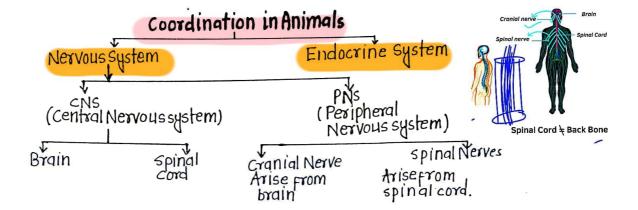
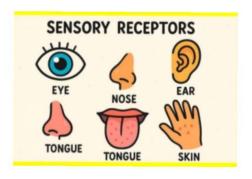
CONTROL AND COORDINATION

CONTROL AND COORDINATION :-


stimuli change in the environment to which an organism responds.

Response :- Reaction of an organism to a stimulus.

Coordination: Working together of various body parts to respond to a stimuli.



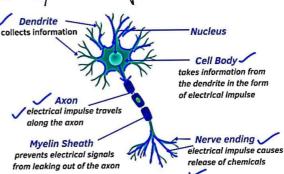
Receptors and Effectors:-

Receptors: - Cells, tissue or organs that receive the stimulus.

Effectors: - muscles/tissue/glands which act in response to a stimuli.

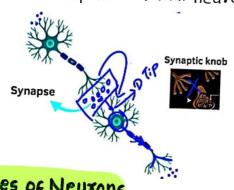
Receptors	Sense Organ	Stimuli
Photo receptors	Eyes	Light
Olfactory receptors	Nose /	Smell
Gustatory receptors	Tongue	Taste_/
Phono receptors	Ear	Sound
Thermo receptors	Skin	Heat / Cold
Nociceptors /	Skin	Pain/

Nerve Cells or Neuron:
Nerve - A nerve is a bundle of fibres that carries signals between the brain and other parts of the body, enabling sensation, movement and other bodily functions.


Neuron:—

· structural and functional unit of nervous system

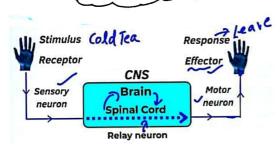
nervous system.


longest cell in the body.

· carry message in the form of electrical impulses/ signals.

Synapse :-

Microscopic gap between two neurons. Therole of the synapse is to transmit the electrical impulse from one neuron to another. As a synapse, the electrical impulse causes the release of chemicals (neurotransmitters) from the nerve ending of one neuron. These chemical's cross the synaptic gap and reach clendric tipof next neuron, generating a new electrical impulse in that neuron.


Types of Neurons

sensory Neurons Transmit impulse from receptor to CNS

Motor Neurons Transmit impulse from CNS

Relay Neurons / Interneurons connects sensory and Motor neurons

to effectors muscle or gland

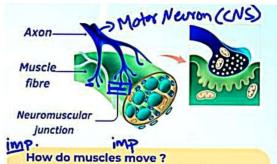
Volugitary controlled by will

Thinking involved Brain Involved walking, writting, Dancing Talking etc

Involuntary

Thinking Not involved ~ Brain involved ~

Blood pumping by Heart, peristalsis, Digestron'


Transmission of impulse between 2 Neurons

Chemical collected at the end of Dendritic tip Chemical reaction creates Movement of lons Ion Movement Creates Potential Difference Electric Impulse is generated at Dendritic Tip Impulse travel from dendrite to Cell body Impulse travels through the Axon Reaches Nerve endings

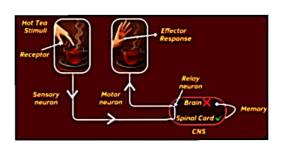
Release of chemicals at the synapse

Neuromuscular Junction (NMJ)

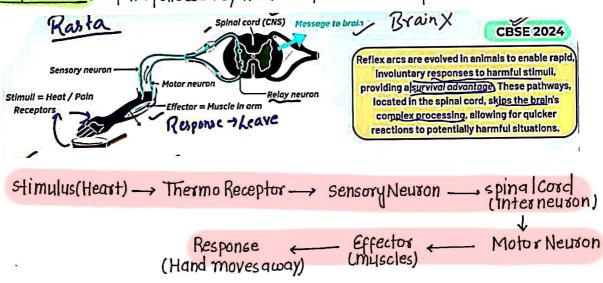
point of contact between never ending of a motor neuron and a muscle

