## **Prachand NEET 2025**

## **Physics**

## **Alternating Current**

**DPP:01** 

- Q1 For an alternating current varying with time according to the relation  $I=I_0\sin\omega t$ , identify the correct relation between  $I_0, I_{
  m rms}$  and  $I_{
  m av}$ . (  $I_0$  is the peak value,  $I_{
  m rms}$  is the root mean square value and  $I_{\mathrm{av}}$  is the average value).
  - (1)  $I_0=I_{
    m rms}=I_{
    m av}$
  - (2)  $I_0 > I_{\rm rms} > I_{\rm av}$
  - (3)  $I_0 < I_{\rm rms} = I_{\rm av}$
  - (4)  $I_0 < I_{
    m rms} < I_{
    m av}$
- Q2 If alternating current in a circuit is given by:  $I=I_0\sin 2\pi nt$ , then the minimum time taken by the current to change from rms value to zero is equal to;
  - (1)  $\left(\frac{1}{n}\right)$

  - $(2) \left(\frac{1}{2n}\right)$   $(3) \left(\frac{1}{4n}\right)$   $(4) \left(\frac{1}{8n}\right)$
- Q3 The peak value of an alternating e.m.f.  $E=E_0\sin\omega t$  is 10 volt and its frequency is  $50~\mathrm{Hz}$ . At a time  $t=\frac{1}{600}~\mathrm{s}$ , the instantaneous value of the e.m.f. is
  - (1) 1 volt
  - (2)  $5\sqrt{3}$  volt
  - (3) 5 volt
  - (4) 10 volt
- Q4 An alternating voltage is represented as  $E=20\sin 300t$ . The average value of voltage over one cycle will be:
  - (1) Zero
  - (2) 10 volt
  - (3)  $20\sqrt{2}$  volt
  - (4)  $\frac{20}{\sqrt{2}}$  volt
- Q5 In a purely resistive a.c circuit, the current

- (1) lags behind the e.m.f. in phase
- (2) is in phase with the e.m.f.
- (3) leads the e.m.f. in phase
- (4) leads the e.m.f. in half the cycle and lags behind it in the other half
- **Q6** The inductive reactance of an inductor of  $\frac{1}{\pi}$ henry at  $50~\mathrm{Hz}$  frequency is
  - (1)  $\frac{50}{\pi}$  ohm
  - (2)  $\frac{\pi}{50}$  ohm
  - (3) 100 ohm
  - (4) 50 ohm
- Q7 Statement-I: The r.m.s value of alternating current is defined as the square root of the average of  $I^2$  during a complete cycle.

**Statement-II:** For sinusoidal a.c.  $(I=I_0\sin\omega t)$  $I_{rms} = \frac{I_0}{\sqrt{2}}$ 

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **Q8** An alternating voltage E (in volts)  $=200\sqrt{2}$  sin 100t is connected to one micro farad capacitor through an a.c. ammeter. The reading of the ammeter shall be
  - (1) 100 mA
  - (2) 20 mA
  - (3) 40 mA
  - (4) 80 mA
- Q9 The graphs given below depict the dependence of two reactive impedances  $\boldsymbol{X}_1$  and  $\boldsymbol{X}_2$  on the

frequency of the alternating e.m.f. applied individually to them. We can then say that:



- (1)  $X_1$  is an inductor and  $X_2$  is a capacitor
- (2)  $X_1$  is a resistor and  $X_2$  is a capacitor
- (3)  $X_1$  is a capacitor and  $X_2$  is an inductor
- (4)  $X_1$  is an inductor and  $X_2$  is a resistor
- **Q10** Power factor of an ideal choke coil (i.e., R=0)
  - (1) Near about zero
  - (2) Zero
  - (3) Near about one
  - (4) One
- **Q11** In an L-R circuit, AC source of frequency 50 Hz is connected as shown in the figure. The phase difference between voltage and current is



- (1)  $90^{\circ}$
- (2)  $60^{\circ}$
- (3)  $45^{\circ}$
- (4)  $30^{\circ}$
- **Q12** The variation of the instantaneous current (I)and the instantaneous emf (E) in a circuit is as shown in fig. Which of the following statements is correct?



