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Design Against Static Load 

1.1 

1 
BASIC CALCULUS 

1.1.  Introduction 

1.1.1 Limits, Continuity and Differentiability 

(a)  As x tends to a (x → a)    x is moving towards a  

 A value l is said to be limit of a function f(x) at x → a if f(x) → l as x → a.  

 It is mathematically defined as  

      𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑙 = 𝑙𝑖𝑚
𝑥→𝑎−

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)  

 That is, Limit exist at any point, if LHL = RHL   

 A function f(x) is said to be continuous at x = a, if 

  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑙 = 𝑓(𝑎) = 𝑓(𝑥)|𝑥=𝑎 

        That is, for a function to be continuous at any point, RHL = LHL = Value of function at point x = a. 

Note: • For 𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) to exist, the function need not be continuous at x = a. 

  • But for f(x) to be continuous at x = a, 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) should exist. 

 

• Continuity from Left : ( ) ( )lim
x a

f x f a
−→

=  

• Continuity from Right : If lim ( ) ( )
x a

f x f a
+→

=  

Continuity in an Open Interval 

 A function ‘f ’ is said to be continuous in open interval (a, b), if it is continuous at each point of open interval. 

Continuity in a Closed Interval 

 Let ‘f ’ be a function defined on the closed interval (a, b) then ‘f ’ is said to be continuous on the closed interval [a, b], if 

it is : 

 1. Continuous from the right at a and 

 2. Continuous from the left at b and  

 3. Continuous on the open interval (a, b). 



  

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 1.2 

Engineering Mathematics 

 
Fig. 1.1 

(b)  Concept of differentiability  

 A continuous function f(x) is said to be differentiable at x = a, if  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 exists, that is, RHL and LHL exist at a point 

under consideration in 𝑓′(𝑥). 

 𝑓′(𝑥)|𝑥=𝑎 = 𝑓′(𝑎) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
     

 𝑓′(𝑎) = 𝑡𝑎𝑛 𝜃, where 𝜃 is the angle made by the tangent to the curve at x=a with x – axis. 

(c)  Some Standard Derivatives   

 (i)  
𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛. 𝑥𝑛−1  

 (ii)  
𝑑

𝑑𝑥
(𝑠𝑖𝑛 𝑥) = 𝑐𝑜𝑠 𝑥 

 (iii)  
𝑑

𝑑𝑥
(𝑐𝑜𝑠 𝑥) = −𝑠𝑖𝑛 𝑥 

 (iv)  
𝑑

𝑑𝑥
(𝑡𝑎𝑛 𝑥) = 𝑠𝑒𝑐2 𝑥 

 (v)  
𝑑

𝑑𝑥
(𝑐𝑜𝑡 𝑥) = −𝑐𝑜𝑠𝑒𝑐2𝑥 

(vi)  
𝑑

𝑑𝑥
(𝑠𝑒𝑐 𝑥) = 𝑠𝑒𝑐 𝑥 . 𝑡𝑎𝑛 𝑥 

 (vii)  
𝑑

𝑑𝑥
(𝑐𝑜𝑠𝑒𝑐 𝑥) = – 𝑐𝑜𝑠𝑒𝑐 𝑥 𝑐𝑜𝑡 𝑥 

 (viii) 
𝑑

𝑑𝑥
(𝑠𝑖𝑛−1 𝑥) =

1

√1−𝑥2
; −1 < 𝑥 < 1 

 (ix)  
𝑑

𝑑𝑥
(𝑐𝑜𝑠−1 𝑥) =

−1

√1−𝑥2
, −1 < 𝑥 < 1 

 (x)  
𝑑

𝑑𝑥
(𝑡𝑎𝑛−1 𝑥) =

1

1+𝑥2 
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 (xi)  
𝑑

𝑑𝑥
(𝑐𝑜𝑡−1 𝑥) =

−1

1+𝑥2 

 (xii)  
𝑑

𝑑𝑥
(𝑠𝑒𝑐−1 𝑥) =

1

|𝑥|√𝑥2−1
 

 (xiii) 
𝑑

𝑑𝑥
(𝑐𝑜𝑠𝑒𝑐−1 𝑥) =

−1

|𝑥|√𝑥2−1
 ; |x| > 1  

 (xiv) 
𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑎 𝑥) =

1

𝑥 𝑙𝑜𝑔𝑒 𝑎
 

 (xv)  
𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑒 𝑥) =

1

𝑥
 

 (xvi) 
𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥 . 𝑙𝑜𝑔𝑒 𝑎 

 (xvii) 
𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥 

 (xviii)  
𝑑

𝑑𝑥
(|𝑥|) =

|𝑥|

𝑥
, (𝑥 ≠ 0) 

