Series P2QRS/2

रोल नं.				
XIXI 11.				
Roll No				

प्रश्न-पत्र कोड Q.P. Code

55/2/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

	नाट		NOTE
(1)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं।	(I)	Please check that this question paper contains 27 printed pages.
(II)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।	(II)	Please check that this question paper contains 33 questions.
(III)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(III)	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
/11 /\		/n /	
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the serial number of the question in the answer-book before attempting it.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पिंढ्ए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ** ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का
- (iv) **खण्ड ख** में प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **2** अंकों का है ।
- (v) **खण्ड ग** में प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **3** अंकों का
- (vi) **खण्ड घ** में प्रश्न संख्या **29** तथा **30** प्रकरण अध्ययन आधारित प्रश्न हैं । प्रत्येक प्रश्न **4** अंकों का
- (vii) खण्ड ङ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Sections A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. 1 to 16 are Multiple Choice type questions. Each question carries 1 mark.
- (iv) In **Section B** Questions no. **17** to **21** are Very Short Answer type questions. Each question carries **2** marks.
- (v) In **Section C** Questions no. **22** to **28** are Short Answer type questions. Each question carries **3** marks.
- (vi) In **Section D** Questions no. **29** and **30** are case study based questions. Each question carries **4** marks.
- (vii) In **Section E** Questions no. **31** to **33** are Long Answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

1. किसी समान्तर पट्टिका संधारित्र, जिसकी पट्टिकाओं के बीच परावैद्युतांक K=4 का कोई माध्यम है, की धारिता C है। यदि इस माध्यम को हटा दिया जाए, तो संधारित्र की धारिता होगी:

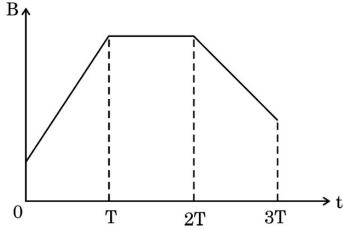
(A) 4C

(B) C

(C) $\frac{C}{4}$

(D) 2C

2. किसी चालक में जिसके सिरों पर विभवान्तर V है इलेक्ट्रॉनों के अपवाह की चाल v_d है। यदि V घटकर $\left(\frac{V}{2}\right)$ हो जाए, तो अपवाह चाल हो जाएगी :


 $(A) \qquad \frac{v_d}{2}$

(B) v_d

(C) 2 v_d

(D) 4 v_d

3. कोई चालक पाश, किसी चुम्बकीय क्षेत्र जो इसके तल के अभिलम्बवत है, में स्थित है। आरेख में दर्शाए अनुसार चुम्बकीय क्षेत्र का परिमाण समय के साथ विचरण करता है। यदि समय $0 \le t \le T$, $T \le t \le 2T$ और $2T \le t \le 3T$ पर प्रेरित वि.वा. बल (emf) के परिमाण क्रमश: ϵ_1 , ϵ_2 और ϵ_3 हैं, तो:

(A) $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$

(B) $\epsilon_2 > \epsilon_3 > \epsilon_1$

(C) $\epsilon_3 > \epsilon_1 > \epsilon_2$

(D) $\epsilon_1 > \epsilon_3 > \epsilon_2$

4. $10~\mathrm{cm}$ त्रिज्या की कोई वृत्ताकार कुण्डली किसी चुम्बकीय क्षेत्र $\overrightarrow{B}=(1\cdot 0~\hat{i}~+0\cdot 5~\hat{j})~\mathrm{mT}$ में इस प्रकार रखी है कि कुण्डली के पृष्ठ के अभिलम्बवत बाहर की ओर एकांक सदिश का मान $(0\cdot 6~\hat{i}~+0\cdot 8~\hat{j})$ है। कुण्डली से संबद्ध चुम्बकीय फ्लक्स है:

(A) $0.314 \mu Wb$

(B) 3·14 μWb

(C) 31·4 μWb

(D) $1.256 \mu Wb$

SECTION A

1. The capacitance of a parallel plate capacitor having a medium of dielectric constant K=4 in between the plates is C. If this medium is removed, then the capacitance of the capacitor becomes :

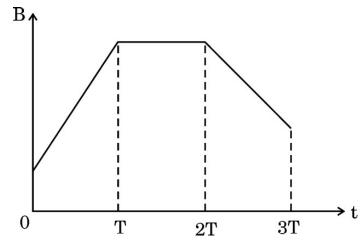
(A) 4C

(B) C

(C) $\frac{C}{4}$

(D) 2C

2. Electrons drift with speed v_d in a conductor with potential difference V across its ends. If V is reduced to $\left(\frac{V}{2}\right)$, their drift speed will become :


 $(A) \qquad \frac{v_d}{2}$

(B) v_d

(C) 2 v_d

(D) 4 v_d

A conducting loop is placed in a magnetic field, normal to its plane. The magnitude of the magnetic field varies with time as shown in the figure. If ϵ_1 , ϵ_2 and ϵ_3 are magnitudes of induced emfs during periods $0 \le t \le T$, $T \le t \le 2T$ and $2T \le t \le 3T$, then:

(A) $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$

(B) $\epsilon_2 > \epsilon_3 > \epsilon_1$

(C) $\varepsilon_3 > \varepsilon_1 > \varepsilon_2$

(D) $\epsilon_1 > \epsilon_3 > \epsilon_2$

4. A circular coil of radius 10 cm is placed in a magnetic field $\overrightarrow{B} = (1.0 \ \hat{i} + 0.5 \ \hat{j})$ mT such that the outward unit vector normal to the surface of the coil is $(0.6 \ \hat{i} + 0.8 \ \hat{j})$. The magnetic flux linked with the coil is:

(A) $0.314 \mu Wb$

(B) $3.14 \mu Wb$

(C) $31.4 \mu Wb$

(D) 1·256 μWb

5. निम्नलिखित में से कौन-सी राशि/राशियाँ किसी आदर्श ट्रान्सफॉर्मर की प्राथमिक और द्वितीयक कुण्डलियों में समान रहती है/हैं ?

