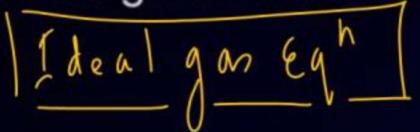
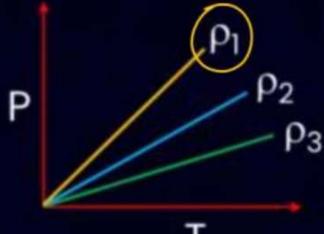


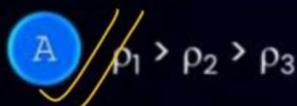
JEE MAIN 2024 ATTEMPT - 02,04th April 2024, SHIFT - 01

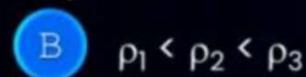
PAPER DISCUSSION

CHEMISTRY




PHYSICAL CHEMISTRY


We are given with the following graph between P and T.



Choose the correct option.

$$\rho_1 = \rho_2 = \rho_3$$

$$\rho_2 > \rho_1 > \rho_3$$

$$P = \left(\frac{dR}{M}\right)T$$

De broglie wavelength of electron in n = 4... is πa_0 where πa_0 is bohr radius.

$$21n = n$$

$$= 2\pi n = 2\pi \left(\frac{16a_0}{4}\right)$$

$$= \sqrt{n} = 8\pi a_0$$

$$9n = 0.529 \frac{n^2}{7}$$
 $7n = 0.529 \frac{n^2}{7}$

JEE MAIN 2024 DIVEW PAPER DISCUSSION

The reduction potential of hydrogen electrode in pure water is zero at 25°C.

Then what is the pressure of H_2 (in bar).

$$\frac{2H^{2} + 2e^{-} - H_{2}}{E_{H^{2}/H_{2}}} = \frac{E_{H^{2}/H_{2}}^{0.0591} \log \frac{P_{H_{2}}}{I_{H^{2}}}}{2} = \frac{10^{-14} \log \frac{P_{H_{2}}}{I_{H^{2}}}}{2} = \frac{10^{-14} \log \frac{P_{H_{2}}}{I_{H^{2}}}}{2}$$

Find the molarity of 5.85 gm of NaCl solution containing 500 ml.

- 2 M

JEE MAIN 2024

DISCUSSION PAPER DISCUSSION

For the titration of 20 ml KMnO₄ with 20 ml, 2M oxalic acid in acidic medium

find molarity of the KMnO₄ solution?

$$|(MnO_4 + H_2(2O_4 + H^+) - Mn + CO_2(n=5))|$$
 $|(N=5)| (n=2)|$
 $|(N=5)| (N=2)|$
 $|(N=5)| (N=2)|$
 $|(N=2)| (N=2)|$

If
$$k_{\text{Net}} = \underbrace{\frac{k_1 k_2}{k_3}}$$

E_{Net} = 400 kcal/mole

 $E_{a_1} = 200 \text{ kcal/mole}$

 $E_{a_2} = 300 \text{ kcal/mole}$

For above data the value of E_{a_2} is ____kcal/mole. at constant temperature

$$E_a = Activation \ energy$$

$$E_{nef} = E_1 + E_2 - E_3$$

$$E_{nef} = E_1 + E_2 - E_3$$

$$400 = 200 + 300 - E_3$$
 $(E_3 = 100)$

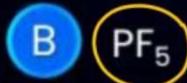
#Q. 2ml KMnO₄ aqueous solution is titrated against 20ml, 2M H₂C₂O₄ aqueous solution in Acidic medium, then Molarity of KMnO₄ solution is _____?

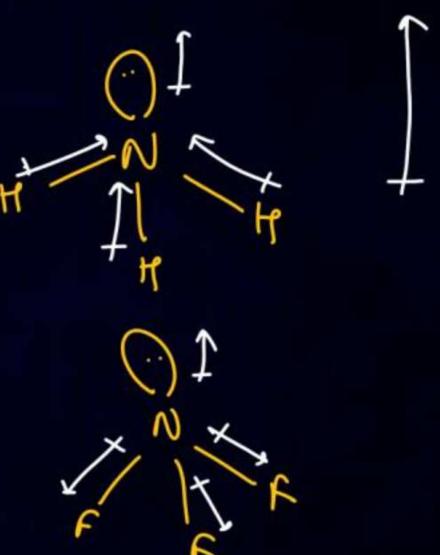
[Stoichiometry - Easy]

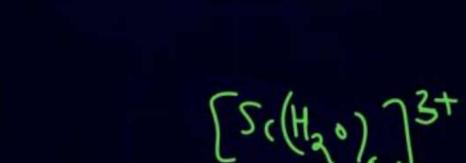
JEE MAIN 2024 ATTEMPT - 02,04th April 2024, SHIFT - 01

PAPER DISCUSSION

CHEMISTRY

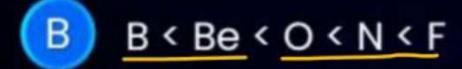

INORGANIC CHEMISTRY

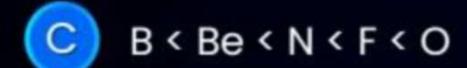

Which of the following have maximum dipole moment?

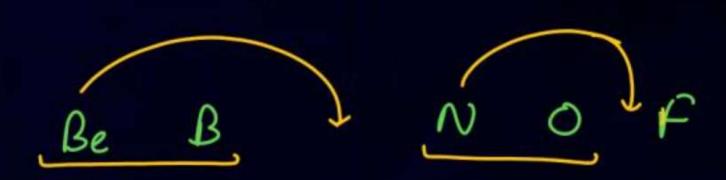


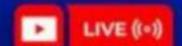
Which one of the following Elemental shows one oxidation state other than its Elemental state?

- Sc
- Ni


Sc	3	Mŋ	C4 +1	Zy
13	4.	47	+2	+2
	+6	+7 (1




Which of the following is the correct order of first ionization enthalpy?



Number of complexes from the following with even number of unpaired electron is:

$$[Cr(H_{2}O)_{6}]^{2+}, [Fe(H_{2}O)_{6}]^{2+}, [Ni(H_{2}O)_{6}]^{2+}, [Cu(H_{2}O)]^{2+}, [V(H_{2}O)_{6}]^{3+}$$

$$C_{Y}^{+2} : d^{4} \qquad f_{2}^{+2} : d^{6} \qquad N_{1}^{+2}^{+} : d^{9} \qquad V^{3+} : d^{2}$$

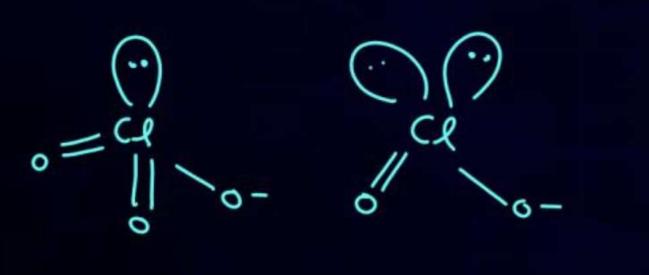
$$+ + + + e_{3} \qquad \qquad [C_{0}(H_{2}O)_{6}]^{3+} \qquad SFL \qquad$$

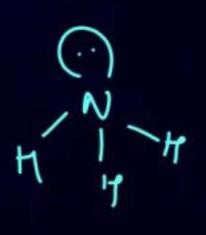
Al (040) -

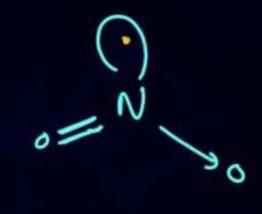
In analysis of 3rd group of basic radicals, why NH₄OH is added in presence of NH₄CI?