- (1) The voltage lags behind the current by  $\pi/2$
- (2) The voltage leads the current by  $\pi/2$

- (3) The voltage and the current are in phase
- (4) The voltage leads the current by  $\pi$
- **Q13** A direct current of 10 A is superimposed on an alternating current  $I=40\cos\omega t$  (A) flowing through a wire. The effective value of the resulting current will be
  - (1)  $10\sqrt{2} \text{ A}$
  - (2)  $20\sqrt{2}$  A
  - (3)  $20\sqrt{3}$  A
  - (4) 30 A
- Q14 In an ac circuit, the current lags behind the voltage by  $\pi/3$ . The components in the circuit are
  - (1) R and L
  - (2) R and C
  - (3) L and C
  - (4) Only R
- **Q15** An LCR circuit contains

 $R=50~\Omega, L=1~\mathrm{mH}$  and  $C=0.1~\mu F$ . The impedance of the circuit will be minimum for a frequency of

- (1)  $\frac{10^5}{2\pi}$  s<sup>-1</sup>
- (3)  $2\pi \times 10^5 \text{ s}^{-1}$
- (4)  $2\pi \times 10^6 \; \mathrm{s}^{-1}$
- **Q16** A coil has resistance  $30~\Omega$  and inductive reactance  $20~\Omega$  at  $50~\mathrm{Hz}$  frequency. If an ac source, of  $200\ V, 100\ Hz$  is connected across the coil, the current in the coil will be
  - (1)  $\frac{20}{\sqrt{13}}$  A
  - (2) 2.0 A
  - (3) 4.0 A
  - (4) 8.0 A
- Q17 In the following A.C. circuit, the rms value of the current through the source will be;



- (1)60A
- (2)55A
- (3) 78 A
- (4)96A
- Q18 Which of the following statements are CORRECT regarding series LCR AC circuit?

Statement I: The current and voltage are in same phase at resonance.

Statement II: The current at resonance does not depend on resistance.

- (1) I only
- (2) II only
- (3) I and II
- (4) Neither I nor II
- Q19 Assertion (A): If the frequency of alternating current in an ac circuit consisting of an inductance coil is increased then current gets decreased.

Reason (R): The current is inversely proportional to frequency of alternating current.

- (1) Both Assertion (A) and Reason (R) are true, and Reason (R) is a correct explanation of Assertion (A).
- (2) Both Assertion (A) and Reason (R) are true, but Reason (R) is not a correct explanation of Assertion (A).
- (3) Assertion (A) is true, and Reason (R) is false.
- (4) Assertion (A) is false, and Reason (R) is true.
- Q20 A series LCR circuit is connected across a source of emf  $E=20\sin\left(50\pi t-\frac{\pi}{3}\right)$  V. If a current  $=10\sin(50\pi t)$  A flows in the circuit, then the power dissipated through circuit is ( t is in s ):
  - (1)  $50\sqrt{2} \text{ W}$
  - (2) 50 W
  - (3)  $50\sqrt{3} \text{ W}$
  - (4) 100 W

- **Q21** An inductor of inductance L and resistor of resistance R are joined in series and connected to a source of frequency  $\omega$  and voltage V. Power dissipated in the circuit is
  - (1)  $(R^2 + \omega^2 L^2)$
- **Q22** A transformer has 2000 turns in the primary coil and carries  $1~\mathrm{A}$  current. If the input power is 2.5kW then the number of turns in the secondary coil to have 1000 V output will be:
  - (1)600
- (2)8000
- (3)800
- $(4)\ 100$
- **Q23** In LCR circuit, the capacitance is changed from C to 4C. For the same resonant frequency, the inductance should be changed from L to
  - (1) 2L
- (2) L/2
- (3) L/4
- (4) 4L
- **Q24** In a series LCR circuit, resistance  $R=10~\Omega$ and the impedance  $Z=20~\Omega$ . The phase difference between the current and the voltage
  - (1)  $30^{\circ}$
  - (2)  $45^{\circ}$
  - (3)  $60^{\circ}$
  - $(4) 90^{\circ}$
- **Q25** The output voltage of an ideal transformer, connected to a  $220\ V$  a.c. mains is  $22\ V$ . When this transformer is used to light a bulb with rating 22 V, 22 W, then the current in the primary coil of the circuit is:
  - (1) 0.1 A
  - (2) 0.2 A
  - (3) 0.4 A
  - (4) 0.6 A
- Q26 An AC voltage source of variable angular frequency  $\omega$  and fixed amplitude V is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When  $\omega$

is increased;