 (xix) 
𝑑

𝑑𝑥
(𝑥𝑥) = 𝑥𝑥(1 + 𝑙𝑜𝑔𝑒 𝑥) 

 (xx)  
𝑑

𝑑𝑥
(𝑠𝑖𝑛ℎ 𝑥) = 𝑐𝑜𝑠 ℎ 𝑥 

(d)  Product rule of differentiation  

 (i) 
𝑑

𝑑𝑥
(𝑓(𝑥). 𝑔(𝑥)) = 𝑓(𝑥). 𝑔′(𝑥) + 𝑓′(𝑥). 𝑔(𝑥)  

 (ii) 𝑑(𝑢𝑣𝑤) = 𝑢𝑣𝑤′+ 𝑢𝑣′𝑤 + 𝑢′𝑣𝑤  

(e) Quotient rule of differentiation 

 
𝑑

𝑑𝑥
(
𝑓(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥).𝑓′(𝑥)−𝑓(𝑥).𝑔′(𝑥)

(𝑔(𝑥))
2 , (𝑔(𝑥) ≠ 0) 

(f) Logarithmic differentiation: 

 Taking log might help in differentiation of a function. For example if uy v=  then we can take log both side and 

differentiable to get 
dy

dx
 

(g) Differentiation in parametric from : 

 If we write x and y in term of find variable ‘t’ that is x = f(t), y = (t), then 
/

/

dy dy dt

dx dx dt
=  

(h)  Greatest Integer function / step function / integer part function  

 𝑓(𝑥) = [𝑥] = 𝑛, ∀ 𝑛 ≤ 𝑥 < 𝑛 + 1where, 𝑛 ∈ 𝑍                                       

 𝑙𝑖𝑚
𝑥→𝑎

[𝑥] = ∄  if a is an integer ( ∄ = do not exist) 

 L.H.L. = 𝑙𝑖𝑚
𝑥→𝑎−

[𝑥] = 𝑎 − 1 

 R.H.L. = 𝑙𝑖𝑚
𝑥→𝑎+

[𝑥] = 𝑎 
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Fig.1.2. Greatest Integer 

(i)  Properties of Limits 

 (i) 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥) ± 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) ± 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) 

 (ii) 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥). 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥). 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) 

 (iii) 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥)
, (𝑙𝑖𝑚

𝑥→𝑎
𝑔(𝑥) ≠ 0) 

 (iv) If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) exists and 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = ∄, then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥). 𝑔(𝑥) may exist  

Example: Let 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥, 𝑔(𝑥) =
1

𝑥
, 𝑙𝑖𝑚
𝑥→0

𝑓(𝑥) = 0,  𝑙𝑖𝑚
𝑥→0

1

𝑥
= ∄  

   But  𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛 𝑥 .
1

𝑥
= 1  

 (v) Indeterminate form III (00, 1, 0) 

  If  
( )

lim ( )
x

x a
y f x



→
=  

  Then,  log lim ( )log ( )
x a

y x f x
→

=   

  Thus 00, 1, 0 will convert into ×0 from which can be solved easily. 

 (vi) If  𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

0

0
(or)

∞

∞
, then 𝑙𝑖𝑚

𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
≠ (

0

0
) 

  If 𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
=

0

0
(or)

∞

∞
, then 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′′(𝑥)

𝑔′′(𝑥)
and so on  

 (vii)  If 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥). 𝑔(𝑥)) = 0 × ∞ ⇒ 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

(
1

𝑔(𝑥)
)
=

0

0
 (Apply L- Hospital Rule again) 
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(j)  Some Standard Limits 