- How do muscles move?
- Muscles cells have specialised proteins that change their shape & arrangements in the cell in response to nervous electrical impulses
- Muscle cells move by changing their shape so that they shorten

Reflex Actions


Thinking Not involved x Brain directly Not involved 7

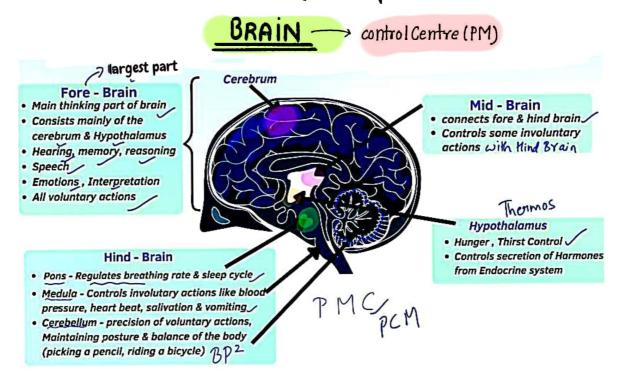
withdrawing a hand from a hot object. blinking when something close to the eye , sneezing -


Perlex Actions (Reflex Movement)

A Reflex action is a sudden, Quick and involuntary movement in which thinking is not involved.

Reflex actions are controlled by spinal cord it helps protect the body by producing a Quick reaction.

Reflex Arc: - path followed by nerve impulses in a reflec action.

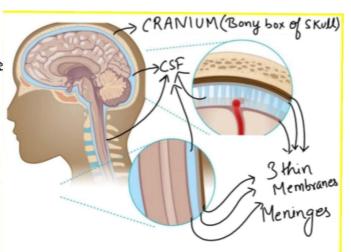

Reflex arcs are formed mainly in the spinal cord.

Reflex arcs are considered more efficient for quick responses because -

(1) They skip the brain's complex processing.

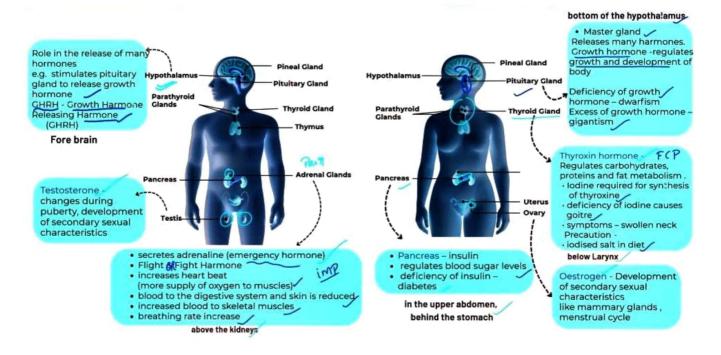
2) Allows an instant reaction through the spinal cord.

(3) Reduces response times significantly.



Protection of Brain

- (1) Cranium part of skyll
- (2) 3 thin membranes Meninge
- (3) CSF to absorb any shock Cerebro spinal fluid


Protection of Spinal Cord

- (1) Verteberal Coloumn
- (2) 3 thin membranes Meninges
- (3) CSF to absorb any shock cerebro spinal fluid

Endocrine System

- ✓ Network of Endocrine glands that produces and release hormones.
- V Hormones chemical Substances that act like messenger molecules in the body.

feed back mechanism - the timing and amount of hormones released are regulated by feed back.

e.g. Blood Sugar levels increase > pancreas produces more insulin.
Blood sugar levels decrease > insulin secretion is reduced.

