

Sample Paper-05

Class 11th NEET (2024)

CHEMISTRY

SECTION-A

- 1. 15 mL of $\frac{N}{10}$ NaOH solution completely neutralises
 - 12 mL of H_2SO_4 solution. The normality of H_2SO_4 solution will be;
 - (1) $\frac{N}{13}$
- $(2) \quad \frac{N}{8}$
- $(3) \quad \frac{N}{15}$
- (4) $\frac{N}{10}$
- **2.** Equivalent weight of crystalline oxalic acid is;
 - (1) 30
- (2) 60
- (3) 90
- (4) 63
- 3. Volume of a gas at NTP is 1.12×10^{-7} cc. The number of molecules in it is;
 - (1) 3.01×10^{12}
- $(2) 3.01 \times 10^{18}$
- $(3) 3.01 \times 10^{24}$
- $(4) 3.01 \times 10^{30}$
- **4.** What is the pH of solution made by mixing equal volumes of 0.1 N H₂SO₄, 0.1 N HNO₃, 0.1 N HCl?
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- 5. The configuration $1s^22s^22p^53s^1$ shows;
 - (1) excited state of O_2^{-1}
 - (2) excited state of neon atom.
 - (3) excited state of fluorine atom.
 - (4) ground state of fluorine atom.
- **6.** Inorganic benzene is;
 - (1) $B_3H_3N_3$
- (2) BH₃NH₃
- (3) $B_3H_6N_3$
- (4) $H_3B_3N_6$
- **7.** Compare relative stability of following resonating structure;

O
$$O^{\odot}$$
 O^{\odot} $O^$

- (1) a > b > c
- (2) a > c > b
- (3) b > a > c
- (4) c > a > b

- 8. The pH of a solution obtained by mixing 100 ml of 0.2M CH₃COOH with 100 mL of 0.2 M NaOH would be: (pK_a for CH₃COOH = 4.74)
 - (1) 4.74
- (2) 8.87
- (3) 9.10
- (4) 8.57
- **9.** Which one of the following is a **correct** set with respect to a molecule, hybridization and shape?
 - (1) BeCl₂: sp², linear
 - (2) BeCl₂: sp², triangular planar
 - (3) BCl₃: sp², triangular planar
 - (4) $BCl_3 : sp^3$, tetrahedral
- **10. Assertion:** The sum of protons and neutrons is always different in isobars.

Reason: Isobars are atoms of different elements having same mass number but different atomic number.

- (1) Both **Assertion** (**A**) and **Reason** (**R**) are true, and **Reason** (**R**) is a correct explanation of **Assertion** (**A**).
- (2) Both **Assertion** (**A**) and **Reason** (**R**) are true, but **Reason** (**R**) is not a correct explanation of **Assertion** (**A**).
- (3) Assertion (A) is true, and Reason (R) is
- (4) Assertion (A) is false, and Reason (R) is true
- 11. Equivalent amounts (moles) of H₂ and I₂ are heated in a closed vessel till equilibrium is obtained. If 80% of the H₂ can be converted to HI, the K_C at this temperature is;
 - (1) 64
- (2) 16
- (3) 0.25
- (4) 4
- **12.** The bond length in and follows the order:
 - (1) $O_2^{2-} > O_2^- > O_2 > O_2^+$
 - (2) $O_2^+ > O_2 > O_2^- > O_2^{2-}$
 - (3) $O_2 > O_2^- > O_2^{2-} > O_2^+$
 - (4) $O_2^- > O_2^{2-} > O_2^+ > O_2$
- **13.** Which of the following is least ionic?
 - (1) AgCl
- (2) KCl
- (3) BaCl₂
- (4) NaCl

- **14.** Which of the following **cannot** be explained by Valence bond theory?
 - (1) Existence of H_2^+ .
 - (2) Paramagnetic behaviour of B₂.
 - (3) Stability of O_2^+ .
 - (4) All of these.
- **15. Statement-I:** Spin quantum number can have two values, $+\frac{1}{2}$ and $-\frac{1}{2}$.

Statement-II: + and - signs signify the positive and negative wave functions.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **16. Statement-I:** All photons possess the same amount of energy.

Statement-II: Energy of photon does **not** depend upon wavelength of light used.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **17. Statement-I:** Absorption spectrum consists of some bright lines separated by dark spaces.

Statement-II: Emission spectrum consists of dark lines.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **18.** In thermodynamics, a process is called reversible when:
 - (1) surroundings and system change into each other.
 - (2) there is no boundary between system and surroundings.
 - (3) the surroundings are always in equilibrium with the system.
 - (4) the system changes into the surroundings spontaneously.

