution, 

= 𝜆2 + 𝜆 − 𝜆2 = 𝜆   Mean = Variance = 𝜆  

⇒𝜎2 = 𝜆   ⇒ 𝜎 = √𝜆  
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6 
NUMERICAL METHODS 

6.1 Solving System of Linear Equations 

6.1.1 Gauss Elimination Method 

Let the given system of linear equations be  

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

} ⇒ 𝐴𝑋 = 𝐵 

Augmented Matrix =     [𝐴|𝐵] = [

𝑎11 𝑎12 𝑎13 𝑏1

𝑎21 𝑎22
 𝑎23

 𝑏2
 

𝑎31 𝑎32
 𝑎33

 𝑏3
 
] 

By Row transformations, we convert the above matrix to row echelon form and then we go backward substitution. 

  → [

𝑎11 𝑎12 𝑎13

0 𝑎22
1 𝑎23

1

0 0 𝑎33
11

] [

𝑥1

𝑥2

𝑥3

] = [

𝑏1

𝑏2
1

𝑏3
11

] 

 

⇒ 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 0

𝑎22
1 𝑥2 + 𝑎23

1 𝑥3 = 𝑏2

𝑎33
11𝑥3 = 𝑏3

 

By solving the above equations, we get the values of the variables. 

Note: 

While applying row transformations, zero pivot elements are avoided by swapping the rows of augmented 

matrix. 

LU Decomposition Method: 

Let the given system of linear equations be  

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

} ⇒ 𝐴𝑋 = 𝐵 

The coefficient matrix A, is split into the product of an upper triangular and a lower triangular Matrix. 

 A = LU  

 ⇒ LUX = B  

Taking UX = Y we get AY = B  

On Backward substitution , we get the elements of the matrix 𝑌. 

Since 𝑈𝑋 = 𝑌, on forward substituion,we get the value of X.  
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6.2 Solution of Algebraic Equations (Non-Linear) 

6.2.1 Bracketing Methods 

In all the bracketing methods, to find the root of an equation 𝑓(𝑥) = 0, we assume an interval [a, b] such that 

𝑓(𝑎). 𝑓(𝑏) < 0, then we develop an iterative scheme for evaluating the iterates. 

Method Iteration formulae 

(1)  Bisection Method 

(2)  Secant Method 

(1) 𝑐 =
𝑎+𝑏

2
  

(2) 𝑐 =
𝑎.𝑓(𝑏)−𝑏.𝑓(𝑎)

𝑓(𝑏)−𝑓(𝑎)
  

 

  6.2.2 Newton Raphson Method 

To find the root of the equation 𝑓(𝑥) = 0, we assume an initial guess 𝑥 = 𝑥0 and the iterative scheme for the iterates 

is given by the equation  

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 

Note 

For the convergence of Newton Raphson method, |𝑓(𝑥). 𝑓′′(𝑥)| < |𝑓′(𝑥)|2. 

6.2.3 Rate of Convergence Values of iterative Methods 

(1)  Bisection Method -1 

(2)  Regula – Falsi Method -1  

(3)  Secant Method – 1.618 

(4)  Newton – Raphson Method -2 

6.3 Numerical Integration 

6.3.1 Trapezoidal Rule 

If f(x) is continuous on [a,b] and differentiable on (a,b) then the value of ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 evaluated using 'n' sub intervals 

is given by ∫ 𝑓(𝑥) = 𝑑𝑥 =
ℎ

2

𝑏

𝑎
[(𝑓(𝑎) + 𝑓(𝑏)) + 2(𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ)+. . . . . . +𝑓(𝑎 + (𝑛 − 1))ℎ)] 

                                      =
ℎ

2
[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 + 𝑦3+. . . . . . . . +𝑦𝑛−1)] 

Salient Points 

(i) The order of the fitting polynomial is 1. 

(ii) The error involved in Trapezoidal Rule is =
𝑛ℎ

3

12
| Max. of f''(x) in [a, b] |=

𝑛(𝑏−𝑎)3

12𝑛3  | max. of 𝑓′′(𝑥) in [a, b] | 

(iii) Trapezoidal Rule gives exact results for Polynomials of order ≤ 1 

(iv)  As number of subintervals increases, the accuracy of the result increases. 
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6.3.2 Simpson's 1/3rd Rule 

If f(x) is continuous on [a,b] and differentiable on (a,b) then the value of ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 evaluated using 'n' even number 

of sub intervals then the value of the integration is given by 

 ∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5+. . . . . . +𝑦𝑛−1) + 2(𝑦2 + 4𝑦4 + 𝑦6+. . . . . . +𝑦𝑛−2)]

𝑏

𝑎
 

Salient Points: 

(i)  The order of fitting polynomial → 2 (Quadratic) 

(ii) Simpons rule gives the exact results for all the polynomials of degree ≤ 2. 

