

Sample Paper-03

Class 11th NEET (2024)

CHEMISTRY

SECTION-A

1. For the reaction,

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

at a given temperature, the equilibrium amount of CO_2 can be increased by;

- (1) Adding a suitable catalyst.
- (2) Increasing the pressure.
- (3) Decreasing the volume of container.
- (4) Increasing the amount of CO.
- 2. Match List-I with List-II to find out the correct option

List I		List II	
(A)	PCl ₅	(I)	Square planar
(B)	SF ₄	(II)	Trigonal planar
(C)	XeF ₄	(III)	See saw
(D)	BF ₃	(IV)	Trigonal bipyramidal

- $\overline{(1)}$ $\overline{(A)}$ $\overline{(IV)}$, $\overline{(B)}$ $\overline{(I)}$, $\overline{(C)}$ $\overline{(III)}$, $\overline{(D)}$ $\overline{(II)}$
- (2) (A) (IV), (B) (III), (C) (II), (D) (I)
- (3) (A) (III), (B) (IV), (C) (I), (D) (II)
- (4) (A) (II), (B) (IV), (C) (III), (D) (I)
- 3. Match **List-I** with **List-II** to find out the **correct** option.

List I		List II	
(A)	PCl ₅	(I)	sp
(B)	SF ₆	(II)	sp^3
(C)	NO_2^+	(III)	sp^3d^2
(D)	NH_4^+	(IV)	sp^3d

- (1) (A) (III), (B) (I), (C) (IV), (D) (II)
- (2) (A) (IV), (B) (III), (C) (II), (D) (I)
- (3) (A) (IV), (B) (III), (C) (I), (D) (II)
- (4) (A) (II), (B) (III), (C) (IV), (D) (I)
- **4. Statement I:** Xenon compounds XeF₂, XeF₄, XeF₆ have linear, square planar and distorted octahedral shape respectively.

Statement II: Xenon compounds XeF₂, XeF₄, XeF₆ have 6, 4 and 2 number of electrons respectively.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.

5. Statement I: The solubility of AgCl will be minimum in CaCl₂ aqueous solution.

Statement II: It is due to the common ion effect of chloride.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **6. Statement I:** Carbon dioxide turns lime water milky.

Statement II: Carbon dioxide dissolved in lime

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- **7.** Among the following which is polar:
 - (1) CO₂
- (2) SO₂
- (3) BeCl₂
- (4) Cl-C
- **8.** If nickel oxide has the formula Ni_{0.98}O, then what fraction of nickel exists as Ni³⁺?
 - (1) 96%
- (2) 4%
- (3) 98%
- (4) 2%
- **9.** In a chemical reaction,

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Xenon gas is added at constant volume.

The equilibrium;

- (1) will shifts in the reverse direction.
- (2) will shifts in the forward direction.
- (3) will not change.
- (4) will change in the increment of product.

- 10. Maximum number of hydrogen bonds per H₂O molecule is:
 - (1) 2
- (2) 4
- (3) 3
- (4) 1
- 11. Which of the following is not the right match?
 - (1) CO₂, irregular geometry.
 - (2) BF₃, regular geometry.
 - (3) NH₃, irregular geometry.
 - (4) SO₂, irregular geometry.
- 12. The molecule with the least dipole moment is:
 - (1) CHCl₃
- (2) H_2O
- (3) NH₃
- (4) CO₂
- 13. It is thought that atoms combine with each other such that the outermost orbit acquires a stable configuration of 8 electrons. If stability were attained with 6 electrons rather than with 8, what would be the formula of the stable fluoride ions?
 - (1) F^{3+}
- (2) F^{+}
- (3) F
- $(4) F^{2-}$
- Assertion: The number of radial nodes in 3s and **14.** 4p orbitals are not equal.

Reason: The number of radial nodes in any orbital depends upon the values of 'n' & 'l' which are different for 3s and 4p orbitals.

- (1) Both Assertion (A) and Reason (R) are the true, and **Reason** (**R**) is a correct explanation of Assertion (A).
- (2) Both Assertion (A) and Reason (R) are the true, but Reason (R) is not a correct explanation of Assertion (A).
- (3) Assertion (A) is true, and Reason (R) is
- (4) Assertion (A) is false, and Reason (R) is true.
- 15. **Assertion:** In Cl₂ & Br₂ bond formed by overlapping of p-p orbital.

Reason: In Cl₂ & Br₂ bond formed by overlapping of hybrid orbitals.

- (1) Both Assertion (A) and Reason (R) are the true, and Reason (R) is a correct explanation of Assertion (A).
- (2) Both Assertion (A) and Reason (R) are the true, but Reason (R) is not a correct explanation of **Assertion** (A).
- (3) Assertion (A) is true, and Reason (R) is
- (4) Assertion (A) is false, and Reason (R) is true.