- To reduce NH₄⁺ ion concentration
- To reduce OH⁻ ion concentration В
- To increase NH₄+ ion concentration
- To increase OH⁻ ion concentration

Al⁺³,
$$(r^{+3}, Fe^{+3})$$


Al(oH)₃ \downarrow
 $(r(oH)_3)$
 $(r(oH)_3)$
 $fe(oH)_3$
 \downarrow
 \overline{o}
 \overline{o}
 \downarrow
 \overline{o}
 \overline{o}





How many of the following compounds are sp³ hybridised?

JEE MAIN 2024

PAPER DISCUSSION

Voilet **

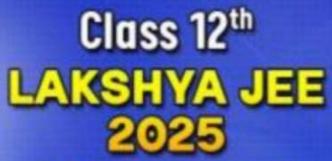
Formula of sodium nitroprusside is:

- A Na₂[Fe(CN)₅NO]
- B Na₂[Fe(CN)₄NO]
- C Na₄[Fe(CN)₅NO]
- D Na₄[Fe(CN)₄NO]

$$N_{a_{2}}^{2}S + N_{a_{2}}\left[\frac{f_{e}(c_{N})_{s}(N_{0})}{f_{e}(c_{N})_{s}(N_{0})}\right]$$

$$N_{0}^{+}S^{2} = N_{0}S^{-} \qquad N_{a_{1}}\left[\frac{f_{e}(c_{N})_{s}(N_{0})}{f_{e}(c_{N})_{s}(N_{0})}\right]$$

Decreasing order of the field strength of the following ligands will be:



- ₹ 5,300 /- ₹ 4,800 /- -

Free - Arjuna JEE 1.0 + 2.0 2024 + Lakshya JEE AIR 2025 (Recorded)

For JEE 2025 Aspirants

- ₹5,500/- ₹3,000 /- -

FREE - PRAYAS 1.0 HINDI 2024

For JEE 2025 Aspirants

DROPPER **PRAYAS JEE** 2025

- ₹5,300/- ₹4,800/-

For JEE 2025 Aspirants

DROPPER **PRAYAS JEE HINDI 2025**

- ₹5,500/- ₹3,000/-

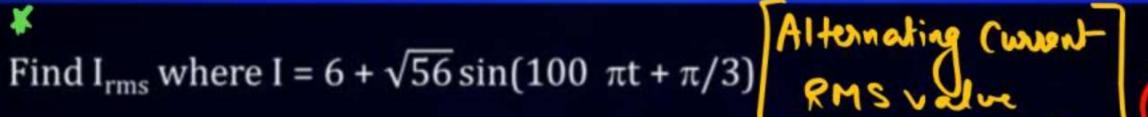
FREE - PRAYAS 1.0 HINDI 2024

For JEE 2025 Aspirants

JEE MAIN 2024 ATTEMPT - 02,04th April 2024, SHIFT - 01

PAPER DISCUSSION

PHYSICS



Position of a particle given as $x = t^4 + 6t^3 + 2t$. Find acc. of particle at $\zeta = 5$ sec.

[Motion in a st. line,] Variable acceleration

DISCUSSION PAPER DISCUSSION JEE MAIN 2024

$$T = 6 + \sqrt{56} \sin(100\pi t + \frac{\pi}{3})$$

$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

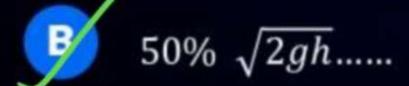
$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

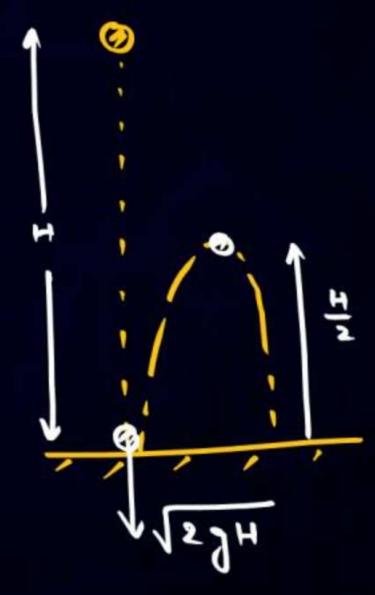
$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

$$= 36 + 56 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$

$$= 36 + 28 \sin^{2}(100 \pi t + \frac{\pi}{3}) + 12\sqrt{56} \sin(100 \pi t + \frac{\pi}{3})$$



Ball is thrown from height (h) it rebounds to (h/2) Loss of energy and velocity before it reaches ground respectively are....


Work, Power & Energy

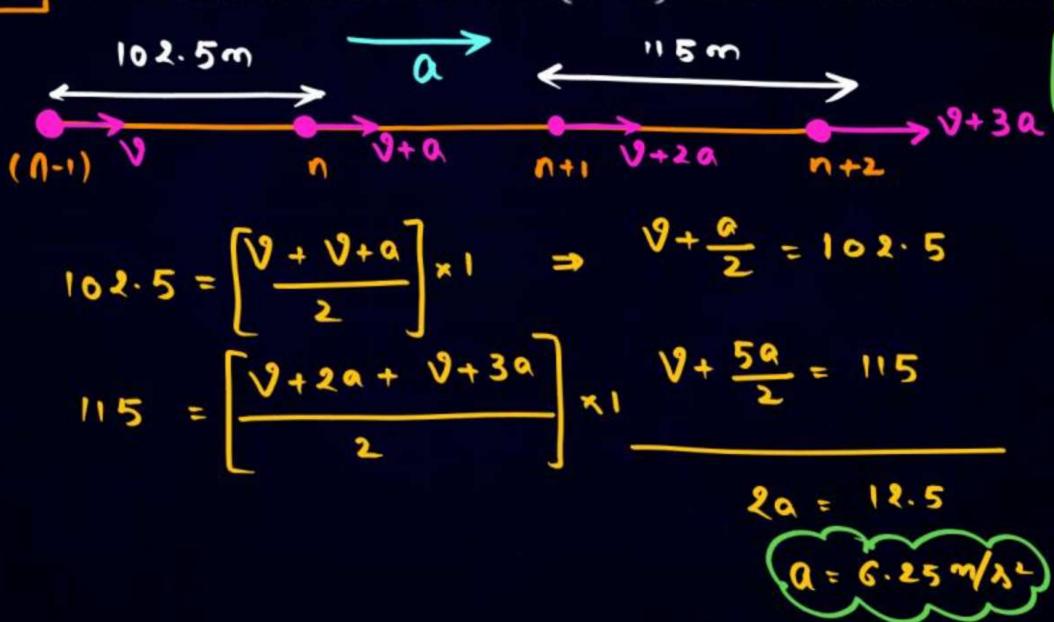
$$\bigcirc$$
 40% \sqrt{gh}

$$\bigcirc$$
 40% $\sqrt{2gh}$

[Atomic Stoucture, Bohimmed

De Broglie wavelength of electron in n = 4.... is π a, Where a is bohr radius

Magnitude of current is zero when voltage is maximum when


[Alternating (whent]

- pure inductor
- pure capacitor/ В
- pure resistance
- combination of inductor and capacitor D

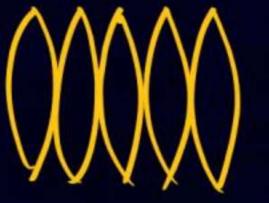
A body travel 102.5 m in nth second and 115.0 m in (n + 2)th sec. find acceleration. kinematics 19