Gland	Hormone	Function	Related Disease
Hypothalamus	GHRH	Stimulates pituitary gland to release hormones	
Pituitary gland	Growth hormone	Body growth, development of bones & muscles	Excess - Gigantism Deficiency - Dwarfism
Thyroid gland	Thyroxine	Regulates carbohydrate, protein, fat metabolism	Deficiency of iodine - Goitre (hypothyroidism)
Pancreas /	Insulin	Control blood sugar levels	Diabetes
Adrenal gland	Adrenaline	Prepare body to cope with emergency situations	*
Testes in males	Testosterone	Development of secondary male characters: deep voice, beard, and sex organs	
Ovaries in females	Oestrogen	Development of secondary female characters like mammary glands, menstrual cycle and sex organs	

Coordination in Plants :-

The stimulus is not transmitted through a nervous system like in animals. Instead, it's communicated through a combination of electrical and chemical signals.

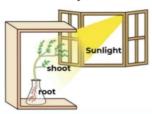
These signals travel from cell to cell.

Movement in Plants

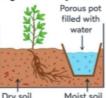
Nastic Movement

Tropic Movement

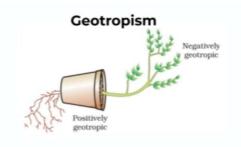
Tropic Movement


· Growth movement of a plant part in response to external stimuli is called tropism.

Tropic Movement - growth dependent
 Direction of stimulus determines the direction of response.
 Growth of plants towards stimulus → positive tropism.


· Growth of plants away from stimulus - negative tropism.

Phototropism Light	Growth of plant part towards or away from Light	Positive Phototropism e.g. stem of a growing plant bends towards light	Negative Phototropism – e.g. roots of a plant moves away from light
Geotropism gy avily	Growth of plant part towards or away from gravity	Positive Geotropism – e.g. roots of a plant moves downward towards gravity	Negative Geotropism – e.g. stem of a plant moves upward against gravity
Hydrotropism Water	Growth of plant part towards or away from water	Positive Hydrotropism – e.g. roots of a plant grow towards water	Negative Hydrotropism – movement away from water
Chemotropism	Growth of plant part towards or away from chemicals	Positive Chemotropism e.g. growth of pollen tube towards ovule during fertilisation Rep	Negative Chemotropism – movement away from chemical
Thigmotropism	Growth of plant part towards or away from touch	e.g. climbing parts of a plant such as tendrils grow towards support and wind around them	


Phototropism

Hydrotropism

Dry soil Moist soil B. Root grows toward water

Nastic Movement :-

Amount of water

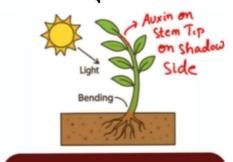
· Otrowth independent movement.

· e.g. when we touch the leaves of a sensitive plant like Mimosa

pudica (chhuimui), they fold.

The second second second		
Characteristic	Tropic Movements	Nastic Movements
Response to Stimulus	Unidirectional Response to Stimulus	Non-directional Response to Stimulus
Dependency on Growth	Growth-dependent movements	Growth-independent movements
Nature of Movement	Permanent and irreversible	Temporary and reversible
Occurrence in Plants	Found in all plants	Found only in a few specialized plants
Speed of Movement	Slow action	Immediate action 🗸

ANIMALS	PLANTS
Specialised tissues for conduction of information	No specialised tissues for conduction of information
The movement happens due to	The movement happens due to because of change in
because of specialised proteins in muscles /	amount of water in cells (resulting in swelling/shrinking)

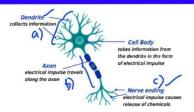

Hormones in Plant

Plant Hormone	Function	
Auxin (GP)	Promotes cell elongation in shoots Controls phototropism	
Gibberellins (GP)	Stimulates stem elongation present in greater concentration in areas such as fruits and seeds	
Cytokinin (GP)	Promote cell division Delays ageing of leaves, flower	
Stress Harmone Abscisic Acid (GI)	Causes stomata to close Maintains dormancy in seeds Wilting of leaves	

Growth Promoter G.P. Growth inhibitor GI

Bending of plant

When light falls on a plant from one side Auxin moves and accumulate on the shaded side Auxins stimulates cell growth, so cells on shadow side elongates and stem benck towards light.



(CBSE 2025, 2022, 2019)

Q1. What is meant by receptors in the human body? Q2. Name any four types of receptors with their locations.