19. Assertion: For Balmer series of hydrogen spectrum, the value $n_1 = 2$ and $n_2 = 3, 4, 5$.

Reason: The value of n for a line in Balmer series of hydrogen spectrum having the highest wavelength is 4 and 6.

- (1) Both **Assertion** (**A**) and **Reason** (**R**) are the true, and **Reason** (**R**) is a correct explanation of **Assertion** (**A**).
- (2) Both **Assertion** (**A**) and **Reason** (**R**) are the true, but **Reason** (**R**) is not a correct explanation of **Assertion** (**A**).
- (3) **Assertion (A)** is true, and **Reason (R)** is false.
- (4) Assertion (A) is false, and Reason (R) is true.
- **20.** Which one is a state function?
 - (1) heat supplied at constant pressure.
 - (2) heat supplied at constant volume.
 - (3) enthalpy.
 - (4) All of these.
- 21. q = -w is true for;
 - (1) isothermal process.
 - (2) adiabatic process.
 - (3) cyclic process.
 - (4) Both (1) and (3).
- **22.** Which of the following is most soluble in water?
 - (1) MnS $(K_{sp} = 8 \times 10^{-37})$
 - (2) ZnS $(K_{sp} = 7 \times 10^{-16})$
 - (3) Bi_2S_3 ($K_{sp} = 1 \times 10^{-70}$)
 - (4) $Ag_2S (K_{sp} = 6 \times 10^{-51})$
- **23.** The pH of 0.01M NaOH(aq) solution will be:
 - (1) 7.01
- (2) 2
- (3) 12
- (4) 9
- **24.** In which of the following equilibrium, $K_p = K_c$?
 - (1) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - (2) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - (3) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - (4) $H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)$
- **25.** The bond energies of C = C and C C at 298K are 590 and 331 kJ/mol respectively. The enthalpy of polymerization per mole of ethylene is;
 - (1) 70
- (2) 72
- (3) -70
- (4) -72

- 26. Which of the following is **not** an endothermic reaction?
 - (1) combustion to ethane
 - (2) melting of ice
 - graphite → diamond (3)
 - (4) decomposition of water
- **27.** Carbon monoxide is;
 - acidic (1)
- (2) neutral
- (3) amphoteric
- (4) basic
- **28.** $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

In above reaction, at equilibrium condition mole fraction of PCl₅ is 0.4 and mole fraction of Cl₂ is 0.3. Then find out mole fraction of PCl₃

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g);$

- (1) 0.3
- (2) 0.7
- (3) 0.4
- (4) 0.6
- 29. Match List-I with List-II to find out the correct option.

List-I		List-II	
(A)	pH of milk	(I)	6.8
(B)	pH of black coffee	(II)	5.5
(C)	pH of tomato juice	(III)	4.2
(D)	pH of egg white	(IV)	7.8

- (1) (A) (III), (B) (IV), (C) (I), (D) (II)
- (2) (A) (IV), (B) (I), (C) (II), (D) (III)
- (3) (A) (II), (B) (III), (C) (IV), (D) (I)
- (4) (A) (I), (B) (II), (C) (III), (D) (IV)
- Carbon forms a large number of compounds **30.** because it has:
 - (1) fixed valency
 - (2) contains non-metallic nature
 - (3) high ionization potential
 - (4) contains property of catenation
- 31. Match List-I with List-II to find out the correct option.

I	List-I	List-II	
(Me	olecule)	(Hybridisation)	
(A)	PCl ₅	(I)	sp^3d^3
(B)	ICl ₅	(II)	sp^2
(C)	XeF_6	(III)	$\mathrm{sp}^{3}\mathrm{d}^{2}$
(D)	SO_3	(IV)	sp ³ d

- (1) (A) (III), (B) (I), (C) (IV), (D) (II)
- (2) (A) (IV), (B) (III), (C) (II), (D) (I)
- (3) (A) (IV), (B) (III), (C) (I), (D) (II)
- (4) (A) (II), (B) (III), (C) (IV), (D) (I)

32. For the redox reaction

> $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow CO_2 + H_2O$, the **correct** stoichiometric coefficients of $\,\mathrm{MnO_4^-},\,\mathrm{C_2O_4^{2-}}\,$ and H⁺ are respectively;