A rod of uniforms mass density of mass Mand length Lbent into a semi circle a mass m is Gravitation

placed on the centre of circle then the gravitational force is

$$f = \frac{GMm}{R^2} \frac{Sin(\frac{9/2}{2})}{\frac{9/2}{R^2}}$$

$$= \frac{GMm}{R^2} \frac{Sin(\frac{3}{2})}{\frac{3}{2}}$$

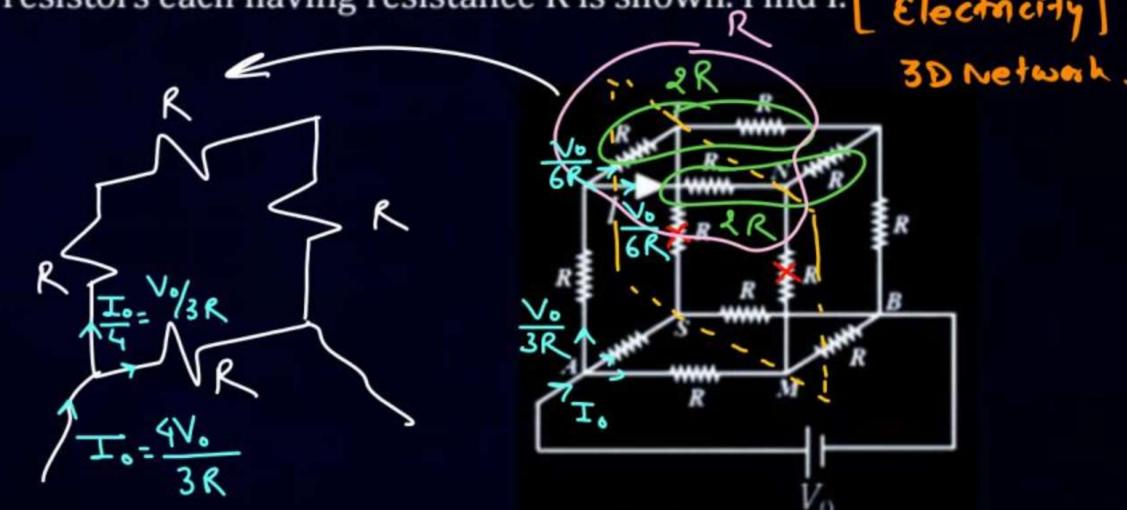

Celsius scale 40 C increase then find the increase in temperature on Fahrenheit scale

Five identical convex lenses are placed one after the other in close contact. The power of this arrangement is 25 D. Then, the focal length of one such lens is



20 D

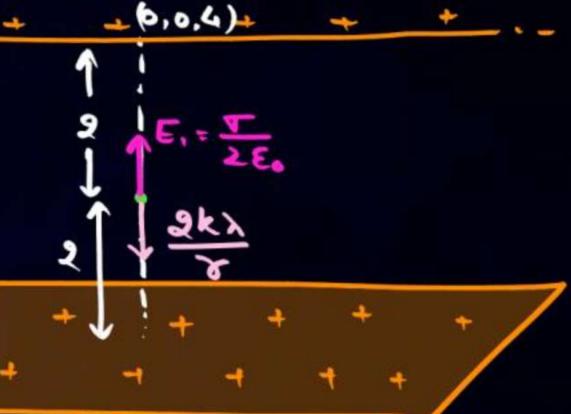
Reg = 3R



JEE MAIN 2024 DISCUSSION

A cubical arrangement of 12 resistors each having resistance R is shown. Find I.

- $V_0/3R$
- $V_0/6R$
- $V_0/4R$
- D $V_0/8R$



Infinite charge sheet in x - y plane of uniform surface charge density σ and infinite long wire of linear charge density λ placed at (0,0,4) and $\sigma = 2\lambda$ then if net electric

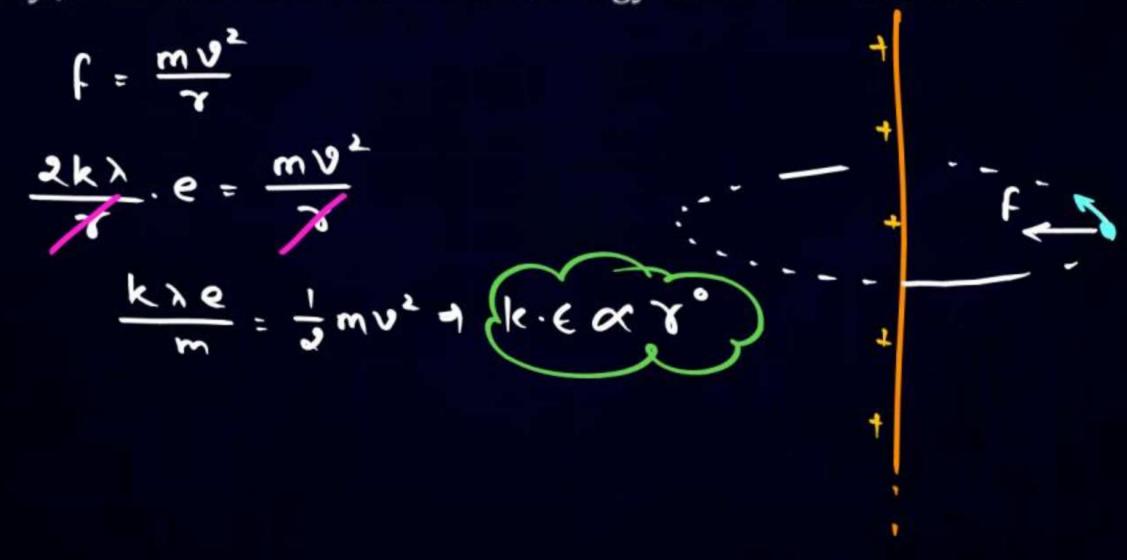
field at (0,0,2) is $\frac{x\lambda}{4\varepsilon_0}$ find the value of x?

$$=\frac{\lambda}{\epsilon_0}-\frac{\lambda}{4\kappa\epsilon_0}$$

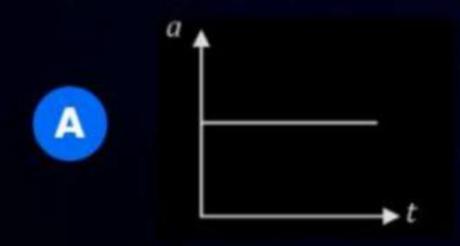
$$= \frac{\lambda}{\varepsilon} \left[1 - \frac{1}{4\kappa} \right] = \frac{\lambda}{4\varepsilon} \left[\frac{4\kappa - 1}{\kappa} \right]$$

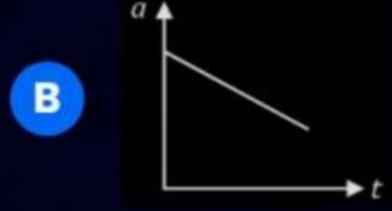
Hollowal - Hz= /2[1+1] *

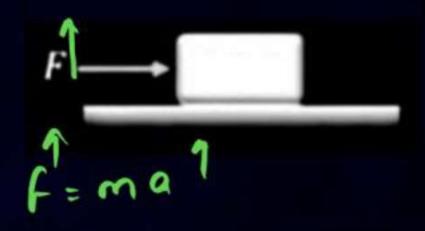
On a given rough incline plane, a solid sphere and a hollow cylinder having the same radius are rolled one by one, with same speed. Ratio of heights attained by solid sphere and hollow cylinder is

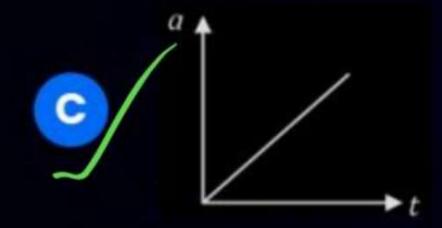

2/5mR2

- A 9/10
- B 3/10
- **C** 7/10
- D 6/10


an electron is moving in a circular path around a long straight wire carrying uniform charge density, then variation of its Kinetic energy with radius of circle is







A wooden block is initially at rest on a smooth surface. Now a horizontal force is applied on the block which increases linearly with time. The acceleration time (a - t) graph for the block would be