Q.3 Draw a diagram of neuron and label its parts:

a. where information is acquired b. through which information travels as an electric impulse, and c. where the electric impulse must be converted into a chemical signal for onward CBSE 2019, 2018

Q.4 Electrical impulse travels in a neuron from

Nerve ending → Axon → Cell body → Dendrite

Dendrite → Cell body → Axon → Nerve ending

Cell body \rightarrow Dendrite \rightarrow Axon \rightarrow Nerve ending

Dendrite → Axon → Nerve ending → Cell body

Q. 5 What is a synapse? How is an electrical impulse created in a nerve cell and what is the role of synapse in this context?

Synapse is a microscopic gap between the nerve ending of one neuron and dendritic tip of other neuron.

In a neuron, an electrical impulse is created by the difference in potential created by movement of ions across the neuron's membrane

The role of the synapse is to transmit the electrical impulse from one neuron to another . At a synapse, the electrical impulse causes the release of Chemicals (neurotransmitters) from the Nerve ending of one neuron. These chemicals cross the synaptic gap and reach dendritic tip of next neuron , generating a new electrical impulse in that neuron.

Q.6 Ravi accidently touches a hot pan while cooking and immediately pulls his

hand away. This rapid response saves him from from a severe burn.

]. What is the correct sequence of events when Ravi's hand touches the hot pan

Define a reflex action. Using a flowchart, illustrate the path of the reflex action Ravi experienced when he touched the hot pan.

Explain why reflex arcs are considered more efficient for quick responses in such situations.

CBSE 2024

Stimulus (Heat) → Thermo Receptor → Sensory Neuron → Spinal Cord (Interneuron) → Motor Neuron → Effector (Muscles) → Response (Hand moves away)

Reflex action is a Sudden ,quick and Involuntary movement in which thinking is Not Involved . Reflex actions are controlled by spinal cord. It helps protect the body by producing a quick reaction.

• Reflex arcs are considered more efficient for quick responses beacuse-1) They skip the brain's complex processing 2) Allows an instant reaction through the spinall cord. 3) reduces response times significantly

Q.7 Explain how the brain and spinal cord are protected from shocks and injuries (CBSE 2023, 2020)

Q.8 Which among the following is not a neural action controlled by the part of human brain labelled 'X' in the figure above? (CBSE 2025)

Salivation

Vomiting

Q.9 Which part of the human brain is responsible for the following functions?

a) Thinking > (erebrum (F_ -B)

(a) Ininking According (F. - 18)
(b) Picking up a pencil — (Corchellum) BP
(c) Controlling blood pressure — Medula
(d) Controlling hunger
(g) 100 Medula

(CBSE 2025, 2024, 2023, 2020)

(a) Cerebrum, (b) Cerebellum, (c) Medulla oblongata, (d) Hypothalamus A

R (a) Cerebellum, (b) Cerebrum, (c) Hypothalamus, (d) Medulla oblongata

C (a) Medulla oblongata, (b) Hypothalamus, (c) Cerebrum, (d) Cerebellum

(a) Hypothalamus, (b) Cerebrum, (c) Cerebellum, (d) Medulla oblongata

Q.10 (i) Identify which parts of the brain are responsible for

(a) maintaining posture and balance. $\rightarrow BP^2 \rightarrow Concile$ (b) controlling heartbeat.

(c) enabling thinking. (d) regulating blood pressure.

(CBSE 2023, 2020)

(a) maintaining posture and balance. - Cerebellum
(b) controlling heartbeat. - Medula

(c) enabling thinking. - Cerebrum (Fore brain) (d) regulating blood pressure. - Medula

Q.11 Which gland secretes thyroxine and what is its main function?

(CBSE 2025, 2024,2023,2020)

Pancreas - Controls blood sugar

FCP Thyroid gland – Regulates metabolism of carbohydrates, proteins and fats

Pituitary gland - Controls growth of the body

Adrenal gland - Increases heartbeat and blood pressure

Q.12 (A) Write the role of insulin in regulating blood sugar levels in the human body. Mention the disease caused due to it. (B) How is the timing and the amount of release of insulin in the blood regulated? (CBSE 2025, 2023, 2020, 2017, 2016, 2015)

Insulin helps in lowering the blood glucose (sugar) level. After a meal, glucose levels in the blood rise. Insulin enables body cells to absorb glucose from the blood and use it for energy or store it as glycogen.