विद्युत धारा, वोल्टता, शक्ति, चुम्बकीय फ्लक्स

- (A) केवल विद्युत धारा
- (B) केवल वोल्टता
- (C) केवल शक्ति
- (D) चुम्बकीय फ्लक्स और शक्ति दोनों

6. कोई LCR (L = 2 mH, C = $0.2~\mu F$ तथा R = $30~\Omega$) श्रेणी परिपथ परिवर्ती आवृत्ति के किसी ac स्रोत से संयोजित है । किस आवृत्ति के लिए इस परिपथ की प्रतिबाधा न्यूनतम होगी ?

$$(A) \qquad \frac{10^5}{4\pi} \ Hz$$

(B)
$$\frac{10^5}{2\pi}$$
 Hz

(C)
$$\frac{10^4}{4\pi}$$
 Hz

(D)
$$\frac{10^4}{2\pi}$$
 Hz

7. वेल्डिंग करने वाले व्यक्ति विशेष काँच का चश्मा या मुखौटा पहनते हैं जिसमें उनके नेत्रों की वेल्डिंग की चिंगारी से उत्पन्न विकिरणों से बचाव के लिए काँच की खिड़की होती है । ये विकिरणें होती हैं :

(A) X-किरणें

(B) पराबैंगनी किरणें

(C) अवरक्त तरंगें

(D) गामा किरणें

8. किसी प्रकाश-सुग्राही पृष्ठ का कार्य-फलन 2.00 eV है । 300 nm तरंगदैर्घ्य के विकिरणों द्वारा पृष्ठ से उत्सर्जित इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा है :

(A) 0.54 eV

(B) 1.07 eV

(C) 1.61 eV

(D) 2·14 eV

9. किसी परमाणु के ऊर्जा स्तर A, B और C ऊर्जा के बढ़ते हुए मानों अर्थात् $E_A < E_B < E_C$ के तदनुरूप हैं । मान लीजिए संक्रमण C से B, B से A तथा C से A के तदनुरूप विकिरणों के तरंगदैर्घ्य क्रमश: λ_1 , λ_2 और λ_3 हैं । तब λ_1 , λ_2 और λ_3 के बीच सही संबंध है :

$$(A) \qquad \lambda_1^2 + \lambda_2^2 = \lambda_3^2$$

(B)
$$\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$$

(C)
$$\lambda_1 + \lambda_2 + \lambda_3 = 0$$

(D)
$$\lambda_1 + \lambda_2 = \lambda_3$$

5. Which of the following quantity/quantities remains same in primary and secondary coils of an ideal transformer?

Current, Voltage, Power, Magnetic flux

- (A) Current only
- (B) Voltage only
- (C) Power only
- (D) Magnetic flux and Power both
- A series LCR circuit (L = 2 mH, C = $0.2 \mu F$ and R = 30Ω) is connected to an ac source of variable frequency. The impedance of this circuit will be minimum at a frequency of :

$$(A) \qquad \frac{10^5}{4\pi} \ Hz$$

(B)
$$\frac{10^5}{2\pi}$$
 Hz

$$(C) \qquad \frac{10^4}{4\pi} \,\, Hz$$

$$(D) \qquad \frac{10^4}{2\pi} \ Hz$$

- 7. Welders wear special glass goggles or face masks with glass windows to protect their eyes from radiations produced by welding arcs. These radiations are:
 - (A) X-rays

(B) Ultraviolet rays

(C) Infrared waves

- (D) Gamma rays
- 8. A photosensitive surface has a work function of 2.00 eV. The maximum kinetic energy of electrons ejected from this surface by radiation of wavelength 300 nm is:
 - (A) 0.54 eV

(B) 1·07 eV

(C) 1.61 eV

- (D) 2·14 eV
- 9. Energy levels A, B and C of an atom correspond to increasing values of energy i.e. $E_A < E_B < E_C$. Let λ_1 , λ_2 and λ_3 be the wavelengths of radiation corresponding to the transitions C to B, B to A and C to A, respectively. The correct relation between λ_1 , λ_2 and λ_3 is:
 - $(A) \qquad \lambda_1^2 + \lambda_2^2 = \lambda_3^2$

(B) $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$

(C) $\lambda_1 + \lambda_2 + \lambda_3 = 0$

(D) $\lambda_1 + \lambda_2 = \lambda_3$

10.	गाइगर-मार्सडन के किसी प्रयोग में कोई ऐल्फा कण किसी गोल्ड नाभिक पर गतिज ऊर्जा K रे उपगमन करता है । यह नाभिक से किसी दूरी d पर क्षणिक रुकता है और अपनी दिश उत्क्रमित कर लेता है । तब d किसके अनुक्रमानुपाती है ?								
		$\frac{1}{\sqrt{\mathrm{K}}}$	(B)	$\sqrt{ m K}$					
	(C)	$\frac{1}{K}$	(D)	K					
11.	किसी नै	ौज Si को किसके साथ मादित करने पर n-प्रव	कार का	अर्धचालक Si प्राप्त होता है ?					
	(A)	Al	(B)	В					
	(C)	P	(D)	In					
12.	जब कि	सी p-n संधि डायोड को पश्चदिशिक बायसि	त किया	जाता है, तब :					
	(A)	रोधिका की ऊँचाई घटती है तथा हासी क्षेत्र की चौड़ाई बढ़ जाती है।							
	(B)	रोधिका की ऊँचाई बढ़ती है तथा हासी क्षेत्र की चौड़ाई बढ़ जाती है।							
	(C)	रोधिका की ऊँचाई घटती है तथा हासी क्षेत्र	की चौड़	गई सिकुड़ जाती है।					
	(D)	रोधिका की ऊँचाई बढ़ती है तथा हासी क्षेत्र	की चौड़	प्राई सिकुड़ जाती है ।					
जिनमें	एक को	से 16 अभिकथन (A) और कारण (R) प्रक अभिकथन (A) तथा दूसरे को कारण (R) द्वा (A), (B), (C) और (D) में से चुनकर दीजिए	रा अंकि						
	(A)	अभिकथन (A) और कारण (R) दोनों सही सही व्याख्या करता है।	हैं और	कारण (R), अभिकथन (A) की					
	(B)	अभिकथन (A) और कारण (R) दोनों सही सही व्याख्या <i>नहीं</i> करता है।	हैं, परन्तु	ुकारण (R), अभिकथन (A) की					
	(C)	अभिकथन (A) सही है, परन्तु कारण (R) ग़	लत है ।						
	(D)	अभिकथन (A) ग़लत है तथा कारण (R) भी	ग़लत हैं	2 1					
13.	अभिक	थन (A): किसी संयुक्त सूक्ष्मदर्शी की आवर्ध	न क्षमता	ऋणात्मक होती है ।					
	कारण ((R): बिम्ब के सापेक्ष अंतिम प्रतिबिम्ब	सीधा ब	नता है ।					