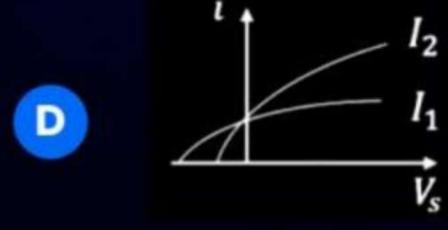


An electron is projected along the axis of solenoid which carries constant current i, the trajectory of electron shall be:

Circular path

- Uniform motion along the axis В
- Uniform accelerated motion in straight line

D Parabolic path



Which graph correctly represents the photo current (i) vs stopping potential (V_s) for the same frequency but different intensity? (here, $I_1 > I_2$)

Consider the network shown:

The equivalent resistance of the network is

The Equation of stationary wave is given as $y = 2A\sin\left(\frac{2\pi}{\lambda}nt\right)\cos\left(\frac{2\pi}{\lambda}x\right)$, then which of the following is not correct

- Dimension of x is [L]
- Dimension of *n* is $[LT^{-1}]$ В
- Dimension of $\frac{n}{\lambda}$ is [T]
- D Dimension of nt is [L]

Because of force (separately) of 3 N& 2 N elongation in spring are found to be 'a' and 'b' unit respectively then (2a - 3b) is

$$3=ka\Rightarrow a=\frac{3}{k}$$

 $2=kb\Rightarrow b:\frac{2}{k}$

The resistance of the platinum of a platinum resistance thermometer at the ice point and Steam point are 8 ohm and 10 ohm respectively. After inserting in a hot bath of temperature 400°C the resistance of platinum wire is **R-8** 400-0

In potentiometer experiment, find the internal resistance of battery when R=10 ohm and the balancing length is 500 m and when R=1 ohm length is 400m?

$$\frac{E}{R+r} = X \times 496$$

$$\frac{E}{R+r} = X \times 496$$

$$\frac{E \times 10}{10+r} = X \times 496$$

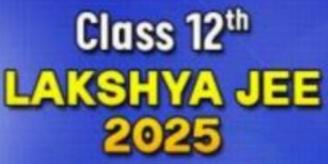
For a moving particle in x-y plane the coordinates of the particle is given

$$X = 2 + 4t$$
, $Y = 2t + 4t^2$

- A particle is moving in a straight line with uniform acceleration
- В particle is moving in a straight line with non uniform acceleration
- C particle is moving in parabolic path with uniform acceleration
- D none of these

For two forces vectors (F_1) and (F_2) the magnitude of F_2 is 3 times F_1 and the resultant magnitude is equal to F_2 then the angle between F_1 and F_2 is $\cos^{-1}(1/n)$ then |n| is?

$$f_{1}^{2} + f_{2}^{2} + 2 f_{1} f_{2} \cos \theta = f_{2}^{2}$$


$$f_{1}^{2} = -2 \times 3 f_{1} \cos \theta$$

$$\cos \theta = -\frac{1}{6}$$

$$\theta = \cos^{-1}(-\frac{1}{6})$$

- ₹5,300/- ₹4,800/-

Free - Arjuna JEE 1.0 + 2.0 2024 + Lakshya JEE AIR 2025 (Recorded)

For JEE 2025 Aspirants

Class 12th LAKSHYA JEE **HINDI 2025**

- £5,300/- ₹3,000/-

FREE - PRAYAS 1.0 HINDI 2024

For JEE 2025 Aspirants

DROPPER **PRAYAS JEE** 2025

- ₹5,300/- ₹4,800/-

For JEE 2025 Aspirants

DROPPER **PRAYAS JEE HINDI 2025**

- ₹5,300/- ₹3,000/-

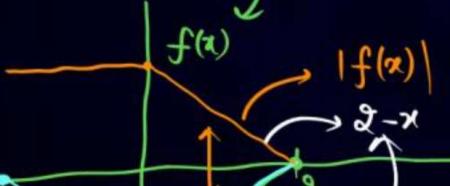
FREE - PRAYAS 1.0 HINDI 2024

For JEE 2025 Aspirants

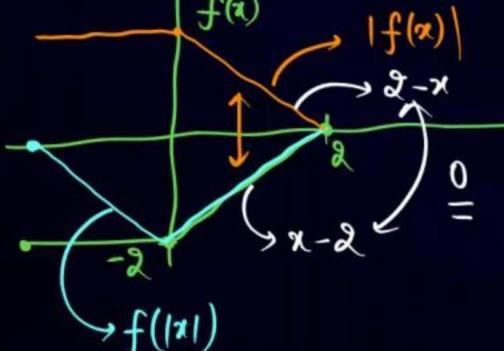
JEEMAN 2024

ATTEMPT - 02, 04th April 24', SHIFT - 01

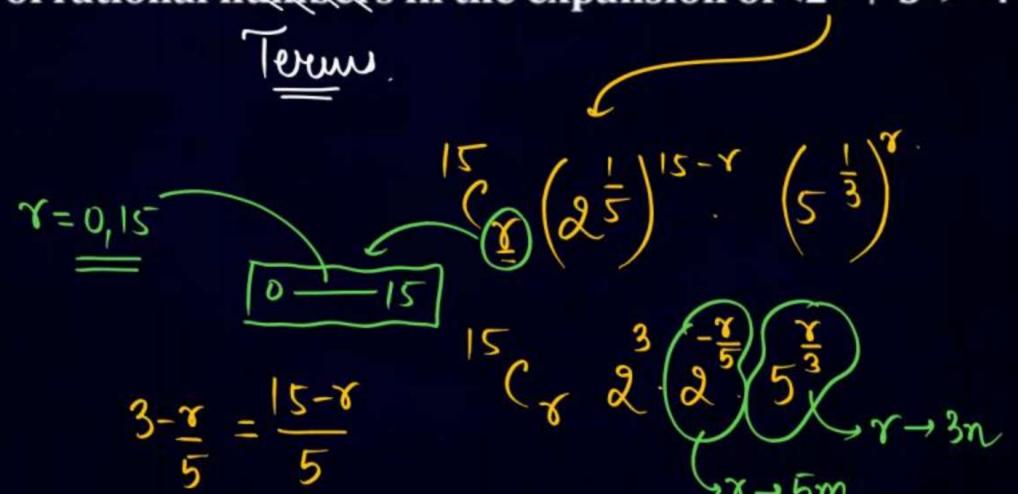
PAPER DISCUSSION


Mathematics

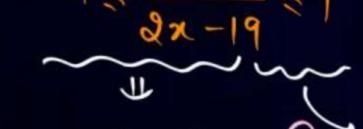
If $f(x) = \begin{cases} x-2, & 0 \le x \le 2 \\ -2, & -2 \le x \le 0 \end{cases}$ and h(x) = f(|x|) + |f(x)|, then $\int_0^k h(x) dx$ is equal to _____. (k > 0)



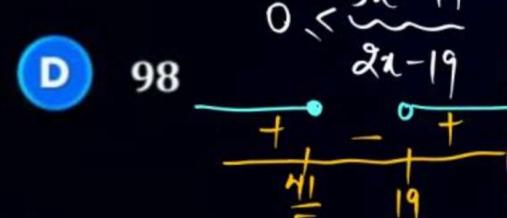
$$\bigcirc$$
 k

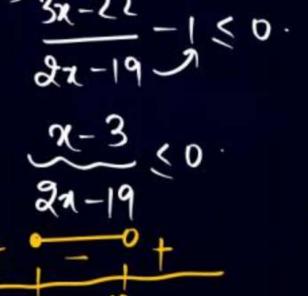

Find the number of rational numbers in the expansion of $(2^{\frac{1}{5}} + 5^{\frac{1}{3}})^{15}$.