- 16. If n = 3, l = 0, m = 0, then atomic number is
 - (1) 12, 13
- (2) 13, 14
- (3) 10, 11
- (4) 11, 12
- 17. A chemical reaction cannot occur at all if its;
 - (1) ΔH value is positive and ΔS value is negative.
 - (2) ΔH value is negative and ΔS value is positive.
 - (3) ΔH and ΔS value are negative but $\Delta H > T\Delta S$.
 - (4) ΔH and ΔS value are positive but $\Delta H > T\Delta S$.
- 18. The standard heat of combustion of solid boron is equal to

 - (1) $\Delta H_f^0(B_2O_3)$ (2) $\frac{1}{2}\Delta H_f^0(B_2O_3)$

 - (3) $2\Delta H_f^0(B_2O_3)$ (4) $-\frac{1}{2}\Delta H_f^0(B_2O_3)$
- A system absorbs 500 kJ heat and performs 250 19. kJ work on the surroundings. The increase in internal energy of the system is;
 - (1) 750 kJ
- (2) 250 kJ
- (3) 500 kJ
- (4) 1000 kJ
- 20. Which of the following is an amphiprotic species?
 - (1) F
- (2) Cl⁻
- (3) ClO₄⁻
- (4) HCO₃⁻
- The compound X in the reaction: 21.

- 22. The degree of ionisation of compound depends
 - (1) size of solute.
 - (2) nature of solute.
 - (3) nature of vessel.
 - (4) quantity of electricity passed.

- 23. In the reaction $H_2 + I_2 \rightleftharpoons 2HI$ at equilibrium, some H_2 is added. What happens to the equilibrium?
 - (1) It gets shifted to left
 - (2) It gets shifted to right
 - (3) It remains unchanged
 - (4) Can't be predicted
- **24.** One mole of methanol when burnt in O_2 gives out 900 kJ/mol heat. If 0.5 mole of O_2 is used, what will be the amount of heat evolved?
 - (1) 150 kJ
- (2) 300 kJ
- (3) 450 kJ
- (4) 900 kJ
- **25.** Choose the **incorrect** statement.
 - (1) The extent of dissociation of an acid depends on the strength and polarity of the H-A bond.
 - (2) The weaker the H A bond, the stronger is the acid.
 - (3) The higher the charge separation in H A bond, the higher is the acidity.
 - (4) The weaker the H A bond, the more energy is required to break the bond and acidity decreases.
- **26.** From the B_2H_6 all the following can be prepared except:
 - (1) H_3BO_3
 - (2) $[BH_2(NH_3)_2]^+ [BH_4]^-$
 - (3) $B_2(CH_3)_6$
 - (4) NaBH₄
- **27.** The stability of tetrahalides of Si, Ge, Sn and Pb increases in the order:
 - $(1) \quad Pb^{4+} < Sn^{4+} < Ge^{4+} < Si^{4+}$
 - (2) $Si^{4+} < Ge^{4+} < Sn^{4+} < Pb^{4+}$
 - (3) $Pb^{4+} < Ge^{4+} < Si^{4+} < Sn^{4+}$
 - (4) $\operatorname{Sn}^{4+} < \operatorname{Ge}^{4+} < \operatorname{Pb}^{4+} < \operatorname{Si}^{4+}$
- 28. Pure water is kept in a vessel and it remains exposed to atmospheric CO_2 which is absorbed. Then its pH will be:
 - (1) greater than 7.
 - (2) less than 7.
 - (3) 7.
 - (4) depends on ionic product of water.

- **29.** Atomic number of element Ununnilium is;
 - (1) 101
 - (2) 110
 - (3) 111
 - (4) 100
- **30.** Bleaching action of H_2O_2 is due to its:
 - (1) oxidising nature.
 - (2) reducing nature.
 - (3) acidic nature.
 - (4) thermal instability.
- **31.** Among the following pairs which has highest melting point;