8

10.	An	alpha	particle	approaches	a	gold	nucleus	in	Geige	r-Mars	den
	exp	eriment	with kin	etic energy F	I . I	t mom	nentarily	stops	s at a	distanc	e d
	fron	n the nu	icleus and	l reverses its	dir	ection.	Then d i	s pro	portio	nal to :	

(A)
$$\frac{1}{\sqrt{K}}$$

(B)
$$\sqrt{K}$$

(C)
$$\frac{1}{K}$$

11. An n-type semiconducting Si is obtained by doping intrinsic Si with:

(A) Al

(B) B

(C) P

(D) In

12. When a p-n junction diode is subjected to reverse biasing :

- (A) the barrier height decreases and the depletion region widens.
- (B) the barrier height increases and the depletion region widens.
- (C) the barrier height decreases and the depletion region shrinks.
- (D) the barrier height increases and the depletion region shrinks.

Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false and Reason (R) is also false.

13. Assertion (A): The magnifying power of a compound microscope is negative.

Reason(R): The final image formed is erect with respect to the object.

- 14. अभिकथन (A): कोई इलेक्ट्रॉन और कोई प्रोटॉन समान संवेग \overrightarrow{p} से किसी चुम्बकीय क्षेत्र \overrightarrow{B} में इस प्रकार प्रवेश करते हैं कि $\overrightarrow{p} \perp \overrightarrow{B}$ है । तब ये दोनों समान त्रिज्या के वृत्ताकार पथ पर गमन करते हैं ।
 - कारण (R) : चुम्बकीय क्षेत्र \overrightarrow{B} में गमन करने वाले द्रव्यमान m और आवेश q के आवेशित कण के वृत्ताकार पथ की त्रिज्या, $r=\frac{mv}{qB}$ द्वारा दर्शायी जाती है।
- 15. अभिकथन (A): लेंज़ का नियम ऊर्जा संरक्षण नियम का ही एक निष्कर्ष है। कारण (R): किसी आदर्श प्रेरक में शक्ति क्षय नहीं होता है।
- 16. अभिकथन (A): आपितत विकिरणों की दी गयी आवृत्ति और त्वरक विभव के लिए प्रकाश-विद्युत धारा के मान में आपितत विकिरणों की तीव्रता में वृद्धि के साथ वृद्धि होती है।
 - कारण (R): आपितत विकिरणों की तीव्रता में वृद्धि के फलस्वरूप प्रति सेकण्ड उत्सर्जित होने वाले प्रकाशिक-इलेक्ट्रॉनों की संख्या में वृद्धि होती है और इस प्रकार प्रकाश-विद्युत धारा में वृद्धि हो जाती है।

खण्ड ख

- 17. (क) "किसी दिए गए चालक में कुछ ऐम्पियर परिसर की धाराओं के लिए इलेक्ट्रॉन की अपवाह चाल केवल कुछ mm/s ही होती है।" फिर परिपथ बन्द करने पर तुरन्त ही उसी क्षण धारा किस प्रकार स्थापित हो जाती है ? व्याख्या कीजिए।
 - (ख) 'V = IR ओम के नियम का कोई कथन है' यह सही नहीं है। व्याख्या कीजिए।
- 18. किसी उत्तल लेंस (n = 1.52) की वायु में फोकस दूरी 15.0~cm है । अपवर्तनांक 1.65 के द्रव में डुबोने पर इस लेंस की फोकस दूरी ज्ञात कीजिए । लेंस की प्रकृति क्या होगी ?
- 19. (क) दो कलासंबद्ध प्रकाश स्रोतों से निकलने वाली तरंगें, जिनमें प्रत्येक का आयाम 'a' तथा आवृत्ति 'ω' है, किसी बिन्दु पर अध्यारोपण करती हैं । यदि इन दोनों तरंगों के बीच कलान्तर φ है, तो इस बिन्दु पर परिणामी तीव्रता के लिए व्यंजक व्युत्पन्न कीजिए ।

अथवा

(ख) यंग के द्विझिरी प्रयोग में व्यतिकरण पैटर्न पर क्या प्रभाव होगा जब (i) स्रोत झिरी को झिरियों के तल के निकट लाया जाए, और (ii) झिरियों के बीच पृथक्कन में वृद्धि की जाए ? अपने उत्तरों की पुष्टि कीजिए।

12-55/2/2

2

2

2

- 14. Assertion (A): An electron and a proton enter with the same momentum \overrightarrow{p} in a magnetic field \overrightarrow{B} such that $\overrightarrow{p} \perp \overrightarrow{B}$. Then both describe a circular path of the same radius.
 - Reason (R): The radius of the circular path described by the charged particle (charge q, mass m) moving in the magnetic field \overrightarrow{B} is given by $r = \frac{mv}{qB}$.
- **15.** Assertion (A): Lenz's law is a consequence of the law of conservation of energy.
 - Reason(R): There is no power loss in an ideal inductor.
- **16.** Assertion (A): Photoelectric current increases with an increase in intensity of incident radiation, for a given frequency of incident radiation and the accelerating potential.
 - Reason (R): Increase in the intensity of incident radiation results in an increase in the number of photoelectrons emitted per second and hence an increase in the photocurrent.

SECTION B

2

2

2

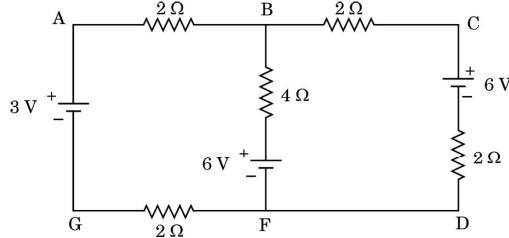
2

- 17. (a) "The electron drift speed is only a few mm/s for currents in the range of a few amperes for a given conductor." How then is current established almost the instant a circuit is closed? Explain.
 - (b) 'V = IR is a statement of Ohm's Law' is not true. Explain.
- 18. A convex lens (n = 1.52) has a focal length of 15.0 cm in air. Find its focal length when it is immersed in liquid of refractive index 1.65. What will be the nature of the lens?
- 19. (a) Two waves, each of amplitude 'a' and frequency ' ω ' emanating from two coherent sources of light superpose at a point. If the phase difference between the two waves is ϕ , obtain an expression for the resultant intensity at that point.

