This Question Paper contains 12 printed pages. (Section - A, B, C & D)

Sl.No.

18 (E) (MARCH, 2023)

Time: 3 Hours

[Maximum Marks: 80

Instructions:

- 1) Write in a clear legible handwriting.
- 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 39.
- 3) All Sections are compulsory. Internal options are given.
- 4) The numbers to the right represent the marks of the question.
- 5) Draw neat diagrams wherever necessary.
- New sections should be written in a new page. Write the answers in numerical order.
- 7) Use of calculator, smart watch or digital watch is not allowed.

SECTION-A

- Answer the following as per instructions given: (Questions 1 to 16) (Each carries one mark)
- Write True or False for the following questions: (1 to 4)

1)
$$HCF(17, 23) = 1$$
 [1]

2) If
$$p(x) = x^2 - 7x + 10$$
, then the number of zeroes are 3. [1]

-	•	~ 4	\sim
•		• 1	×
J-	1		o

	3)	If si	n A=1. then A=90°.			[1]
	4)	The	values of sin A and cos	s A never be greater	than l .	[1]
•	Sele	ect the	e most appropriate a	nswer from the gi	ven alternatives: (5	5 to 10)
	5)		and q are positive inte			
			bers then $LCM(p,q)$			[1]
		(A)	ab	(B) <i>a</i>	a^2b^2	
		(C)	a^3b^2	(D) <i>a</i>		
	6)		phically, the pair of lin		3y + 10 = 0, 2x - y + 9	9 = 0 represents
			lines which are			[1]
		(A)	intersecting at exac	ctly one point		
		(B)	intersecting at exac	ctly two points		
		(C)	coincident			
		(D)	parallel			
	7)	Ifth	e roots of quadratic e	quation $ax^2 + bx + a$	$c = 0, a \neq 0$ are real a	and distinct, then
			·			[1]
		(A)	$b^2-4ac<0$	(B)	$b^2 - 4ac = 0$	
		(C)	$b^2-4ac>0$	(D)	$b^2 - 4ac \neq 0$	
	8)	IfA((0, 6) and B (0, -2), the	nen the distance be	tween A & B is	[1]
		(A)	6	(B)	8	•
		(C)	4	(D)	2	

- 9) Probability of getting 80 marks out of 80 in maths paper is _____. [1]
 - (A) $\frac{79}{80}$
 - (B) $\frac{1}{80}$
 - (C) $\frac{1}{81}$
 - (D) $\frac{79}{81}$
- 10) For the given figure, if y = p(x), then number of zeroes are _____. [1]

(A) 1

(B) 2

(C) 3

(D) 0

Fill up the blanks: (11 to 16)

11) The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its _____. [1] [Mean, Median, Mode]

S-1518	
--------	--

[1]

- 12) Probability of a sure event is _____.

 [0, 1, 2].
- 13) A tangent to a circle intersect it in _____ point. [1][0, 1, 2].
- 14) A circle which touches all the sides of a quadrilateral ABCD, if AB = 7, BC = 3, CD = 4, then AD = _____. [1]

 [8, 7, 11]
- 15) Length of minor arc is _____. $\left[\frac{\pi r \theta}{180}, \frac{\pi r^2 \theta}{360}, \frac{\theta}{360}\right]$
- 16) If the radius of a circle is doubled, then its area becomes _____ times. [1][2, 3, 4]

SECTION - B

- Solve the following: (17 to 26) (Each carries 2 marks) [20]
 - 17) Find the zeroes of the quadratic polynomial $x^2 + 2x 8$. [2] OR
 - 17) Find the quotient and remainder:- [2] $(3x^2-x^3-3x+5) \div (x-1-x^2)$

18) Find a quadratic polynomial whose sum and product of its zeroes given respectively
[2]

$$\left(\frac{1}{4},-1\right)$$
.