Sn²⁺, Sn⁴⁺ and Pb²⁺, Pb⁴⁺

- (1) Sn⁴⁺ and Pb²⁺
- (2) Sn^{2+} and Pb^{2+}
- (3) Sn⁴⁺ and Pb⁴⁺
- (4) Sn^{4+} and Pb^{2+}
- 32. $N_2 + O_2 \rightleftharpoons 2NO$. For this reaction $K_p = 100$, then K_p for reaction, $2NO \rightleftharpoons N_2 + O_2$ will be:
 - (1) 0.01
 - (2) 0.1
 - (3) 10
 - (4) 100
- **33.** Diborane reacts with water to form:
 - (1) HBO₂
 - (2) H_3BO_3
 - (3) $H_3BO_3 + H_2$
 - (4) H_2
- **34.** Which of the following acids on decarboxylation gives isobutane _____.
 - (1) 2,2-dimethyl butanoic acid.
 - (2) 2,2-dimethyl propanoic acid.
 - (3) 3-Methyl pentanoic acid.
 - (4) 2-Methyl Hexanoic acid.
- 35. The value of log_{10} K for a reaction A \rightleftharpoons B is (Given: $\Delta r \text{ H}^{\circ}298 \text{ K} = -54.07 \text{ kJ mol}^{-1}$,

 $\Delta r \ S^{\circ}298 \ K = 10 \ J \ K-1 \ mol^{-1} \ and \ R = 8.314 \ J \ K^{-1} \ mol^{-1}; \ 2.303 \times 8.314 \times 298 = 5705)$

- (1) 5
- (2) 10
- (3) 95
- (4) 100

SECTION-B

36. Consider the following equilibrium in a closed container: $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$.

> At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements, holds true regarding the equilibrium constant (K_p) and degree of dissociation (α) ?

- (1) neither K_p nor α changes
- (2) both K_p and α changes
- (3) K_p changes but α does not change
- (4) K_p does not change but α changes
- **37.** Borax glass is a mixture of:
 - (1) $NaBO_2 + B_3O_3$
 - (2) $Na_2B_4O_7 + B_2O_3$
 - (3) $H_2B_4O_7 + B_2O_3$
 - (4) $Na_2B_4O_7 \cdot 10H_2O + B_2O$
- **38.** The order of decreasing stability of the anions
 - (I) (CH₃)₃CH⁻
- (II) (CH₃)₂CH⁻
- (III) CH₃ CH₂⁻
- $(IV) C_6 H_5 CH_2^-$
- (1) I > II > III > IV
- (2) IV > III > II > I
- $(3) \quad IV > I > II > III$
- $(4) \quad I > II > IV > III$
- **39.** The most stable carboxylate ion among the following is:

 - (1) $H_3C C O^-$ (2) $Cl CH_2 C O^-$ (3) $F CH_2 C O^-$ (4) $(F)_2 CH C O^-$
- **40.** Reaction of HBr with propene in the presence of peroxide gives:
 - (1) 3-bromo propane.
 - (2) allyl bromide.
 - (3) n-propyl bromide.
 - (4) isopropyl bromide.

- Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO3 and conc. H2SO4. In the mixture, nitric acid acts as a/an:
 - (1) catalyst.
- (2) reducing agent.
- (3) acid.
- (4) base.
- 42. The oxidation state of Cr in Cr₂O₃ is
 - (1) +3
- (2) +7
- (3) -7
- (4) +5
- 43. Inorganic benzene is
 - (1) $B_3N_3H_{12}$
- (2) $B_3N_3H_6$
- $(3) (BN)_6$
- (4) $C_6H_6Cl_6$
- 44. Arrange the following resonating structures of vinyl chloride in order of decreasing stability.

$$H_2C = CH - Cl \longleftrightarrow \overset{\Theta}{C}H_2 = \overset{\Theta}{Cl} \longleftrightarrow \overset{\Theta}{C}H_2 - \overset{\Theta}{C}H = Cl$$
(II) (III)

- (1) (I) > (II) > (III)
- (2) (III) > (II) > (I)
- (3) (II) > (I) > (III)
- (4) (I) > (II) = (III)
- 45. The energy of an exited H-atom is -3.4 eV, angular momentum of e⁻ in the given orbit is:

- (4) 1
- 46. Select the correct order of stability of ions:
 - (1) $Pb^{+2} > Pb^{4+}$ (2) $Sn^{+2} > Sn^{4+}$
 - (3) $T1^{+3} > T1^{+}$
- (3) $Bi^{+5} > Bi^{+3}$
- 47. Mendeleev's Periodic Law is based on:
 - (1) atomic number.
 - (2) atomic weight.
 - (3) number of neutrons.
 - (4) all of these.
- 48. Which of the following is more stable?
 - (1) Pb^{4+}
- (2) Sn^{4+}
- (3) Ge^{4+}
- (4) Si^{4+}

- **49.** Which of the following is isoelectronic with neon?
 - (1) O^{2-}
 - (2) F
 - (3) Mg
 - (4) Na

- **50.** In C-60 all carbon atoms are:
 - (1) sp²-hybridised with a soccer ball shape.
 - (2) sp^3 -hybridised with a square antiprism shape.
 - (3) sp²-hybridised with a diamond shape.
 - (4) sp²-hybridised with a graphite like shape.

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if