- (1) the bulb glows dimmer
- (2) the bulb glows brighter
- (3) total impedance of the circuit is unchanged
- (4) total impedance of the circuit increases
- Q27 The reading of the A.C. voltmeter in the network shown in figure is: (where V is in volt)



- (1) 400 V
- (2) 220 V
- (3) 200 V
- (4) Zero
- **Q28** In an a.c circuit,  $I=100\sin 200\pi t$ . The time required for the current to achieve its peak value will be:

  - (1)  $\frac{1}{100}$  sec (2)  $\frac{1}{200}$  sec (3)  $\frac{1}{300}$  sec (4)  $\frac{1}{400}$  sec
- **Q29** In series LCR circuit,  $R=100\Omega, C=\frac{200}{\pi}\mu {
  m F}$ , and  $L=\frac{500}{\pi}{
  m mH}$  are connected to an A.C. source as shown in figure.



The rms value of A.C. voltage is  $220~\mathrm{V}$  and its frequency is  $50~\mathrm{Hz}$ . In List I, some physical quantities are mentioned, while in List II, information about quantities are provided. Match the entries of List I with entries of List II.

|  |       | List I                                         | List II |                 |
|--|-------|------------------------------------------------|---------|-----------------|
|  | (i)   | Impedence of the circuit                       | (a)     | Zero            |
|  |       | Average power dissipated in the inductor is    | (b)     | 484 SI<br>units |
|  | (iii) | Average power dissipated in the capacitor is   | (c)     | 100 SI<br>units |
|  | (iv)  | Rms value of<br>voltage across<br>the resistor | (d)     | 220 SI<br>units |

- (1) (i)-(b); (ii)-(d); (iii)-(a); (iv)-(c)
- (2) (i)-(c); (ii)-(a); (iii)-(a); (iv)-(d)
- (3) (i)-(d); (ii)-(a); (iii)-(a); (iv)-(b)
- (4) (i)-(d); (ii)-(c); (iii)-(a); (iv)-(c)
- The core of a transformer is laminated so that:
  - (1) Ratio of voltage in primary and secondary may be increased
  - (2) Energy losses due to eddy currents may be minimised
  - (3) The weight of the transformer may be reduced
  - (4) Rusting of the core may be prevented

# **Answer Key**

| (2) |                                 |
|-----|---------------------------------|
| (4) |                                 |
| (3) |                                 |
| (1) |                                 |
| (2) |                                 |
| (3) |                                 |
| (1) |                                 |
|     | (4)<br>(3)<br>(1)<br>(2)<br>(3) |

Q16 (3) Q17 (2) Q18 (1) Q19 (1) Q20 (2) Q21 (2) Q22 (3) Q23 (3) Q24 (3) Q25 (1) Q26 (2) Q27 (3)

| Q7  | (1) |
|-----|-----|
| Q8  | (2) |
| Q9  | (3) |
| Q10 | (2) |
| Q11 | (4) |
| Q12 | (2) |
| Q13 | (4) |
| Q14 | (1) |
| Q15 | (1) |
|     |     |

## **Hints & Solutions**

Note: scan the QR code to watch video solution

## Q1 Text Solution:

$$I_{rms} = rac{I_0}{\sqrt{2}} = 0.707 I_0;$$

$$I_{av} = rac{2I_0}{\pi} = 0.636~I_0$$

$$I_0 > I_{rms} > I_{av}$$

## **Video Solution:**



## Q2 Text Solution:

(4)

Minimum time taken to change from rms value to zero is equal to time taken to change from zero to rms value.

$$I_{rms} = \frac{I_0}{\sqrt{2}} = I_0 \sin 2\pi nt$$
 $\sin \frac{\pi}{4} = \sin 2\pi nt$ 
 $\Rightarrow 2\pi nt = \frac{\pi}{4}$ 
 $\Rightarrow t = \frac{1}{8n}$ 

## **Video Solution:**



## Q3 Text Solution:

(3)

Here we have

$$E = E_0 \sin \omega t$$
  
= 10 sin  $[2\pi ft]$ 

At t = 
$$\frac{1}{600}$$
s  
E = 10 sin  $\left[2 \times \pi \times 50 \times \frac{1}{600}\right]$   
= 10 sin  $\left(\frac{\pi}{6}\right)$ 

## **Video Solution:**

 $=10 imesrac{1}{2}=5~ ext{V}$ 



## **Text Solution:**

(1)

Over one cycle average value of any sinusoidal source is equal to zero.