OR

(b) What is the effect on the interference pattern in Young's double-slit experiment when (i) the source slit is moved closer to the plane of the slits, and (ii) the separation between the two slits is increased? Justify your answers.

12-55/2/2 11 P.T.O.


20. निम्नलिखित नाभिकीय अभिक्रिया में निर्मुक्त/अवशोषित ऊर्जा परिकलित कीजिए :

$$^{12}_{6}\text{C} + ^{12}_{6}\text{C} \longrightarrow ^{20}_{10}\text{Ne} + ^{4}_{2}\text{He}$$
 दिया गया है : $m\binom{12}{6}\text{C} = 12\cdot0000000 \text{ u}$ $m\binom{20}{10}\text{Ne} = 19\cdot992439 \text{ u}$ $m\binom{4}{2}\text{He} = 4\cdot002603 \text{ u}$ $1 \text{ u} = 931 \text{ MeV/c}^2$

21. किसी नैज अर्धचालक के ऊर्जा अन्तराल में क्या प्रभावी अन्तर होता है जब उसे अपिमश्रित किया जाता है: (क) त्रिसंयोजी अपद्रव्य के साथ, और (ख) पंचसंयोजी अपद्रव्य के साथ? प्रत्येक स्थिति में अपने उत्तर की पुष्टि कीजिए।

खण्ड ग

- 22. (क) किसी माध्यम में विद्युत-चुम्बकीय तरंग की चाल किन कारकों पर निर्भर करती है ?
 - (ख) कोई विद्युत-चुम्बकीय तरंग किस प्रकार उत्पन्न की जाती है ?
 - (ग) z-अक्ष के अनुदिश संचरण करती किसी विद्युत-चुम्बकीय तरंग का व्यवस्था आरेख विद्युत और चुम्बकीय क्षेत्रों को चित्रित करते हुए खींचिए ।
- 23. आरेख में तीन आदर्श बैटरियों के साथ विद्युत परिपथ दर्शाया गया है। इसकी शाखाओं AG, BF और CD में विद्युत धाराओं के परिमाण और दिशाएँ ज्ञात कीजिए।

2

3

3

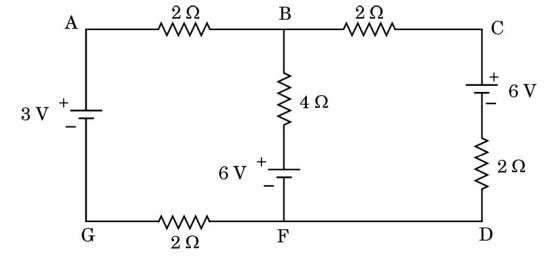
2

20. Calculate the energy released/absorbed in the following nuclear reaction :

$$^{12}_{6}C + ^{12}_{6}C \longrightarrow ^{20}_{10}Ne + ^{4}_{2}He$$
Given: $m\binom{12}{6}C = 12\cdot0000000 \text{ u}$

$$m\binom{20}{10}Ne = 19\cdot992439 \text{ u}$$

$$m\binom{4}{2}He = 4\cdot002603 \text{ u}$$


$$1 \text{ u} = 931 \text{ MeV/c}^{2}$$

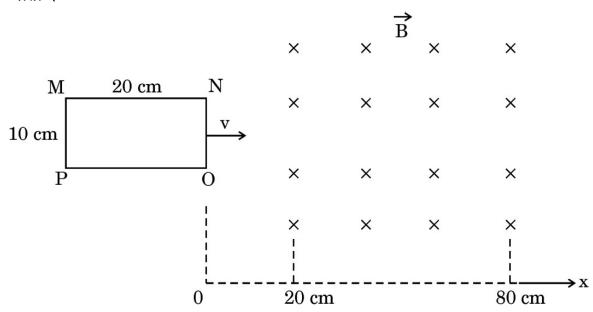
21. How does the energy gap of an intrinsic semiconductor effectively change when doped with a (a) trivalent impurity, and (b) pentavalent impurity?

Justify your answer in each case.

SECTION C

- **22.** (a) On what factors does the speed of an electromagnetic wave in a medium depend?
 - (b) How is an electromagnetic wave produced?
 - (c) Sketch a schematic diagram depicting the electric and magnetic fields for an electromagnetic wave propagating along z-axis.
- 23. The figure shows a circuit with three ideal batteries. Find the magnitude and direction of currents in the branches AG, BF and CD.

2


3

3

2

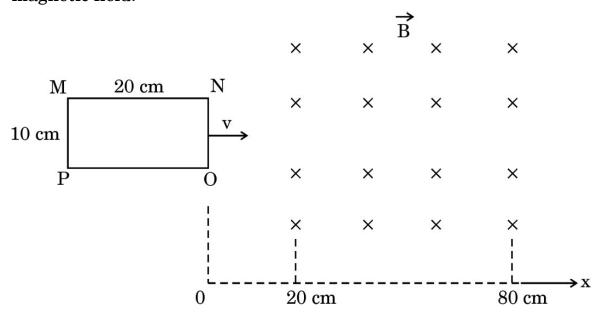
12-55/2/2 13 P.T.O.

24. आरेख में दर्शाए अनुसार $10~{\rm cm}\times 20~{\rm cm}$ भुजाओं का कोई आयताकार पाश एकसमान चुम्बकीय क्षेत्र $|\overrightarrow{B}|=5~{\rm mT}$ के प्रदेश के बाहर रखा है । इस पाश को $5~{\rm cm/s}$ के वेग से तब तक गित कराई जाती है जब तक कि यह पूर्णत: चुम्बकीय क्षेत्र से बाहर नहीं चला जाता ।

- (क) $x (0 \le x \le 100 \text{ cm})$ के साथ चुम्बकीय फ्लक्स ϕ के विचरण को दर्शाने के लिए ग्राफ खींचिए।
- (ख) पाश से संबद्ध चुम्बकीय फ्लक्स का अधिकतम मान ज्ञात कीजिए ।
- (ग) इस पाश को चुम्बकीय क्षेत्र से होकर गित कराने के लिए क्या किसी बाह्य कार्य की आवश्यकता होगी ?