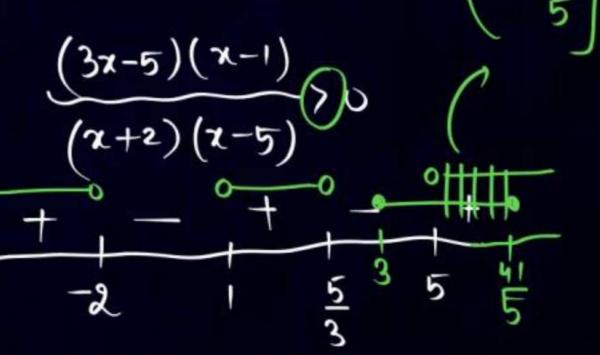
JEE MAIN 2024 DELIVE(*)


PAPER DISCUSSION

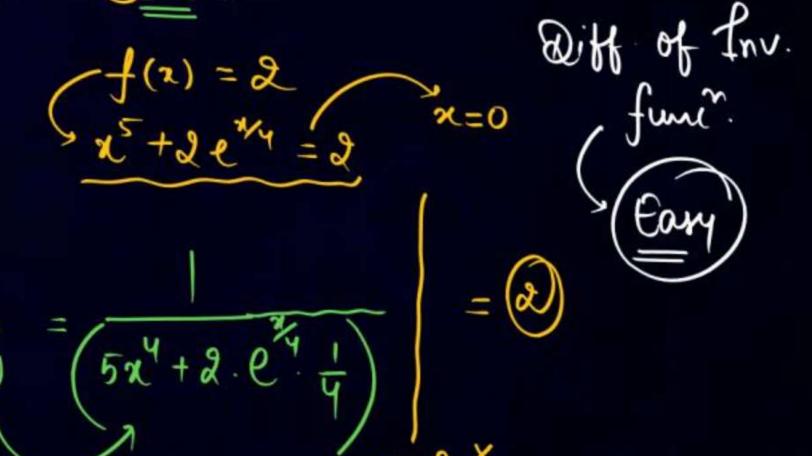
If the domain of the function $\sin^{-1}\left(\frac{3x-22}{2x-19}\right) + \log_e\left(\frac{3x^2-8x+5}{x^2-3x-10}\right)$ is $\left(\alpha,\beta\right]$,


then $3\alpha + 10\beta$ is equal to



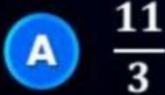


95


$$\frac{3x^2 - 8x + 5}{x^2 - 3x - 10} > 0$$

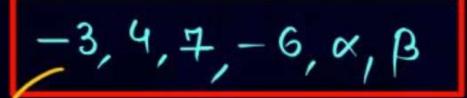
Let $f(x) = x^5 + 2e^{x/4}$ for all $x \in R$. Consider a function g(x) such that $(g \circ f)(x) = x$ for all $x \in R$. Then the value of 8g'(2) is

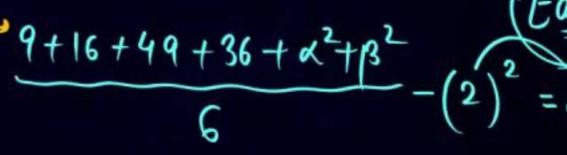
- 16 $\int g'(f(x)).f(x) = 1$
- **c** 8
- **D** 2



Let α , $\beta \in R$. Let the mean and the variance of 6 observations –3, 4, 7, –6, α , β be 2 and 23 respectively. The mean deviation about the mean of these 6

x = 4


observations is


$$\frac{16}{3}$$

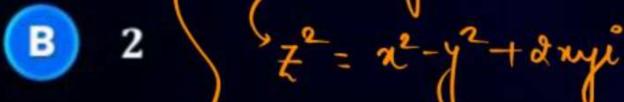
$$\frac{14}{3}$$

$$\frac{\alpha + \alpha + \beta}{\alpha + \beta} = 0$$

$$| Hean(\bar{x}) = 2
 | -2 = 23
 | .$$

$$\alpha^2 + \beta^2 = 27 \times 6 - 110$$

= 169 - 110
 $\alpha^2 + \beta^2 = 52$



$$\alpha = 0$$
, $\beta = +1$

Let α and β be the sum and the product of all the non-zero solutions of the

equation $(\bar{z})^2 + |z| = 0$ $z \in C$. Then $4(\alpha^2 + \beta^2)$ is equal to

$$-2my = 0$$

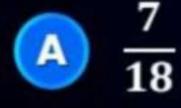
$$y = 0$$

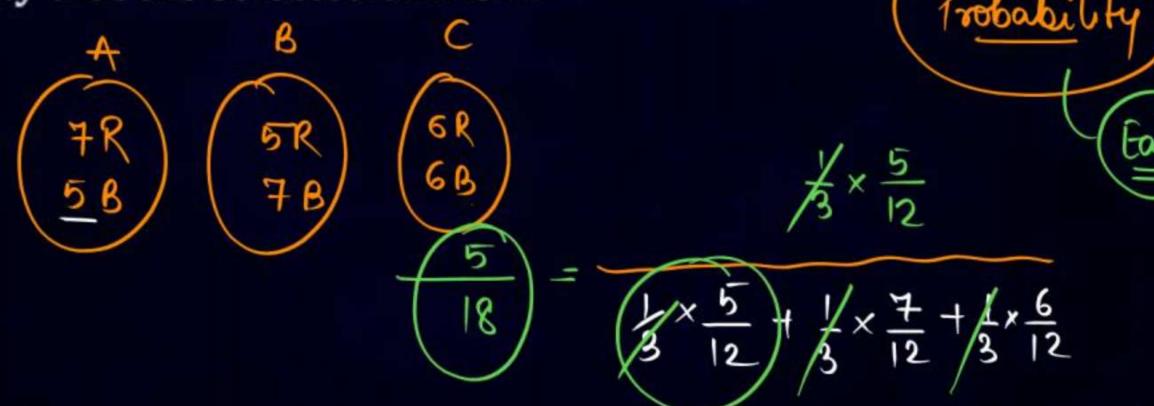
$$y = 0$$

$$y = 0 \Rightarrow |x^2 + |x| = 0$$

$$y=0 =) x^2 + |x| = 0$$

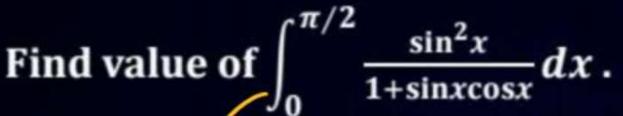
$$(0,1) \rightarrow \tilde{\iota}$$

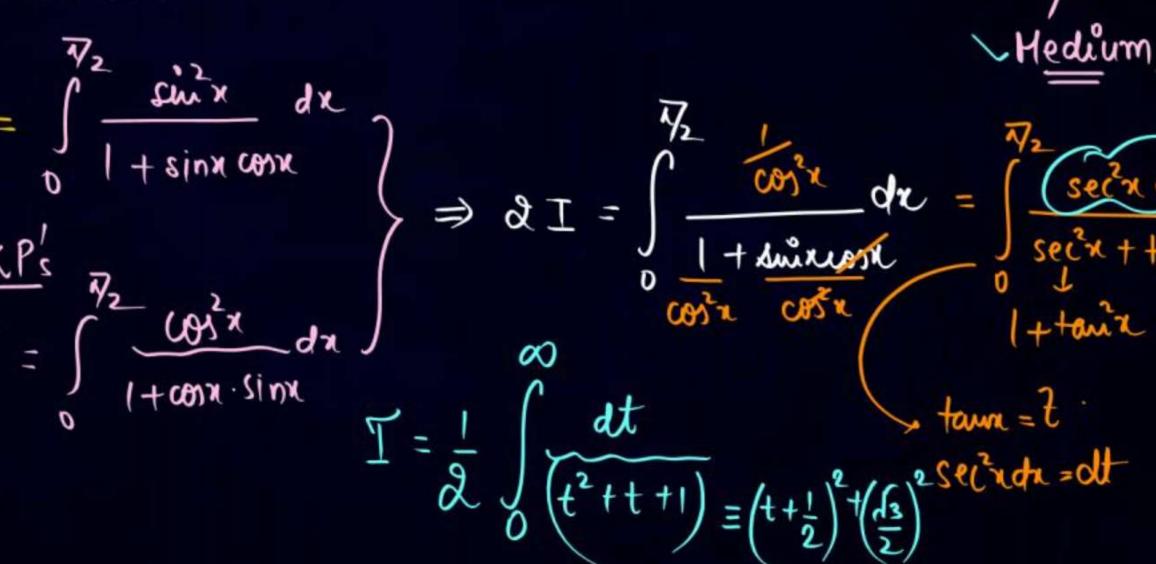

$$(0,-1) \rightarrow -i$$



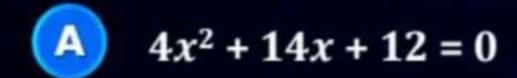
Three urn A, B, C, A has 7 red and 5 black balls, B has 5 red and 7 black balls, C has 6 red and 6 black balls. One urn is selected and black ball is taken out.