- (1) 2, 5, 16
- (2) 16, 5, *z* (4) 2, 16, 5 (2) 16, 5, 2
- (3) 5, 16, 2
- The pH value of $\frac{N}{10}$ NaOH is; 33.
- (3) 12
- (4) 13
- Select Polyprotic Arrhenius acids from the 34. following:
 - (1) H_3PO_2
- (2) H_3PO_3
- (3) H_3BO_3
- (4) HCOOH
- The maximum number of stereoisomer's possible 35. for 3-hydroxy-2-methylbutanoic acid is:
 - (1) 1
- (2) 2
- (3) 3
- (4) 4

SECTION-B

- **36.** One mole of an ideal gas is allowed to expand reversibly and adiabatically from a temperature of 27°C. If the work done during the process is 3 kJ, then final temperature of the gas is (Cv = 20 J/K);
 - (1) 100 K
- (2) 150 K
- (3) 195 K
- (4) 255 K
- 37. In the following reaction:

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{CH}_{3} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{Major product} \\ \text{CH}_{3} \end{array}$$

The major product is;

(2)
$$H_3C - \overset{|}{C} - CH_2 - CH_2 - CH_2 \\ CH_3 OH \\ CH_3$$

(3)
$$H_3C - \stackrel{|}{C} - CH_2 - CH_2$$

OH CH_3

$$\begin{array}{c} CH_3 \\ | \\ (4) \quad H_2C - C - CH_2 - CH_3 \\ | \quad | \\ OH \quad CH_3 \end{array}$$

38. Predict the product 'C' obtained in the following reaction of 1-butyne

$$CH_3 - CH_2 - C \equiv CH \xrightarrow{HCl} B \xrightarrow{HI} C$$

(2)
$$CH_3 - CH_2 - CH - CH_2CI$$

- 39. The **correct** statement among the following is;
 - (1) allyl carbocation ($CH_2 = CH CH_2^+$) is more stable than propyl carbocation.
 - propyl carbocation is more stable than allyl carbocation.
 - (3) both are equally stable.
 - (4) none of the above.
- 40. The **correct** order of acidity among the following
 - (1) CH₃COOH > BrCH₂COOH > ClCH₂COOH > FCH₂COOH
 - (2) FCH₂COOH > CH₃COOH > BrCH₂COOH > ClCH₂COOH
 - (3) BrCH₂COOH > ClCH₂COOH > FCH₂COOH > CH₃COOH
 - (4) FCH₂COOH > ClCH₂COOH > BrCH₂COOH > CH₃COOH
- 41. Enthalpy of neutralisation of CH₃COOH by NaOH is -50.6 kJ/mol and the heat of neutralisation of a strong acid with NaOH is-55.9 kJ/mol. The value of enthalpy for the ionisation of CH₃COOH is;
 - (1) 3.5 kJ/mol
- (2) 4.6 kJ/mol
- (3) 5.3 kJ/mol
- (4) 6.4 kJ/mol

- 42. For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the signs of ΔH and ΔS respectively, are;
 - (1) +, -
- (3) -, -
- (4) -, +
- 43. The IUPAC symbol for the element with atomic number 119 would be;
 - (1) Uue
- (2) Une
- (3) Uun
- (4) Unn
- 44. The maximum number of atomic orbitals associated with a principal quantum number 4 is;
 - (1) 4
- (2) 8
- (3) 16
- (4) 32
- 45. Which group of periodic table contains nonmetal?
 - (1) IA
- (2) IIIA
- (3) VIIA
- (4) VIII
- 46. Which of the following does **not** exist?
 - (1) PbI₄
- (2) PbI₂
- (3) SnCl₄
- (4) BiF₃
- 47. For a spontaneous process, the correct statement
 - (1) Entropy of the system always increases
 - (2) Free energy of the system always increases
 - (3) Total entropy change is always negative
 - (4) Total entropy change is always positive
- 48. Ce (58) is a member of;
 - (1) s-block
- (2) p-block
- (3) d-block
- (4) f-block
- 49. The linear structure is assumed by;
 - (A) SnCl₂
- (B) NCO-
- (C) NO_2^+
- (D) CS₂
- (1) A, B and C
- (2) B, C and D
- (3) A, C and D
- (4) None of these
- 50. The bond angles of NH₃, NH₄⁺ and NH₂⁻ are in the order;
 - (1) $NH_2^->NH_3>NH_4^+$
 - (2) $NH_4^+ > NH_3 > NH_2^-$
 - (3) $NH_3>NH_2^->NH_4^+$
 - (4) $NH_3>NH_4^+>NH_2^-$

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if