3

3


3

25. (क) दो लम्बे सीधे समान्तर चालकों से विपरीत दिशाओं में स्थायी धाराएँ प्रवाहित हो रही हैं। इन दोनों चालकों के बीच अन्योन्य बल की प्रकृति की व्याख्या कीजिए। दोनों चालकों के बीच बल के परिमाण के लिए व्यंजक प्राप्त कीजिए और इस प्रकार एक ऐम्पियर की परिभाषा दीजिए।

अथवा

(ख) किसी एकसमान चुम्बकीय क्षेत्र \overrightarrow{B} में स्थित किसी धारावाही पाश पर कार्यरत बल-आधूर्ण $\overrightarrow{\tau}$ के लिए व्यंजक प्राप्त कीजिए । आवश्यक आरेख भी खींचिए ।

24. A rectangular loop of sides $10 \text{ cm} \times 20 \text{ cm}$ is kept outside a region of uniform magnetic field $|\overrightarrow{B}| = 5 \text{ mT}$ as shown in the figure. The loop is moved with the velocity of 5 cm/s till it goes completely out of the magnetic field.

- (a) Plot a graph showing variation of the magnetic flux ϕ with $x \ (0 \le x \le 100 \ cm)$.
- (b) Find the maximum value of magnetic flux linked with the loop.
- (c) Will an external work be required to be done to move the loop through the magnetic field?

3

3

3

25. (a) Two long, straight, parallel conductors carry steady currents in opposite directions. Explain the nature of the force of interaction between them. Obtain an expression for the magnitude of the force between the two conductors. Hence define one ampere.

OR

(b) Obtain an expression for the torque $\overrightarrow{\tau}$ acting on a current carrying loop in a uniform magnetic field \overrightarrow{B} . Draw the necessary diagram.

12-55/2/2 15 P.T.O.

- 26. (क) द्रव्य की तरंग प्रकृति के लिए दे ब्रॉग्ली परिकल्पना की संक्षेप में व्याख्या कीजिए।
 - (ख) किसी प्रोटॉन और किसी ऐल्फा कण से संबद्ध दे ब्रॉग्ली तरंगदैर्घ्य का अनुपात ज्ञात कीजिए जब
 - (i) दोनों को समान विभवान्तर द्वारा विराम से त्वरित किया गया है, तथा
 - (ii) दोनों समान गतिज ऊर्जा से गतिमान हैं।

3

3

3

1

- 27. (क) किसी नाभिक में न्यूक्लिऑनों के युगल की स्थितिज ऊर्जा को उनके पृथक्कन के फलन के रूप में चित्रित करते हुए ग्राफ खींचिए।
 - (ख) उन प्रदेशों को पहचानिए जहाँ नाभिकीय बल (i) आकर्षी, तथा (ii) प्रतिकर्षी है । अपने उत्तर की पुष्टि कीजिए।
- 28. परिपथ आरेख की सहायता से किसी p-n संधि डायोड की पूर्ण तरंग दिष्टकारी के रूप में कार्यविधि की व्याख्या कीजिए। इसके निवेशी और निर्गत तरंगरूप भी खींचिए।

खण्ड घ प्रकरण अध्ययन आधारित प्रश्न

प्रश्न संख्या **29** तथा **30** प्रकरण अध्ययन आधारित प्रश्न हैं । निम्नलिखित अनुच्छेदों को पढ़ कर दिए गए प्रश्नों के उत्तर दीजिए ।

- 29. जब कोई प्रकाश की किरण सघन माध्यम से विरल माध्यम में संचरण करती है, तो वह अभिलम्ब से दूर मुड़ जाती है। जब आपतन कोण में वृद्धि करते हैं, तो अपवर्तित किरण अभिलम्ब से और अधिक मुड़ती जाती है। सघन माध्यम में किसी विशेष आपतन कोण के लिए अपवर्तित किरण दोनों माध्यमों के अन्तरापृष्ठ को ठीक-ठीक स्पर्श करती है। इस आपतन कोण को सम्मिलित माध्यमों के युगल (जोड़े) के लिए क्रांतिक कोण कहते हैं।
 - (i) क्रांतिक कोण पर आपतन करने वाली किरण के लिए परावर्तन कोण का मान होता है:
 - (A) 0°

(B) $< 90^{\circ}$

(C) $> 90^{\circ}$

- (D) 90°
- (ii) जल $\left(n = \frac{4}{3}\right)$ में गमन करती कोई 600 nm तरंगदैर्घ्य की प्रकाश किरण जल-वायु अन्तरापृष्ठ पर क्रांतिक कोण से कम कोण पर आपतन करती है । अपवर्तित किरण से संबद्ध तरंगदैर्घ्य है :
 - (A) 400 nm

(B) 450 nm

(C) 600 nm

(D) 800 nm

- **26.** (a) Briefly explain de Broglie hypothesis for wave nature of matter.
 - (b) Find the ratio of de Broglie wavelength associated with a proton and an alpha particle when both are
 - (i) accelerated from rest through the same potential difference, and

3

3

3

1

1

(ii) moving with the same kinetic energy.

27. (a) Plot a graph depicting potential energy of a pair of nucleons in a nucleus as a function of their separation.

- (b) Identify the regions where the nuclear force is (i) attractive, and (ii) repulsive. Justify your answer.
- **28.** With the help of a circuit diagram, explain the working of a p-n junction diode as a full wave rectifier. Draw its input and output waveforms.

SECTION D Case Study Based Questions

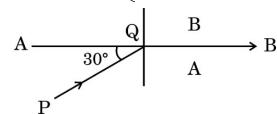
Questions number 29 and 30 are case study based questions. Read the following paragraphs and answer the questions that follow.