(iii)  Error in volved in the integration = 
ℎ

4

100
|max  𝑜𝑓 𝑓4(𝑥)𝑖𝑛[𝑎, 𝑏]| where f4 (x)  is the fourth derivative of f (x) 

6.4 Numerical Solutions of a 1st Order DE 

6.4.1 Explicit Euler Method (or) Forward Euler Method 

For a given differential Equation, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑥
|

𝑥𝑖

= 𝑓′(𝑥)|𝑥𝑖
=

𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
 (Forward difference) 

We have 
𝑑𝑦

𝑑𝑥
|

𝑖
= 𝑓(𝑥, 𝑦)|(𝑥𝑖,𝑦𝑖) 

⇒ 
𝑦𝑖+1−𝑦𝑖

ℎ
= 𝑓(𝑥𝑖 , 𝑦𝑖)  

⇒ 𝑦𝑖+1 = 𝑦𝑖 + ℎ ⋅ 𝑓(𝑥𝑖 , 𝑦𝑖)  

                            Explicit Euler Method  

 

Fig.6.1 Forward Euler method 

6.4.2 Implicit Euler Metohd (or) Backward Euler Method 

𝑑𝑦

𝑑𝑥
|

𝑥𝑖+1

= 𝑓(𝑥𝑖+1, 𝑦𝑖+1)  

𝑑𝑦

𝑑𝑥
|

𝑥𝑖+1

= 𝑓(𝑥, 𝑦)|(𝑥𝑖+1,𝑦𝑖+1) =
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
  

⇒
𝑦𝑖+1−𝑦𝑖

ℎ
= 𝑓(𝑥𝑖+1, 𝑦𝑖+1)  

 ⇒ 𝑦𝑖+1 = 𝑦𝑖 + ℎ ⋅ {𝑓(𝑥𝑖+1, 𝑦𝑖+1)}  

                            Implicit Euler Method 



  

GATE WALLAH MECHANICAL HANDBOOK 12.50 

Numerical Methods 

 
Fig.6.2 Backward Euler method                                                                                                            

6.4.3 Modified Euler Method 

For a given differential Equation, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

𝑦𝑖+1
(𝑐)

= 𝑦𝑖 +
ℎ

2
⋅ {𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1

(𝑝)
)} where 𝑦𝑖+1

(𝑝)
𝑖𝑠 𝑡ℎ𝑒 predicted value. 

And the predicted value is calclated using one of the Explicit (or) Implicit Euler Methods. ( Mostly Forward method 

id used)  

6.4.4 Runge – Kutta (R-K)  Methods 

For a given differential Equation, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) with the condition 𝑓(𝑥0) = 𝑦0, 

(i)  R-K 1st order Method : Forward Euler Method 

(ii)  R-K 2nd order Method : Modified Euler Method 

(iii)  R-K 3rd order Method :The iterative Scheme is given by 𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 4𝑘2 + 𝑘3) 

Where  

𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)  

𝑘2 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘1

2
)  

𝑘3 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘2)  

(iv)  R-K 4th order Method : 

The iterative Scheme is given by 𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Where      

𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)  

𝑘2 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘1

2
)  

𝑘3 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘2

2
)   

𝑘4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘3)  

Multi step methods Includes Adams- Bashforth Methods 

❑❑❑
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7 
COMPLEX CALCULUS 

A number of the form z = x + iy where x, y  R is called a complex number. 

x is called real part of z.x = Re(z) 

y is called real part of zy = Im(z) 

7.1 Modulus – Amplitude form of a Complex Number 

Every Complex number z = x + iy can be written as z = r.ei where 

    r = 
2 2x y+  is called the modulus of the complex number and 

     = 1tan
y

x

−  
 
 

 is called the amplitude (or) argument of the complex number. 

    ei = cos  + i.sin  = cos  and 

    e–i = cos  – i.sin  

7.2 Arithmetic Operations with Complex Numbers 

If z1 = x1 + iy1 and z2 = x2 + iy2 are two complex numbers then 

(i) z1 ± z2 = (x1 ± x2) + i(y1 ± y2)    (ii) z1  z2 = (x1 x2 – y1 y2) + i(x1y2 + x2y1) 

(iii) 1

2

z

z
 = 1 2 1 2 2 1 1 2

2 2
2 2

( ) ( )x x y y i x y x y

x y

+ + −

+
  (iv) |z1 + z2|  |z1| + |z2| 

(v) |z1 – z2|  1 2| | | |z z−     (vi) |z1 + z2|
2 + |z1 – z2|

2 = 2(|z1|
2 + |z2|

2) 

If r1, 1 are modulus and amplitude of a complex number z1 and r2, 2 are modulus and amplitude of a complex number 

z2  respectively, then  

(i) The modulus of z1  z2 is r1  r2 and the amplitude of z1  z2 is 1 +  2 

(ii) The modulus of 1

2

z

z
 is 1

2

r

r
 and the amplitude of 1

2

z

z
 is 1 –  2. 