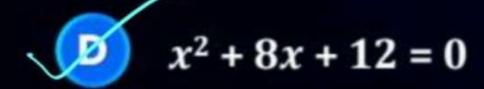
Find probability that the selected urn is A.

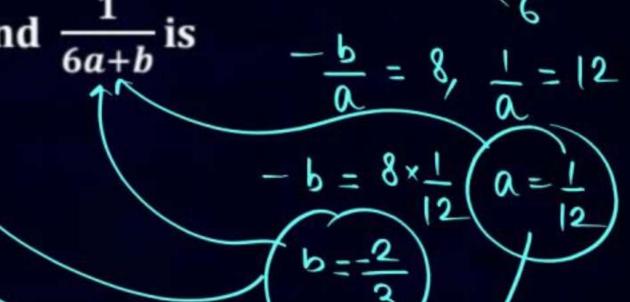




$$T = \int_{-\infty}^{\infty} \frac{\sin^2 x}{1 + \sin x} \cos x$$


$$\frac{\kappa P'_s}{\kappa} = \int_{-\infty}^{\infty} \frac{\sin^2 x}{1 + \sin^2 x} \cos x$$




If 2 and 6 are the roots of the equation $ax^2 + bx + 1 = 0$, then the quadratic equation whose roots are and

$$x^2 + 10x + 16 = 0$$

JEE MAIN 2024 💷 🖪

LIVE (**) PAPER DISCUSSION

Let the sum of the maximum and the minimum values of the function

$$f(x) = \frac{2x^2 - 3x + 8}{2x^2 + 3x + 8}$$
 be $\frac{m}{n}$ where $gcd(m, n) = 1$, then $m + n$ is equal to

Quad.

$$y = \frac{3x^2 + 3x + 8}{2x^2 + 3x + 8} - \frac{6x}{2x^2 + 3x + 8}$$

$$\frac{3x^{2}+3x+8}{2}$$

$$= 1 - \frac{6}{2x+\frac{8}{x}+3}$$

$$\frac{2^{3}}{2^{3}}$$
 $\frac{8}{2^{3}}$
 $\frac{8}{2^{3}}$
 $\frac{8}{2^{3}}$
 $\frac{8}{2^{3}}$
 $\frac{1}{2^{3}}$
 $\frac{1}{2^{3}$

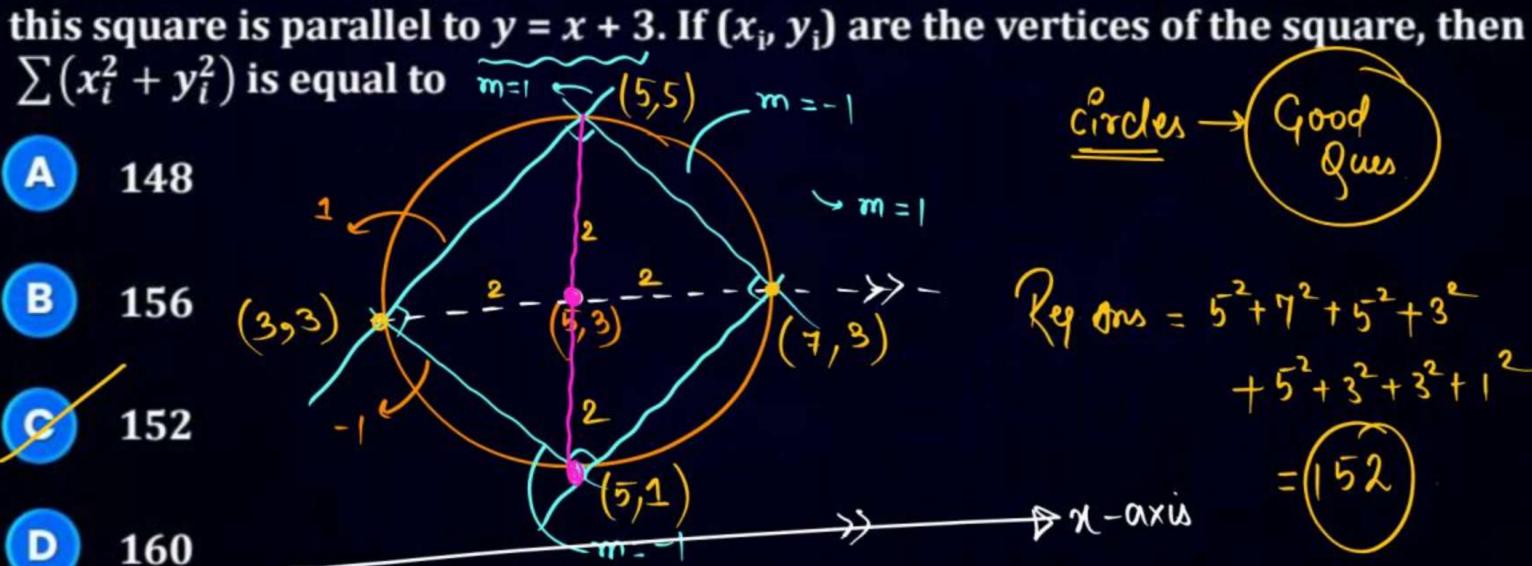
$$3 + 2x + \frac{8}{x} \in (-\infty, -5] \cup [11, \infty)$$

$$(-\frac{1}{5}, 0) \cup (0, \frac{1}{11}) \xrightarrow{x=0} [-\frac{1}{5}, \frac{1}{11}]$$