- 29. When a ray of light propagates from a denser medium to a rarer medium, it bends away from the normal. When the incident angle is increased, the refracted ray deviates more from the normal. For a particular angle of incidence in the denser medium, the refracted ray just grazes the interface of the two surfaces. This angle of incidence is called the critical angle for the pair of media involved.
 - (i) For a ray incident at the critical angle, the angle of reflection is:
 - (A) 0°

(B) < 90°

(C) $> 90^{\circ}$

- (D) 90°
- (ii) A ray of light of wavelength 600 nm is incident in water $\left(n = \frac{4}{3}\right)$ on the water-air interface at an angle less than the critical angle. The wavelength associated with the refracted ray is:
 - (A) 400 nm

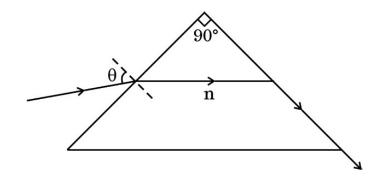

(B) 450 nm

(C) 600 nm

(D) 800 nm

12-55/2/2 17 P.T.O.

(क) आरेख में दो माध्यमों A और B के बीच अन्तरापृष्ठ AB को दर्शाया गया (iii) है। सघन माध्यम A में, आपितत किरण PQ क्षैतिज से 30° का कोण बनाती है । अपवर्तित किरण अन्तरापृष्ठ के समान्तर है । माध्यम A के सापेक्ष माध्यम B का अपवर्तनांक है:

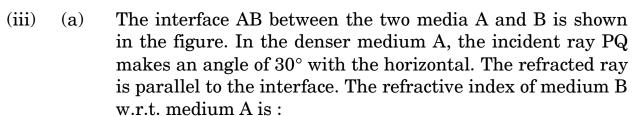


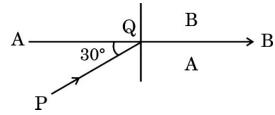
(B) $\frac{\sqrt{5}}{2}$ (D) $\frac{2}{\sqrt{3}}$

(C)

- दो माध्यम A और B किसी समतल सीमा द्वारा पृथक्कित हैं। A और B (ख) माध्यम में प्रकाश की चाल क्रमश: $2 \times 10^8 \text{ ms}^{-1}$ और $2.5 \times 10^8 \text{ ms}^{-1}$ है। माध्यम A से माध्यम B में गमन करने वाली प्रकाश की किरण के लिए क्रांतिक कोण है:
 - (A) $\sin^{-1}\frac{1}{2}$
- (B) $\sin^{-1} \frac{4}{5}$ (D) $\sin^{-1} \frac{2}{5}$
- (C) $\sin^{-1}\frac{3}{5}$

- आरेख में किसी त्रिभुजाकार प्रिज़्म से गमन करती किसी प्रकाश की किरण का पथ (iv) दर्शाया गया है । इस परिघटना में कोण θ का मान है :




 $(A) \quad \sin^{-1} \sqrt{n^2 - 1}$

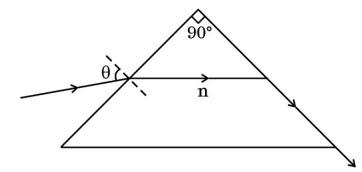
- $\sin^{-1}(n^2-1)$ (B)
- $(C) \quad \sin^{-1} \left\lceil \frac{1}{\sqrt{n^2 1}} \right\rceil$
- (D) $\sin^{-1} \left\lceil \frac{1}{(n^2-1)} \right\rceil$

1

1

(A)

(B)


(C)

(D)

OR

- (b) Two media A and B are separated by a plane boundary. The speed of light in medium A and B is $2\times10^8~\text{ms}^{-1}$ and 2.5×10^8 ms⁻¹ respectively. The critical angle for a ray of light going from medium A to medium B is:
 - (A) $\sin^{-1}\frac{1}{2}$ (B) $\sin^{-1}\frac{4}{5}$ (C) $\sin^{-1}\frac{3}{5}$ (D) $\sin^{-1}\frac{2}{5}$
 - (C) $\sin^{-1}\frac{3}{5}$

- The figure shows the path of a light ray through a triangular prism. (iv)In this phenomenon, the angle θ is given by : 1

 $(A) \qquad \sin^{-1} \, \sqrt{n^2-1}$

- $\sin^{-1}(n^2-1)$ (B)
- (C) $\sin^{-1}\left[\frac{1}{\sqrt{n^2-1}}\right]$
- (D) $\sin^{-1} \left[\frac{1}{(n^2 1)} \right]$

1

30. जब किसी सेल के टर्मिनलों को किसी R प्रतिरोध के चालक से संयोजित किया जाता है, तो परिपथ से विद्युत धारा प्रवाहित होती है। सेल का विद्युत-अपघट्य भी धारा के पथ में चालक की भाँति कुछ प्रतिरोध लगाता है। विद्युत-अपघट्य द्वारा लगाए गए इस प्रतिरोध को सेल का आन्तरिक प्रतिरोध (r) कहते हैं। यह प्रतिरोध विद्युत-अपघट्य की प्रकृति, विद्युत-अपघट्य में इलेक्ट्रोडों के डूबे हुए क्षेत्रफल तथा ताप पर निर्भर करता है। आन्तरिक प्रतिरोध के कारण सेल द्वारा आपूर्त ऊर्जा का कुछ भाग ऊष्मा के रूप में नष्ट हो जाता है।

जब सेल से कोई धारा नहीं ली जा रही होती है, तो उसके दो इलेक्ट्रोडों के बीच विभवान्तर को सेल का वि.वा. बल (emf) (ϵ) कहते हैं । सेल से धारा लेते समय दो इलेक्ट्रोडों के बीच विभवान्तर को टर्मिनल विभवान्तर (V) कहते हैं ।

- (i) असत्य कथन चुनिए:
 - (A) सेल को अनावेशित करते समय बन्द परिपथ में किसी सेल के दो टर्मिनलों के बीच विभवान्तर (V), सेल के वि.वा. बल (emf) (ε) से सदैव कम होता है।
 - (B) विद्युत-अपघट्य का ताप घटने पर सेल का आन्तरिक प्रतिरोध घट जाता है।
 - (C) सेल से धारा लेते समय $V = \varepsilon Ir$ होता है ।
 - (D) सेल के दो टर्मिनलों के बीच विभवान्तर (V) और इससे प्रवाहित धारा (I) के बीच ग्राफ सरल रेखा होता है जिसकी प्रवणता ऋणात्मक होती है।
- (ii) 2.0 V और 6.0 V वि.वा. बल (emf) वाले दो सेल, जिनके आन्तिरक प्रतिरोध क्रमश: 0.1Ω और 0.4Ω हैं, पार्श्व में संयोजित हैं । इस संयोजन का तुल्य वि.वा. बल (emf) होगा :
 - $(A) \quad 2 \cdot 0 \text{ V}$

