

Sub: Mathematics

Attempt: 01

Date: 29th Jan 2025

Shift: 02

If the letters of the word "KANPUR" are arranged in dictionary, then the 440th word is

- A PRKAUN
- B PRKUAN
- C PRKNAU
- **D** PRKUNA

If 3¹⁰⁷ is divided by 23, then remainder is

Let
$$a_{ij} = (\sqrt{2})^{i+j}$$
, $A = [a_{ij}]_{3\times 3}$. If sum of third row of A^2 is $\alpha + \beta\sqrt{2}$, then $\alpha + \beta$ is

A 2 \times 2 matrix form by elements {0, 1} and random variable x be defined as value of determinate, then the variance is

Let the area bounded by the curves $|y| = 1 - x^2$, $x^2 + y^2 = 1$ is α . If $9\alpha = 8\beta\pi + \gamma$ then find $|\beta - \gamma|$.

Let
$$f(x) = \int_0^x t(t^2 - 3t + 20) dt$$
, $x \in (1,3)$ and range of $f(x)$ is (α, β) ,

then $\alpha + \beta$ is equal to

$$\frac{185}{3}$$

The value of the limit $\lim_{x\to 0} (\csc x) (\sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4})$ is

- **A** (
- **B**
- $\begin{array}{|c|c|} \hline \mathbf{c} & \frac{1}{2\sqrt{5}} \\ \hline \end{array}$

$$a_1$$
, a_2 , a_3 ,, a_{2024} are in A.P. and a_1 + $(a_5 + a_{10} + a_{15} + + a_{2020})$ + a_{2024} = 2233 then $a_1 + a_3 + a_3 + + a_{2024}$ = ?

Let the line L be $\frac{x-1}{1} = \frac{y-4}{3} = \frac{z-7}{5}$ and foot of perpendicular from (1, -2, -1) to L is (α, β, γ) , then $\alpha + \beta + \gamma$ is

- $-\frac{19}{35}$
- $\frac{69}{35}$
- $-\frac{102}{35}$

If the exhaustive values of α for which the equation $2x^2 + (\alpha - 5)x + 15 = 3\alpha$ has no real roots is (α, β) then $|4(\alpha + \beta)|$ is equal to

- **(A)** 56
- **B** 52
- **C** 54
- **D** 18

If x + y + z = 1; $x + 2y + 4z = m \& x + 4y + 10z = m^2$ have infinitely many solutions and m takes 2 values $\alpha \& \beta$ then find

$$\sum_{r=1}^{10} (r)^{\alpha} + (r)^{\beta}$$

If $\log y = x \log \frac{2}{5}$, $x \in \mathbb{N} \cup \{0\}$. Then sum of all values of y equals to

- \bigcirc $\frac{5}{4}$

Two points (4, 2) and (0, 2) lie on the circle whose centre lies on 3x + 2y + 2 = 0, then length of chord whose mid-point is (1, 2), is

- $\left(\mathbf{A} \right) \sqrt{3}$
- \bigcirc $\sqrt{5}$
- \bigcirc $2\sqrt{3}$
- \bigcirc $2\sqrt{5}$

Thank Nou