$$(-\frac{6}{5}, \frac{6}{11}) \xrightarrow{x=0} [-\frac{6}{5}, \frac{6}{11}]$$

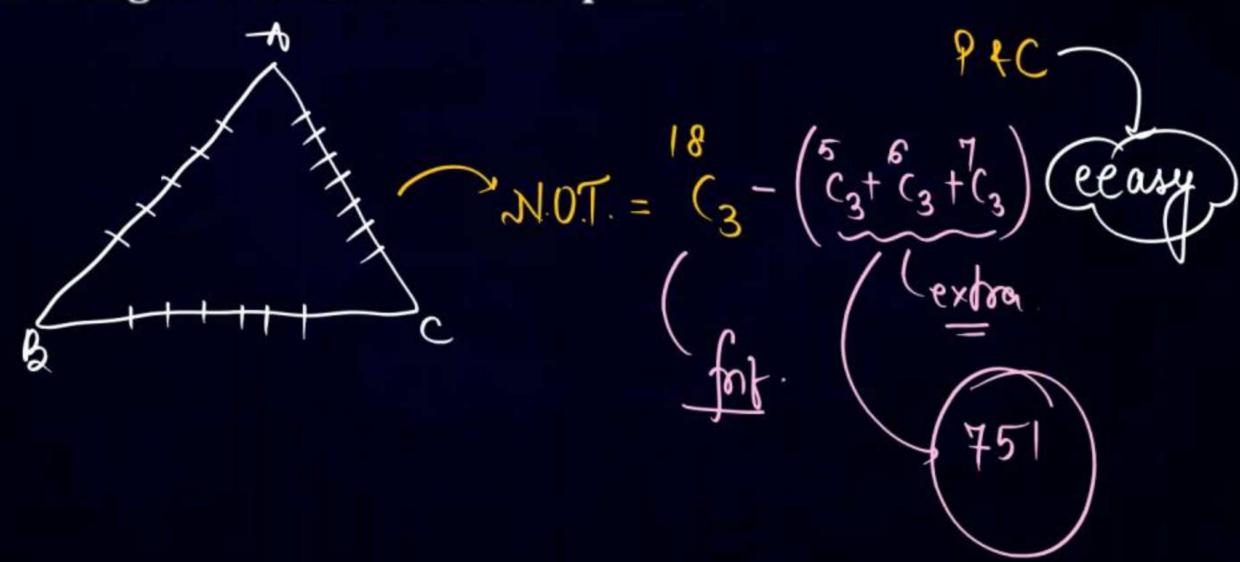
$$(-\frac{6}{5}, \frac{6}{11}) \xrightarrow{x=0} [-\frac{6}{5}, \frac{6}{11}]$$

$$(-\frac{6}{11}, \frac{6}{5}) \xrightarrow{x=0} [-\frac{1}{5}, \frac{1}{11}]$$


$$(-\frac{6}{5}, \frac{6}{11}) \xrightarrow{x=0} [-\frac{1}{5}, \frac{6}{11}]$$

$$(-\frac{6}{5}, \frac{6}{11}) \xrightarrow{x=0} [-\frac{1}{5}, \frac{6}{5}]$$

$$(-\frac{1}{5}, \frac{6}{5}) \xrightarrow{x=0} [-\frac{1}{5}, \frac{6}{5}]$$

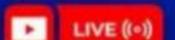

A square is inscribed in the circle $x^2 + y^2 - 10x - 6y + 30 = 0$. One side of

In triangle ABC, 5 points are on side AB, 6 points on BC & 7 points on CA. Find the number of triangles formed with these points.

Find
$$\int_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1+2^x} dx$$

$$I = \int_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1+2^x} dx$$

$$\frac{\pi}{8}$$

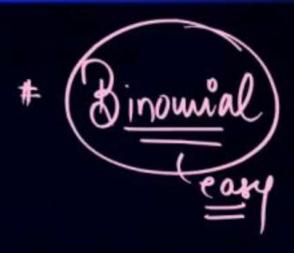

$$\frac{\pi}{2}$$

$$dI = \int_{2\pi}^{\sqrt{2}} \frac{\sin^{2}x \left(-\frac{x^{2}+1}{2}\right)}{dx} dx = 2 \int_{2\pi}^{\sqrt{2}} \sin^{2}x dx$$

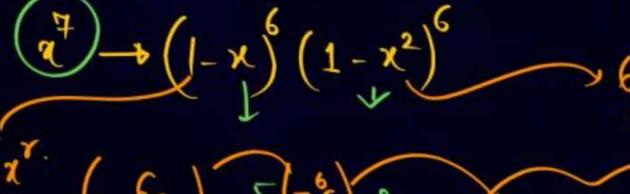
$$= \frac{2\pi}{2\pi} \int_{2\pi}^{\sqrt{2}} \left(1 - \cos^{2}x\right) = \left(\frac{\pi}{2} - 0\right) - \left(0\right)$$

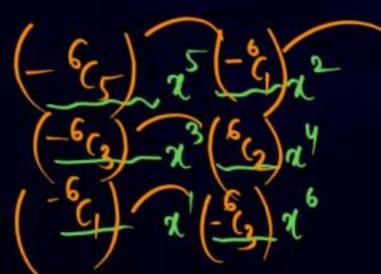
$$dI = \left(\frac{\pi}{2} - 0\right) - \left(0\right)$$

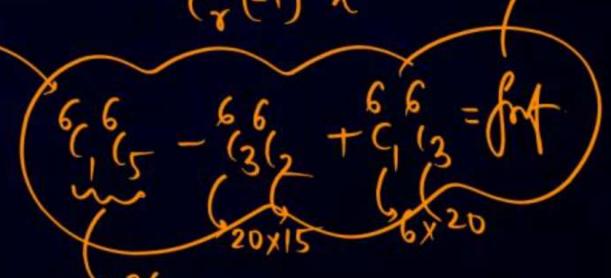
JEE MAIN 2024 DIVE(*)



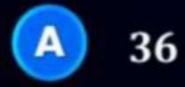
PAPER DISCUSSION

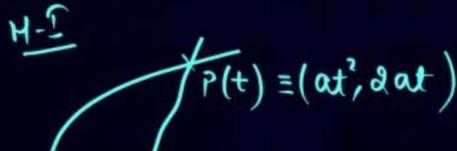



The coefficient of x^7 in $(1-x-x^2+x^3)^6$.

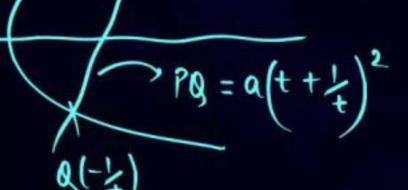

- - 132

- 144
- -132 ₆

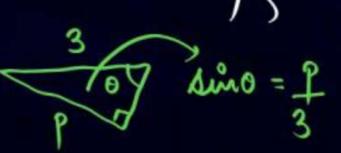







If the length of focal chord of $y^2 = 12x$ is 15 and if the distance of the focal

chord from origin is p, then $10p^2$ is equal to



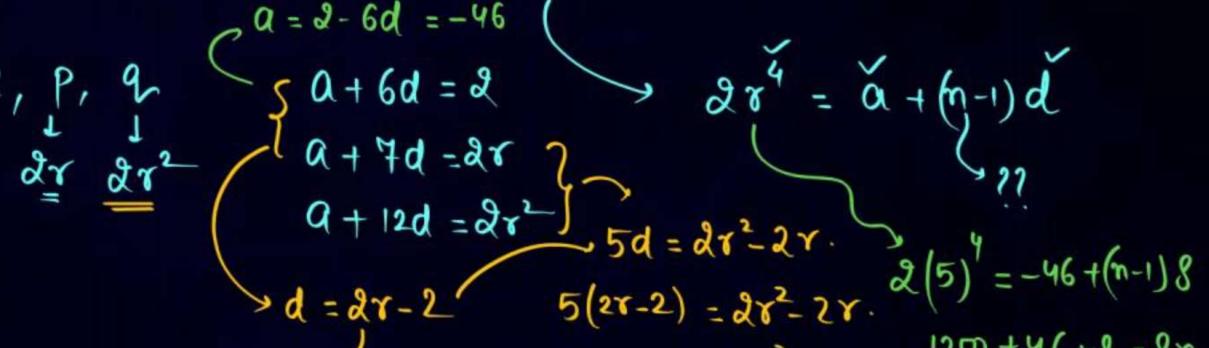
Calculation

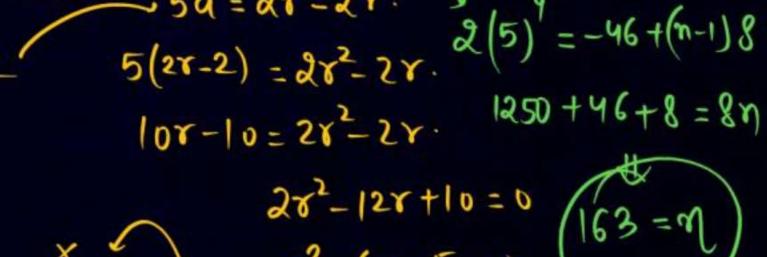
JEE MAIN 2024

PAPER DISCUSSION

If
$$\lim_{x \to 1} \frac{(5x+1)^{1/3} - (x+5)^{1/3}}{(2x+3)^{1/2} - (x+4)^{1/2}} = \frac{m(5)^{1/2}}{n(2n)^{2/3}}$$
. Then $\underbrace{8m}_{+} + 12n$ is
$$\begin{array}{c}
8 & 3 \\
64 + 36 = 100
\end{array}$$

$$\begin{array}{c}
5 & (3) & (3) & (3) & (3) & (4) &$$





Let the first three term 2, p and q with $q \neq 2$ of a G.P. be respectively the 7th, 8^{th} and 13^{th} terms of an A.P. If the 5^{th} term of the G.P. is the n^{th} term of the A.P.,

