Sl.No. 88472

18 (E)

(MARCH/APRIL 2022)

Time: 3 Hours

[Maximum Marks: 80

Instructions:

- 1) Write in a clear legible handwriting.
- 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 55.
- 3) All Sections are compulsory. General options are given.
- 4) The numbers to the right represent the marks of the question.
- 5) Draw neat diagrams wherever necessary.
- 6) New sections should be written in a new page. Write the answers in numerical order.
- 7) Calculator is not allowed.

SECTION-A

■ Answer the following as per instruction given (Questions 1 to 24) (Each one mark). [24]

- · All questions are compulsory.
- Choose the correct option from the following (1 to 12):
 - 1) For pair of linear equations 2x+3y=5 and 4x+6y-10=0. There are _____ solution. [1]
 - (A) Infinity

(B) Unique

(C) Zero

(D) None

ANT29

1

S-1318 (P.T.O.)

2)	The product of zeroes in $P(x) = x^2$	-3x+2 is	[1]
	(A) 2	(B) $\frac{3}{2}$	
	(C) 1	(D) -2	
2)	The formula to find Discriminant of	the quadratic equation is	[1]
3)	$(A) D = b^2 + 4ac$	$(B) D = b^2 - 4ac$	1801
	(C) $D = b - 4ac$	$(D) D = c^2 - 4ab$	
4)	The formula to find n^{th} term of an A. (A) $a_n = a + (n-1)d$		[1]
	(C) $a_n = a + (n+1)d$	(D) None	
5)	Formula to find area of circle is		[1]
	(A) $\pi r l$	(B) $\frac{\pi r^2 \theta}{360^{\circ}}$	
	(C) πr^2	(D) $2\pi r$	
6)	Which of the following cannot be the	ne probability of an event?	[1]
	(A) $\frac{2}{3}$	(B) 0.7	

348450

				S-13	318
7)	The	probability of an event that is ce	rtain	to happen is	[1]
	(A)	0	(B)	-1 constant dens to see	
	(C)		(D)	1/2 address (3)	
8)	The	wickets taken by a bowler in 10			[1]
	2, 6,	4, 5, 0, 2, 1, 3, 2, 3			
	The	n mode will be			
	(A)	3	(B)	2 The law to morning the late.	
	(C)	1	(D)		
0)	Th.	HCE of 15 and 25 in			(1)
9)		H.C.F. of 15 and 35 is	· (B)	7	[1]
	(A)	105	(B) (D)		
	(0)	103	(D)		
10)	If α	and β are the zeroes of the poly	nomia	al $P(x) = ax^2 + bx + c (a \neq 0)$ t	hen
		β =		7(3)4-(3)4-(80)	[1]
	(A)	$-\frac{b}{a}$	(B)	$\frac{b}{a}$	
	(C)	$\frac{c}{a}$	(D)	$-\frac{c}{a}$	
11)	The	distance of the point $P(x,y)$ fr	om th	ne origin is	[1]
11)	THE	distance of the point I (x, y) II			(-1
	(A)	$x^2 + y^2$	(B)	$\sqrt{x^2+y^2}$	

(C) x + y

SALE!

(D) None

- 12) If the perimeter and area of circle are numerically equal then radius of the circle will be ______.
 - (A) 2 units

(B) π units

(C) 4 units

(D) 7 units

■ Write True or False for the following questions (13 to 18):

13) $\sqrt{5}$ is an irrational number.

[1]

14) Number of zeroes of polynomial $P(x) = x^3 - x$ are 3.

[1]

15) 2, 2, 2, ---- is an Arithmetic Progression.

[1]

16) The value of $\sin 60^\circ$ is $\frac{1}{2}$.

[1]

17) $Z = 2M - 3\overline{x}$

[1]

18) $P(E)+P(\overline{E})=-1$

[1]

■ Fill in the blanks (19 to 24):

19) In the given figure y = P(x), the number of the zeroes of P(x) are _____. (2, 3, 4)

- **20**) $\sin^2 \theta + \cos^2 \theta =$ _____. (0, 1, 2) [1]
- 21) The tangent of a circle touches it at _____ point/points. (one, two, three) [1]
- 22) 2, k, 26 are three consecutive terms of an A.P. then k =_____. (12, 14, 20) [1]
- 23) Formula to find volume of a 5 rupee coin is _____. $\left(\pi r^2, \pi r^2 h, \frac{1}{3}\pi r^2 h\right)$ [1]
- **24**) If $\Sigma f_i x_i = 245$ and $\Sigma f_i = 100$ then Mean $(\overline{x}) =$ ______. (24.5, 2.45, 0.245)[1]