If z = x + iy is a complex number, then the conjugate of the complex number is given by z* (or) z  = x – iy. 

    Re(z) = 
*

2

z z+
 

and    Im(z) = 
*

2

z z

i

−
  

    z  z* = |z|2 
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7.3 De-moivers Theorem  

If z = r  cos  is a complex number, then 

(i)  zn = rn  cos n if ‘n’ is an integer. 

(ii)  One of the values of zn = rn  cos n  if ‘n’ is a fraction. 

 If 
p

n
q

= , then the n values of zn are given by rn  cos(2n + ) 
p

q

 
 
 

where n = 0,1,2,3……q-1. 

 The cube roots of unity are given by 1, , 2 where  = 
1 3

2 2
i
 

− +   
 

 

 The cube roots of unity when plotted on an argand plane form an equilateral triangle. 

7.4 Standard Complex Functions 

If z = x + iy is a complex number, then 

(i)  ln z = 2 2 11
ln( ) tan

2

y
x y i

x

−  
 + +   

 
 

(ii)  exp (z) = ex  (cos y + i sin y) 

7.5 Periodic function 

A complex function f(z) is a periodic function if there exists a complex number ‘k’ such that f(z) = f(z + k) 

Ex. The function f(z) = ez is a periodic function with period 2i. 

7.5.1 Analytic Functions 

A function f(z) is said to analytic at a point z = z0 if the fucntion f(z) is differentiable at the pount z = z0 and also at every 

point in the neighbourhood of z0. 

The mathematical conditions for a function f(z) = u(x, y) + i.v(x, y) to be analytic at a point z0 = x0 + i y0 is  

(i) , , ,
u u v v

x y x y

   

   
 are continuous and differentiable at (x0, y0) 

(ii) and
u v u v

x y y x

   
= = −

   
. These set of euations are called Cauchy – Riemann (C-R) Equations . 

Note: 

If the function f(z) = u(x, y) + i.v(x, y) is analytic then  

(i) Both  u(x, y) and v(x, y) satisfy laplace equation. 

i.e.  
2 2

2 2

u u

x y

 
+

 
 = 0 

and  
2 2

2 2

v v

x y

 
+

 
 = 0 

(ii) The family of curves u(x, y) = c1 and v(x, y) = c2 are orthogonal to each other. 
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Cauchy – Riemann Equations in polar form for the function f(z) = u(x, y) + i.v(x, y) are given by 

    
u

r




 = 

1 v

r





 

and   
u


 = 

v
r

r


− 


 

7.6 Complex Integration 

If f(z) = u + iv is continuous and differentiable at every point along a path ‘C’ , then the evaluation of f(z) along the pathe 

‘C’ is given by  

    ( )
c

f z dz  = ( ) ( ) ( ) ( )
c c c

u iv dx idy u dx v dy i u dy v dx+ + = − + +    

Note: 

If the function f(z) is analytic, then the integral 
2

1

( )
z

z
f z dz  is independent of the path connecting the complex numbers 

z1 and z2. 

7.6.1 Cauchy Integral Theorem 

  If the function f(z) is analytic at everypoint with in a closed path ‘C’ then ( )C f z dz  = 0. 

Note: 

If the function f(z) is analytic at everypoint with in a closed path ‘C’, except at the point z = z0, then  

    0( )n
C z z dz−  = 

0, if 1

2 , if 1

n

i n

 −


 = −
 

7.6.2 Cauchy Integral formula 

If f(z) = 
1

0

( )

( )n

z

z z +



−
 is analytic at every point with in a closed path ‘C’ except at the point z = z0, then  

    ( )C f z dz  = 0
1

0

( ( ))( )
2

!( )

n

C n

zz
dz i

nz z +


=  

−
  

Where (n(z0)) is the nth derivative of (z) at the point z = z0. 

7.7 Taylor Series and Laurentz Series  

(i) Taylor series:  If the function f(z) is analytic at every point with in a circle with centre at z = z0, then for any point z with 

in the circle, 

    f(z) = 00
( )n

nn
a z z



=
 −  

 where  an = 
1

0

1 ( )

2 ( )
C n

f z
dz

i z z +

 
 

  −
  

(ii) Laurentz Series: If the function f(z) is analytic at every point with in a region bounded by two concetric circles C and C1 

with radii r, r1 respectively (r > r1)  with centre at z = z0, then for any point z with in the region, 

    f(z) = 0 00 1
( ) ( )n n

n nn n
a z z b z z

  −

= =
 − +  −   
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 where  an = 
1

0

1 ( )

2 ( )
C n

f z
dz

i z z +

 
 

  −
  

 and   bn = 
1 1

0

1 ( )

2 ( )
C n

f z
dz

i z z − +

 
 

  −
  

Note: 

All the formulaes above for the cyclic integrals are for counter clockwise sense by default, if the questions are asked 

for clockwise sense, the answer evaluted using above formulaes should be written with sign change. 

❑❑❑ 
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