#### **Video Solution:**



## **Text Solution:**

(2)

In purely resistive circuit, current and voltage always remain in phase.

#### **Video Solution:**



## **Q6** Text Solution:

(3)

$$X_{
m L} = 2\pi
u L = 2 imes\pi imes50 imesrac{1}{\pi} = 100~\Omega$$



#### Q7 Text Solution:

Definition of rms current,  $I_{rms} = \sqrt{rac{\int_0^T I^2 dt}{\int_0^T dt}}$ If  $I=I_0\sin\omega t$  then  $I_{rms}=\sqrt{rac{1}{T}\int_0^TI^2dt}$ ;

$$I_{rms} = \sqrt{rac{1}{T}\int_0^T I_0^2 \sin^2 \omega t \; dt} = rac{I_0}{\sqrt{2}}$$

So, both statements are true.

#### Video Solution:



## **Q8** Text Solution:

(2)

$$egin{aligned} I_{rms} &= rac{E_{rms}}{X_C} = rac{E_0/\sqrt{2}}{1/\omega C} = \omega C rac{E_0}{\sqrt{2}} \ &= 100 imes 1 imes 10^{-6} imes rac{200\sqrt{2}}{\sqrt{2}} \ &= 2 imes 10^{-2} \ A \ = \ 20 \ mA \end{aligned}$$

#### **Video Solution:**



#### Q9 Text Solution:

For inductor,  $X_L = \omega L \Rightarrow X_L \propto \omega$ For capacitor,  $X_C = \frac{1}{\omega C} \Rightarrow X_C \propto \frac{1}{\omega}$ 

 $X_1$  is capacitor and  $X_2$  is inductor.

#### **Video Solution:**



#### Q10 Text Solution:

(2)

Power factor,  $\cos \phi = \frac{R}{Z} = 0$ 

#### **Video Solution:**



#### Q11 Text Solution:

(4)

$$an\phi=rac{2\pi fL}{R}=rac{2 imes 3.14 imes 50}{157} imesrac{1}{2\sqrt{3}} \ =rac{1}{\sqrt{3}} \ \phi=30^{\circ}$$

## **Video Solution:**



### Q12 Text Solution:

(2)

At t=0, phase of the voltage is zero, while phase of the current is  $-\frac{\pi}{2}$  i.e., voltage leads by



## Q13 Text Solution:

(4)

$$I_{
m net} = \sqrt{(10)^2 + \left(rac{40}{\sqrt{2}}
ight)^2} \ I_{
m net} = \sqrt{100 + 800} \ = \sqrt{900} = 30 \ {
m A}$$

## **Video Solution:**



## Q14 Text Solution:

(1)

In an inductive circuit current lags behind voltage by  $\frac{\pi}{2}$ . But to have a phase of  $\frac{\pi}{3}$  between voltage and current, it may consist L and R or L, C and R such that  $X_L > X_C$  since L, C and R is not in option so correct option is (1).

#### **Video Solution:**



## Q15 Text Solution:

(1)

Impedance of LCR circuit will be minimum at resonant frequency, so

$$egin{aligned} v_0 &= rac{1}{2\pi\sqrt{LC}} \ &= rac{1}{2\pi\sqrt{1 imes10^{-3} imes0.1 imes10^{-6}}} \ &= rac{10^5}{2\pi} ext{Hz} \end{aligned}$$

## **Video Solution:**



#### Q16 Text Solution:

(3)

At 50 Hz frequency,  $X_L=20~\Omega$ 

$$20 = 100\pi L$$

$$\frac{1}{5\pi} = L$$

When an ac source of 200 V and 100 Hz is connected,

$$X_L = \omega L = 2\pi (100) \left(rac{1}{5\pi}
ight) = 40\Omega$$
 and  $R = 30\Omega$ 

$$egin{aligned} \Rightarrow Z = \sqrt{R^2 + X_L^2} &= \sqrt{(30)^2 + (40)^2} \ &= 50 \Omega \end{aligned}$$

So 
$$I=rac{200}{50}=4~\mathrm{A}$$

## **Video Solution:**



## Q17 Text Solution:

(2)

$$egin{aligned} i_{rms} &= rac{V_{rms}}{Z} \ Z &= \sqrt{R^2 + (X_L - X_C)^2} \ Z &= \sqrt{2^2 + (4-2)^2} = 2\sqrt{2}\Omega \ \Rightarrow i_{rms} &= rac{220/\sqrt{2}}{2\sqrt{2}} = rac{220}{4} = 55 \ \mathrm{A} \end{aligned}$$

#### **Video Solution:**



### Q18 Text Solution:

(1)

At resonance,  $X_L = X_C$ 

$$\Rightarrow Z = R$$

Hence, 
$$I=rac{V}{Z}=rac{V}{R}$$

So, current at resonance depends on R.