(B) 2·8 V

(C) 6.0 V

- $(D) \qquad 8 \cdot 0 \ V$
- (iii) विलयन में डूबे हुए इलेक्ट्रोड विद्युत-अपघट्य से आवेशों का आदान-प्रदान करते हैं । अपने से संलग्न विद्युत-अपघट्य के सापेक्ष धनात्मक इलेक्ट्रोड का विभव V_+ ($V_+ > 0$) तथा ऋणात्मक इलेक्ट्रोड का विभव (V_-) ($V_- \ge 0$) हो जाता है । जब सेल से कोई धारा नहीं ली जा रही होती है, तब
 - (A) $\varepsilon = V_{+} + V_{-} > 0$

(B) $\varepsilon = V_+ - V_- > 0$

(C) $\varepsilon = V_{+} + V_{-} < 0$

(D) $\varepsilon = V_{+} + V_{-} = 0$

1

1

1

30. When the terminals of a cell are connected to a conductor of resistance R, an electric current flows through the circuit. The electrolyte of the cell also offers some resistance in the path of the current, like the conductor. This resistance offered by the electrolyte is called internal resistance of the cell (r). It depends upon the nature of the electrolyte, the area of the electrodes immersed in the electrolyte and the temperature. Due to internal resistance, a part of the energy supplied by the cell is wasted in the form of heat.

When no current is drawn from the cell, the potential difference between the two electrodes in known as emf of the cell (ϵ) . With a current drawn from the cell, the potential difference between the two electrodes is termed as terminal potential difference (V).

(i) Choose the *incorrect* statement:

(A) The potential difference (V) between the two terminals of a cell in a closed circuit is always less than its emf (ϵ) , during discharge of the cell.

- (B) The internal resistance of a cell decreases with the decrease in temperature of the electrolyte.
- (C) When current is drawn from the cell then $V = \varepsilon Ir$.
- (D) The graph between potential difference between the two terminals of the cell (V) and the current (I) through it is a straight line with a negative slope.
- (ii) Two cells of emfs $2\cdot 0$ V and $6\cdot 0$ V and internal resistances $0\cdot 1$ Ω and $0\cdot 4$ Ω respectively, are connected in parallel. The equivalent emf of the combination will be :

 $(A) \quad 2.0 \text{ V}$

(B) 2·8 V

 $(C) \qquad 6.0 \text{ V}$

(D) 8.0 V

(iii) Dipped in the solution, the electrode exchanges charges with the electrolyte. The positive electrode develops a potential V_+ ($V_+ > 0$), and the negative electrode develops a potential - (V_-) ($V_- \ge 0$), relative to the electrolyte adjacent to it. When no current is drawn from the cell then:

(A) $\varepsilon = V_{+} + V_{-} > 0$

(B) $\varepsilon = V_{+} - V_{-} > 0$

(C) $\varepsilon = V_{+} + V_{-} < 0$

(D) $\varepsilon = V_{+} + V_{-} = 0$

1

- (iv) (क) 2 V वि.वा. बल (emf) और 0.1Ω आन्तरिक प्रतिरोध के पाँच सर्वसम सेलों को पार्श्व में संयोजित किया गया है । इस संयोजन को फिर 9.98Ω के बाह्य प्रतिरोधक से संयोजित किया गया है । प्रतिरोधक से प्रवाहित धारा है :
 - (A) $0.05 \, \text{A}$

(B) 0.1 A

(C) 0.15 A

(D) 0.2 A

अथवा

- (ख) खुले परिपथ में किसी सेल के सिरों पर विभवान्तर 6 V है। 2 A विद्युत धारा लेने पर यह विभवान्तर 4 V हो जाता है। सेल का आन्तरिक प्रतिरोध है:
 - (A) 1.0Ω

(B) 1.5Ω

(C) 2.0Ω

(D) 2.5Ω

खण्ड ङ

- 31. (क) (i) यंग के द्विझिरी प्रयोग के व्यतिकरण पैटर्न और एकल झिरी के कारण विवर्तन पैटर्न के बीच कोई दो अन्तर दीजिए।
 - (ii) द्विझिरी व्यतिकरण पैटर्न के प्रकरण में तीव्रता वितरण ग्राफ खींचिए।
 - (iii) तरंगदैर्घ्य λ के एकवर्णीय प्रकाश का उपयोग करने पर यंग के द्विझिरी प्रयोग में पर्दे के जिस बिन्दु पर पथान्तर λ है, वहाँ प्रकाश की तीव्रता K मात्रक है। पर्दे के जिस बिन्दु पर पथान्तर $\frac{\lambda}{6}$ है, वहाँ प्रकाश की तीव्रता ज्ञात कीजिए।

अथवा

- (ख) (i) किसी संयुक्त सूक्ष्मदर्शी द्वारा स्पष्ट दर्शन की न्यूनतम दूरी पर प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए । इसकी आवर्धन क्षमता के लिए व्यंजक व्युत्पन्न कीजिए ।
 - (ii) कोई दूरदर्शी (दूरबीन) 100 cm और 5 cm फोकस दूरी के दो लेंसों से मिलकर बना है। उस स्थिति में इसकी आवर्धन क्षमता ज्ञात कीजिए जिसमें अंतिम प्रतिबिम्ब अनन्त पर बनता है।

5

5

1

1

- (iv) (a) Five identical cells, each of emf 2 V and internal resistance $0.1~\Omega$ are connected in parallel. This combination in turn is connected to an external resistor of $9.98~\Omega$. The current flowing through the resistor is:
 - (A) 0.05 A

(B) 0.1 A

(C) 0.15 A

(D) 0.2 A

OR

- (b) Potential difference across a cell in the open circuit is 6 V. It becomes 4 V when a current of 2 A is drawn from it. The internal resistance of the cell is:
 - (A) 1.0Ω

(B) 1.5Ω

(C) 2.0Ω

(D) 2.5Ω

SECTION E

- **31.** (a) (i) Give any two differences between the interference pattern obtained in Young's double-slit experiment and a diffraction pattern due to a single slit.
 - (ii) Draw an intensity distribution graph in case of a double-slit interference pattern.
 - (iii) In Young's double-slit experiment using monochromatic light of wavelength λ , the intensity of light at a point on the screen, where path difference is λ , is K units. Find the intensity of light at a point on the screen where the path difference is $\frac{\lambda}{6}$.