SECTION-B

- Answer any 10 questions from following. (25 to 38) (Each 2 marks). [20]
 - 25) In an Arithmetic Progression a = 5, d = 3, $a_n = 50$ then find "n". [2]
 - **26)** Find sum of A.P. 2, 7, 12, ---- to 10 terms. [2]
 - 27) Find 30th term of A.P. 10, 7, 4, ----. [2]

801-2

- 28) The Base radius and height of cylinder are equal, if radius of cylinder is 7 cm find its volume.[2]
- 29) 2 cubes each of volume 64 cm³ are joined end to end. Find the surface area of the resulting cuboid.[2]
- 30) A bag contains 3 red balls and 5 black balls. A ball drawn at random from the bag. What is the probability that the ball drawn is[2]
 - i) red?
 - ii) not red?
- 31) Find the Quadratic Polynomial whose sum of zero and product of zero are -3 and 2 respectively.[2]
- 32) Find zeroes of Quadratic Polynomial $P(x) = x^2 + 7x + 10$. [2]
- 33) Find roots of $2x^2 x + \frac{1}{8} = 0$ by factorization method. [2]
- 34) If $\sin A = \frac{3}{4}$ then find $\cos A$ and $\tan A$. [2]
- 35) Find the value of $2 \tan^2 45^\circ + \cos^2 30^\circ \sin^2 60^\circ$. [2]

[2]

- 36) The angle of elevation of the top of the tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower. [2]
- 37) Find the distance between A(-5, 7) and B(-1, 3).
- 38) For a grouped data, l = 40, h = 15, $f_1 = 7$, $f_0 = 3$ and $f_2 = 6$ then find mode. [2]

SECTION - C

■ Answer any 8 of the following. (39 to 50) (Each 3 marks). [24]

39) Find mean from following data:

[3]

Class interval	10-25	25-40	40-55	55-70	70-85	85-100
Number of	2	3	ichw 7	6	6	6
students						

40) The following table shows age of the patients admitted in a hospital. Find mode.

[3]

Age	5-15	15-25	25-35	35-45	45-55	55-65
No. of patients	6	11	21	23	14	5

8-15008 8

- 41) Prove that the lengths of tangents drawn from an external point to a circle are equal.

 [3]
- 42) Solve the linear pair of equations, [3]

$$\sqrt{2}x + \sqrt{3}y = 0$$

$$\sqrt{3}x - \sqrt{8}y = 0$$

- 43) Five years ago Bhavin was thrice as old as Vrutik, 10 years later Bhavin will be twice as old as Vrutik. How old are Bhavin and Vrutik?
 [3]
- 44) Find two consecutive odd positive integers sum of whose square is 290. [3]

45) In A.P. given
$$a_{12} = 37$$
, $d = 3$ find "a" and " S_{12} ". [3]

- 46) Find the point on the X-axis which is equidistant from (2, -5) and (-2, 9). [3]
- 47) If the points A (6, 1), B (8, 2), C (9, 4) and D (P, 3) are the vertices of a parallelogram, taken in order. Find the value of 'P'. [3]
- 48) How many silver coins, 1.75 cm in diameter and of thickness 0.2 cm, must be melted to form a cuboid of dimensions 5.5 cm × 10 cm × 3.5 cm. [3]

49)	One card is draw	n from a well shuffled	deck of 52 cards. C	alculate the probability
	that the card wi	ll be		[3]
	i) be an ace			
	ii) not be an	ace		
	iii) red colour	ace		
50)	A box contains	5 red marbles, 8 white	marbles and 4 gree	n marbles. One marble
Imor h	is taken out of the	he box random. What i	s the probability th	at marble will be [3]
	i) red			
	ii) white		905 leu 305 005 400	
	iii) not green			
		SECTION-D SECTION-D 1 (51 to 55) (Each 4 marks). [12] line is drawn parallel to one side of a triangle to intersect the distinct points, the other two sides are divided in the same ratio. [4]		
	 50) A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box random. What is the probability that marble will be [3] i) red ii) white iii) not green SECTION-D Solve any 3 in detail (51 to 55) (Each 4 marks). [12] 51) Prove that if a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio [4] 			
■ Sol	e any 3 in detai	l (51 to 55) (Each 4 m	arks).	[12]
51)	Prove that if a	line is drawn parallel	to one side of a t	riangle to intersect the
	other sides in d	istinct points, the other	er two sides are div	
				[4]
				[4]
52)	Write Pythagor	as theorem and prove	it.	[4]
ANT29	2000	9		18 (E) (P.T.O.)
ALTIE				(11101)

- 53) Draw a line-segment of length 7.8 cm and divide it in the ratio 5:8. Measure two parts and write points of construction. [4]
- 54) Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their length. Write steps of construction.[4]
- 55) The median of the following data is 525. Find the value of x and y if total frequency is 100. [4]

Class	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
Interval				Au Mar						
Frequency	2	5	х	12	17	20	у	9	7	4