- 19) How many 3-digit numbers are divisible by 3? [2]
- 20) Evaluate:- [2] $2 \tan^2 45^\circ + \cos^2 30^\circ \sin^2 60^\circ$

OR

- 20) If $\sin 3A = \cos (A-26^\circ)$, where 3A is an acute angle, find the value of A. [2]
- 21) Find the value of y for which the distance between the points P(2, -3) and Q(10, y) is 10 units.[2]
- 22) An observer 1.5m tall is 28.5m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney? [2]
- 23) From a point Q, the length of the tangent to a circle is 24cm and the distance of Q from the centre is 25cm, then find the radius of the circle.[2]

OR

23) In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then find $\angle PTQ$. [2]

[2]

24) The edge of a cube is 5cm, then find the total surface area of cube.

24) A solid shown in the figure is made up of a cylinder (A) with a hemispherical depression (B). Then write the formula for finding the total surface area of a solid.
[2]

OR

25) If
$$\sum f_i d_i = -26$$
, $a = 30$, $\sum f_i = 13$, find \bar{x} .

- 26) A box contains 3 blue, 2 white and 4 red marbles. Alok drawn a marble at random from the box, what is the probability that it will be[2]
 - i) white
 - ii) not red

SECTION-C

- Answer the following as asked with calculations: (27 to 34) (Each carries 3 marks)

 [24]
 - 27) Solve the linear pair of equations by elimination method:- [3] 2x + 3y = 46 & 3x + 5y = 74.

OR

6

27) The difference of two natural numbers is 5 and the difference of their reciprocals is $\frac{1}{10}$, find the numbers. [3]

28) Find the nature of the roots of the given quadratic equation. If the real root exist find them.[3]

$$2x^2 - 6x + 3 = 0$$

OR

- 28) A train travels 360km at a uniform speed. If the speed had been 5km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
 [3]
- 29) Find the sum of the first 40 positive integers divisible by 6. [3]
- 30) Find the 20th term from the last term of the A.P.: 3, 8, 13,, 253. [3]
- 31) Find the value of "k" for which the points are collinear. [3] (8, 1), (k, -4), (2, -5)

OR

- 31) In what ratio does the point (-4, 6) divide the line segment joining the points A(-6, 10) and B (3, -8)? [3]
- 32) The table below shows the daily expenditure on food of 25 households in a locality.

[3]

Daily expenditure (in ₹)	100-150	150-200	200-250	250-300	300-350
Number of households	4	5	12	2	2

Find the mean daily expenditure on food by a suitable method.

[3]

	i)	a prime number.	
	ii)	a number lying between 2 and 6.	
	iii)	an odd number.	
34)	One getti	card is drawn from a well-shuffled deck of 52 cards. Find the probabiling	ty of [3]
	i)	a king of red colour.	
	ii)	not a spade.	
	iii)	the queen of hearts.	
		SECTION - D	
■ Solve	e the t	following: (35 to 39) (Each carries 4 marks)	[20]
35)	State	and prove Pythagoras theorem.	[4]
		OR	
35) I	Prove	that the ratio of the areas of two similar triangles is equal to e of the ratio of their corresponding sides.	the [4]

33) A die is thrown once. Find the probability of getting

36) If the median of the distribution given below is 28.5, find the values of P and Q. [4]

Weight in kg.	0-10	10-20	20-30	30-40	40-50	50-60	Total
Number of students	5	P	20	15	Q	5	60

37) Draw a triangle ABC with side BC = 6cm, AB = 5cm and \angle ABC = 60°. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC. [4]

OR

- 37) Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6cm and measure its length.[4]
- 38) A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household:
 [4]

Family size	1-3	3-5	5-7	7-9	9-11
Number of families	7	8	2	2	l

Find the mode of this data.

39) A metallic sphere of radius 4.2cm is melted and recast into the shape of a cylinder of radius 6cm. Find the height of the cylinder.[4]

OR

39) A wooden article was made by scooping out a hemisphere from each end of a solid cylinder as shown in figure. If the height of the cylinder is 10cm and its base is of radius 3.5cm, find the total surface area of the article. [4]

A A