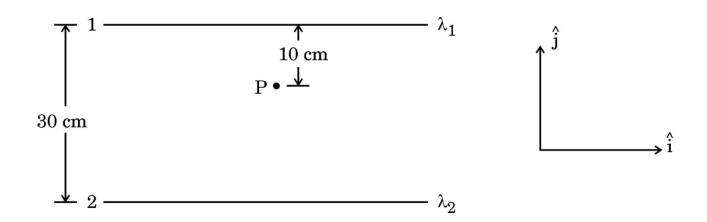
OR

- (b) (i) Draw a labelled ray diagram of a compound microscope showing image formation at least distance of distinct vision. Derive an expression for its magnifying power.
 - (ii) A telescope consists of two lenses of focal length 100 cm and 5 cm. Find the magnifying power when the final image is formed at infinity.

5

5

1


- **32.** (a) (b) (b) (b) (b) (c) (c)
 - (ii) किसी समबाहु त्रिभुज के शीर्षों पर तीन बिन्दु आवेश q, 2q और nq स्थित हैं । यदि इस निकाय की स्थितिज ऊर्जा शून्य है, तो n का मान ज्ञात कीजिए ।

5

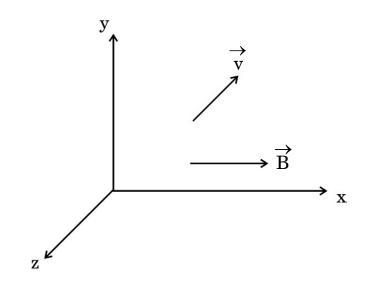
5

अथवा


- - (ii) दो लम्बे सीधे तार 1 और 2 आरेख में दर्शाए अनुसार रखे गए हैं । इन दोनों तारों के रैखिक आवेश घनत्व क्रमश: $\lambda_1=10~\mu\text{C/m}$ और $\lambda_2=-20~\mu\text{C/m}~ \vec{\text{ह}}~ |~ \text{बिन्दु}~ P~\text{पर स्थित किसी इलेक्ट्रॉन द्वारा अनुभव किया जाने वाला नेट बल <math>\overrightarrow{F}~$ ज्ञात कीजिए ।

- 32. (a) (i) Obtain an expression for the electric potential due to a small dipole of dipole moment \overrightarrow{p} , at a point \overrightarrow{r} from its centre, for much larger distances compared to the size of the dipole.
 - (ii) Three point charges q, 2q and nq are placed at the vertices of an equilateral triangle. If the potential energy of the system is zero, find the value of n.

OR

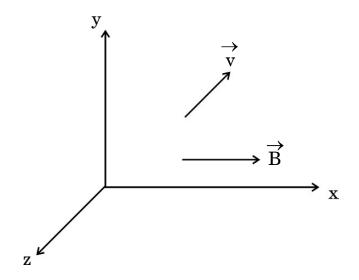

- (b) (i) State Gauss's Law in electrostatics. Apply this to obtain the electric field \overrightarrow{E} at a point near a uniformly charged infinite plane sheet.
 - (ii) Two long straight wires 1 and 2 are kept as shown in the figure. The linear charge density of the two wires are $\lambda_1 = 10 \ \mu\text{C/m} \ \text{and} \ \lambda_2 = -\ 20 \ \mu\text{C/m}. \ \text{Find the net force} \ \overrightarrow{F}$ experienced by an electron held at point P.

5

5

33. (क) (i) आरेख में दर्शाए अनुसार द्रव्यमान m और आवेश q का कोई कण किसी चुम्बकीय क्षेत्र \overrightarrow{B} में वेग \overrightarrow{v} से गतिमान है । यह दर्शाइए कि यह कण कुण्डलिनी पथ पर गमन करता है । इस प्रकार इसके परिक्रमण की आवृत्ति प्राप्त कीजिए ।

(ii) किसी हाइड्रोजन परमाणु में कोई इलेक्ट्रॉन $2\,\text{Å}$ त्रिज्या की किसी कक्षा में 8×10^{14} परिक्रमण प्रति सेकण्ड से गति कर रहा है । इस इलेक्ट्रॉन की कक्षीय गति से संबद्ध चुम्बकीय आधूर्ण ज्ञात कीजिए ।


5

5

अथवा

- (ख) (i) किसी गैल्वेनोमीटर की धारा सुग्राहिता किसे कहते हैं ? दर्शाइए कि किसी गैल्वेनोमीटर की धारा सुग्राहिता में वृद्धि किस प्रकार की जा सकती है । "किसी गैल्वेनोमीटर की धारा सुग्राहिता में वृद्धि होने पर यह आवश्यक नहीं है कि उसकी वोल्टता सुग्राहिता में भी वृद्धि हो ।" व्याख्या कीजिए।
 - (ii) किसी चल कुण्डली गैल्वेनोमीटर का प्रतिरोध $15~\Omega$ है तथा वह पूर्ण पैमाना विक्षेपण के लिए 20~mA धारा लेता है । इस गैल्वेनोमीटर को (0-100~V) परिसर के वोल्टमीटर में किस प्रकार परिवर्तित किया जा सकता है ?

33. (a) (i) A particle of mass m and charge q is moving with a velocity \overrightarrow{v} in a magnetic field \overrightarrow{B} as shown in the figure. Show that it follows a helical path. Hence, obtain its frequency of revolution.

(ii) In a hydrogen atom, the electron moves in an orbit of radius $2 \text{ Å making } 8 \times 10^{14} \text{ revolutions per second.}$ Find the magnetic moment associated with the orbital motion of the electron.

OR

- (b) (i) What is current sensitivity of a galvanometer? Show how the current sensitivity of a galvanometer may be increased. "Increasing the current sensitivity of a galvanometer may not necessarily increase its voltage sensitivity." Explain.
 - (ii) A moving coil galvanometer has a resistance 15 Ω and takes 20 mA to produce full scale deflection. How can this galvanometer be converted into a voltmeter of range 0 to 100 V?

12-55/2/2 27

5