169

then n is equal to

If
$$f(x) = \begin{cases} \frac{1-\cos x}{x^2}, & x < 0 \end{cases}$$

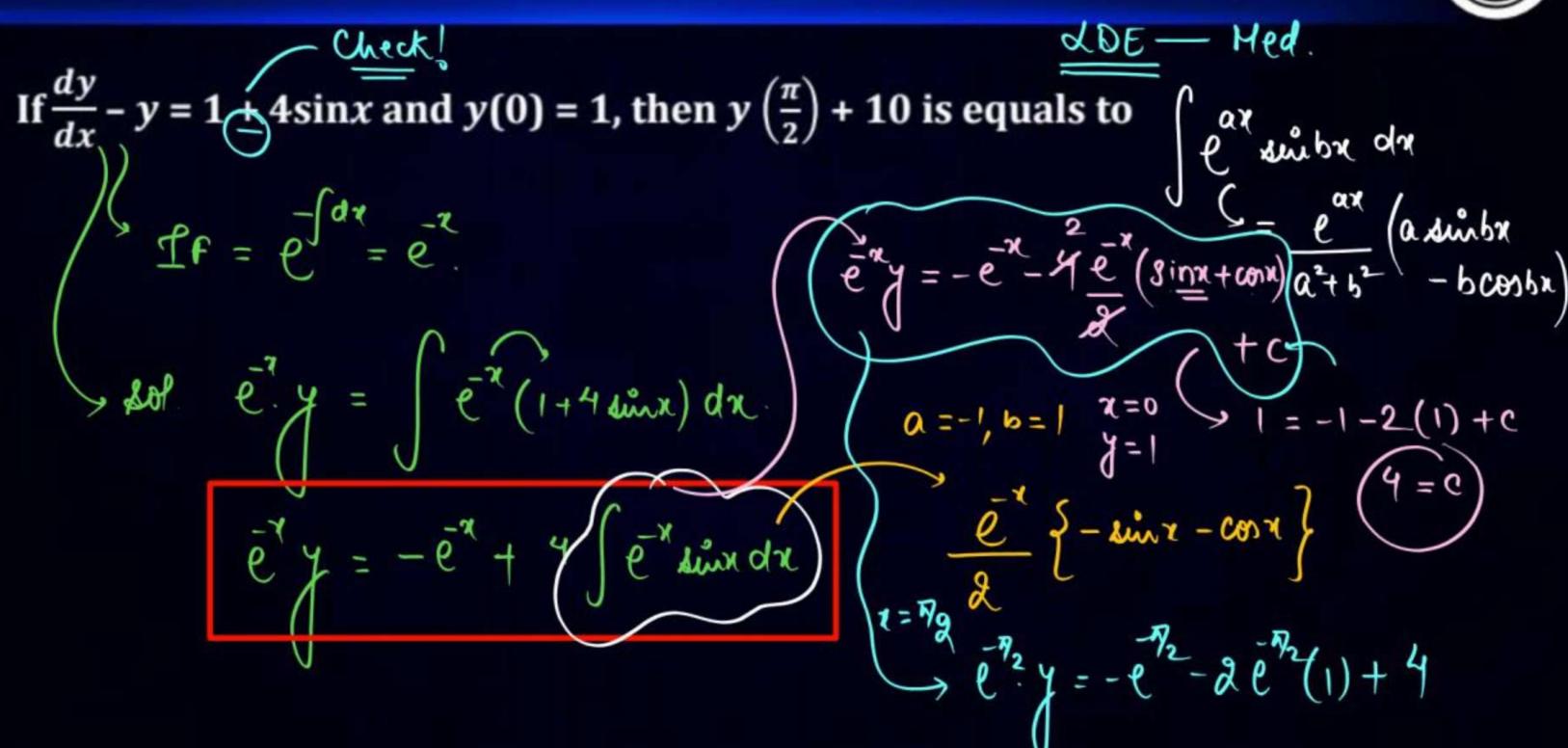
$$x < 0$$

$$x = 0 \text{ is continuous at } x = 0, \text{ then } \alpha^2 + \beta^2 \text{ equals to } \alpha = 0$$

$$x > 0$$

- 10
- dt x+ot

- 13
- 9


$$\frac{dt}{n\to 0} - \left(\frac{1-\cos n}{(\alpha n)^2}\right) \alpha^2 = \left(\frac{\alpha^2}{2}\right)$$

$$\frac{\beta}{\sqrt{3}} = 2\sqrt{2}$$
 $\sqrt{3} = 2\sqrt{2}$
 $\sqrt{2} = 4$
 $\sqrt{3} = 2\sqrt{2}$
 $\sqrt{2} = 4$

JEE MAIN 2024

PAPER DISCUSSION

$$\frac{1}{2} = \int_{0}^{2\pi} e^{-x} \sin x$$

$$= (-\sin x e^{-x}) + \int_{0}^{2\pi} \cos x e^{-x} dx$$

$$= -e^{-x} \sin x + (-\cos x e^{-x}) - \int_{0}^{2\pi} \sin x e^{-x}$$

$$\frac{1}{2} = \frac{e^{-x}}{2} (-\sin x - \cos x)$$

If
$$\frac{dy}{dx} = \frac{2x^2 + 2x + 3}{\frac{x^4 + 2x^3 + 3x^2 + 2x + 2}{x}} & y(-1) = -\frac{\pi}{4}$$
, then y(0) is

$$\frac{\pi}{3}$$

 $(x^2+1)(x^2+2) + 2x(x^2+1)$

$$\frac{\pi}{4}$$

$$(n^2+1)$$
 (n^2+2x+2)

$$\frac{\pi}{2}$$

$$\int_{0}^{1} \frac{dy}{(x+1)^{2}+1^{2}} = \int_{0}^{1} \frac{dx}{(x+1)^{2}+1^{2}} + \int_{0}^{1} \frac{dx$$

$$\frac{\pi}{6}$$

$$\frac{\pi}{6}$$

If \vec{c} is a variable unit vector and \vec{c} makes angle of 45° with \vec{b} and 60° with \vec{a} , where $\vec{b} = \hat{\imath} - \hat{k}$ and $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} - \hat{k}$, then $|\vec{c} + 2\vec{a} - 3\vec{b}|$ is $= |\vec{c}|^2 + 4|\vec{a}|^2 + 9|\vec{b}|^2$

Rand
$$a = 2i + 2j - k$$
, then
$$\begin{vmatrix}
\vec{c} & \vec{d} & | \vec{b} | = 12 \\
|\vec{a}| = 3
\end{vmatrix}$$

$$\begin{vmatrix}
\vec{c} & \vec{a} & | \vec{b} | | \vec{c} | \cos 45^{\circ} \\
|\vec{c} & | \vec{c} \times 1 \times \frac{1}{12} & (|\vec{c}|) \cos 60^{\circ}
\end{vmatrix}$$

$$\begin{vmatrix}
\vec{c} & \vec{c} & | \vec$$