#### **Video Solution:**



#### Q19 Text Solution:

When frequency of alternating current is increased, the inductive reactance (  $X_L = \omega L = 2\pi f L)$  of the inductive coil increases.

Current in the circuit containing inductor is given

 $I=rac{V}{X_L}=rac{V}{2\pi fL}.$  As f increases, current in the circuit decreases.

## Video Solution:



## Q20 Text Solution:

(2)

$$P = E_{rms}I_{rms}\cos\phi$$

$$=\frac{20}{\sqrt{2}} \times \frac{10}{\sqrt{2}} \times \cos \frac{\pi}{3}$$
$$=100 \times \frac{1}{2} = 50 \text{ W}$$

## **Video Solution:**



## Q21 Text Solution:

(2)

$$P = Vi\cos\phi = V\left(rac{V}{Z}
ight)\left(rac{R}{Z}
ight) = rac{V^2R}{Z^2}$$
 $= rac{V^2R}{(R^2 + \omega^2L^2)}$ 



#### **Q22 Text Solution:**

(3)

$$egin{aligned} P_0 &= I_s V_s \ I_s &= rac{2500}{1000} = 2.5 \; \mathrm{A} \ N_s &= N_p imes rac{I_p}{I_s} = 2000 imes rac{1}{2.5} \ N_s &= 800 \end{aligned}$$

#### **Video Solution:**



## Q23 Text Solution:

(3)

$$egin{aligned} \omega &= rac{1}{\sqrt{L_1 C_1}} = rac{1}{\sqrt{L_2 C_2}} \ \Rightarrow & L_2 &= rac{L_1}{4} \end{aligned}$$

## **Video Solution:**



## Q24 Text Solution:

(3)

$$\cos\phi = \frac{R}{Z} = \frac{10}{20} = \frac{1}{2} \Rightarrow \phi = 60^{\circ}$$

### **Video Solution:**



## Q25 Text Solution:

(1)

$$V_p = 220 \ {
m V} \ V_s = 22 \ {
m V}, \ P_s = V_s I_s = 22 \ {
m W}$$

Current in primary coil

$$I_p = rac{V_s I_S}{V_p} = rac{22}{220} = 0.1 ext{ A}$$

#### **Video Solution:**



#### Q26 Text Solution:

(2)

On increasing  $\omega$ , capacitive reactance decreases, so impedence of the circuit decreases and therefore, current in the circuit is increased and hence brightness increases.

## **Video Solution:**



#### Q27 Text Solution:

(3)

At resonance  $X_L = X_C$ 

$$egin{aligned} \therefore Z &= R \ I_{
m rms} &= rac{V_{
m rms}}{R} = rac{220}{22} = 10 \ {
m A} \ V_C &= I_{rms} imes X_C = 10 imes 20 = 200 \ {
m V} \end{aligned}$$



## **Q28** Text Solution:

The current takes  $\frac{T}{4}$  sec to reach the peak value. In the given question

$$rac{2\pi}{T}=200\pi \Rightarrow T=rac{1}{100}{
m sec}$$

 $\therefore$  Time to reach the peak value  $=\frac{1}{400}\sec$ 

## **Video Solution:**



## Q29 Text Solution:

(2)

$$egin{aligned} X_L &= \omega L = 2\pi imes 50 imes rac{500}{\pi} imes 10^{-3} = 50\Omega \ X_C &= rac{1}{\omega C} = rac{1}{2\pi imes 50 imes rac{200}{\pi} imes 10^{-6}} \Omega \ &= 50\Omega \end{aligned}$$

Impedence of the circuit is

$$Z=\sqrt{R^2+\left(X_L-X_C
ight)^2}=100\Omega$$

rms value of the current through the circuit is

$$I_{
m rms}=rac{220}{Z}=2.2~{
m A}$$

Average power dissipated in inductor and capacitor would be zero.

## **Video Solution:**



#### Q30 **Text Solution:**

(2)

The core of a transformer is laminated so that energy losses due to eddy currents may be minimised.