If the body does not produce enough insulin ,it leads to a condition known as Diabetes

The amount and timing of insulin released is regulated through feedback mechanism

Higher glucose level in blood = More insulin secretion

Lower glucose level in blood = Less insulin secretio

Q.13 What hormone is secreted by the adrenal gland during stressful situations, and what are three responses the body exhibits when this hormone is released into the blood?

(CBSE 2024, 2023, 2020)

The adrenal glands are located on top of each kidney. It secretes adrenaline hormone (emergency harmone) (Flight & Fight Harmone) Three responses

increases heart rate (more supply of oxygen to muscles) blood to the digestive system and skin is reduced increased blood to skeletal muscles

Q.14 A hormone 'X' is secreted in blood when a person is under scary

situation.
(a) Identify the hormone 'X' and the gland that secretes it.
(b) Explain its role in dealing with scary or emergency situations

Q.15 (i) Where is the thyroid gland located in the human body? Name the hormone secreted by the thyroid gland and explain its function.
(ii) What is hypothyroidism? How can it be managed? What dietary changes (ii) What is hypothyroidism? can help regulate TSH levels? (CBSE 2024, 2023, 2020)

The thyroid gland is located in the front of the neck, just below the larynx. The thyroid gland secretes the hormone thyroxine Function - Regulates carbohydrate, protein and fat metabolism

Hypothyroidism is a medical condition in which the thyroid gland does not produce enough thyroid hormones due to deficiency of iodine. This leads to condition called Goitre in which swelling on neck.

Dietary change - taking lodized salt.

Q.16 State two limitations of electrical impulses in multicellular organisms.
Why is chemical communication better than electrical impulses as a means communication between cells in multicellular organisms?

(CBE 2025) (CBSE 2025) Two limitations of electrical impulses are-1. Limited Range
Electrical signals can only reach to cells connected to the nervous system. They cannot reach every cell in 2. Reset Time: After a neuron transmits an electrical impulse, it needs a period to reset its mechanisms before it can transmit another signal. This delay limits the frequency and rate of signaling Why Chemical Communication is Better: 1. Wider Range / Chemical signals, like hormones, can diffuse through the bloodstream and reach all cells of the body. Slow but Long Lasting Effects
 Chemical signals can have longer-lasting effects compared to the short-lived nature of electrical impulses, which is essential for regulating growth, metabolism,etc. 3. Targeted Specificity:
Chemical signals are highly specific and can act on particular receptors on target cells. Q.17 (I) Name the movement which causes 'X' and 'Y' to grow downwards and upwards respectively. (CBSE 2025, 2022, 2020, 2019) Geotropic Movement - Stimuli is gravity. Q.18 Observe the given figures A and B. When chhui-mui (sensitive) plant is touched, its leaves fold. This is due to: Noustic (CBSE 2025, 2024, 2016) Hormonal effect x Thermal effect Change in amount of water in cells Electromagnetic effect Q.19 Leaves of the sensitive plant move very quickly in response to 'touch'. How is this stimulus of touch communicated and explain how the movement takes place. (CBSE 2025, 2022, 2020, 2019) The stimulus is not transmitted through a nervous system like in animals. Instead, it's communicated through a combination of electrical and chemical signals These signals travel from cell to cell. This movement is called Nastic Movement and happens immediately The movement happens due to change in amount of water in cells (resulting in swelling/shrinking) mg Q.20 The plant hormones promoting rapid cell division in seeds and wilting of leaves respectively are (CBSE 2025, 2024) **Auxins and Abscisic acid** Cytokinins and Abscisic acid **Gibberellins and Auxins** D Abscisic acid and Gibberellins Q.21 The plant hormone whose concentration stimulates the cells to grow longer on the side of the shoot which is away from light is: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac$ (CBSE 2025) Cytokinins Gibberellins Auxins Adrenaline