 (i)  𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛 𝑥

𝑥
= 1 

 (ii)  𝑙𝑖𝑚
𝑥→0

𝑡𝑎𝑛 𝑥

𝑥
= 1 

 (iii)  𝑙𝑖𝑚
𝑥→0

1−𝑐𝑜𝑠 𝑎𝑥

𝑥2 =
𝑎2

2
 

 (iv)  𝑙𝑖𝑚
𝑥→∞

𝑠𝑖𝑛 𝑥

𝑥
= 0 

 (v)  𝑙𝑖𝑚
𝑥→∞

𝑐𝑜𝑠 𝑥

𝑥
= 0 

 (vi)  𝑙𝑖𝑚
𝑥→0

(1 + 𝑎𝑥)𝑏/𝑥 = 𝑒𝑎𝑏 

 (vii)  𝑙𝑖𝑚
𝑥→∞

(1 +
𝑎

𝑥
)
𝑏𝑥

= 𝑒𝑎𝑏 

 (viii) 𝑙𝑖𝑚
𝑥→0

(
𝑎𝑥+𝑏𝑥

2
)
1/𝑥

= √𝑎𝑏 

 (ix)  𝑙𝑖𝑚
𝑥→0

(
1𝑥+2𝑥+3𝑥+....+𝑛𝑥

𝑛
)
1/𝑥

= √𝑛!
𝑛

 

 (x)  𝑙𝑖𝑚
𝑥→0

𝑎𝑥−1

𝑥
= 𝑙𝑜𝑔𝑒 𝑎 ; 𝑙𝑖𝑚

𝑥→0

𝑒𝑥−1

𝑥
= 1 

 (xi)  𝑙𝑖𝑚
𝑥→0

𝑥. 𝑠𝑖𝑛 (
1

𝑥
) = 0 

1.2  Mean Value Theorems 

1.2.1 Lagrange’s Mean Value Theorem (LMVT) 

 If 𝑓(𝑥) is continuous in [a, b] and it is differentiable in (a, b) then ∃ at least one point ‘c’ such that c   (a, b) and  

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

 Here 𝑓′(𝑐)  slope of tangent to f(x) at x = c. 

 Tangent at x = c is parallel to the line connecting the points A and B  

 
Fig.1.3. LMVT 
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 1.2.2  Rolle’s Mean Value Theorem 

If 𝑓(𝑥) is continuous in [a, b] and differentiable in (a, b) and f(a) = f(b) then  at least one-point c  (a, b) such that 𝑓′(𝑐) = 0.                    

 
Fig. 1.4. Rolle’s mean value 

1.2.3  Cauchy’s Mean Value Theorem 

If f(x) and g(x) are continuous in [a, b] and differentiable in (a, b) then  at least one value of ‘c’ such that c  (a, b) and 

  
𝑔′(𝐶)

𝑓′(𝐶)
=

𝑔(𝑏)−𝑔(𝑎)

𝑓(𝑏)−𝑓(𝑎)
 

1.3  Increasing and Decreasing Functions 

1.3.1 Increasing Functions  

A function f(x) is said to be increasing, if 𝑓(𝑥1) < 𝑓(𝑥2) ∀ 𝑥1 < 𝑥2 

   Or 

A function f(x) is said to be increasing, if f(x) increases as x increases.  

 For a function 𝑓(𝑥) to be increasing at the point x=a, 𝑓′(𝑎) > 0. 

Example:  

 ex, log ex   →  Monotonically increasing functions 

 sin x in (0, /2) → non-monotonic functions 

1.3.2 Decreasing Functions 

 A function f(x) is said to be a decreasing function, if 𝑓(𝑥1) > 𝑓(𝑥2)∀𝑥1 < 𝑥2 

 A function 𝑓(𝑥) is said to be decreasing function, if 𝑓(𝑥) decreases as x increases.  

 Example: 𝑒−𝑥 →Monotonically decreasing function, sin 𝑥 in (
𝜋

2
, 𝜋)  

1.4.  Concept of Maxima and Minima 

Let f(x) be a differentiable function, then to find the maximum (or) minimum of f(x). 

(1)  Find f (x) and equate to zero. 
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(2) Solve the resulting equation for x. Let its roots be a1, a2, . . . then f(x) is stationary at x = a1, a2, . . . . . . Thus x = a1, a2, . . . 

. . . are the only points at which f(x) can be maximum or a minimum. 

(3) Find f (x) and substitute in it by terms x = a1, a2, . . . . . . wherever f (x) is negative, we have a maximum and wherever 

f (x) is positive, we have a minimum. 

(4) If f (a1) = 0, find f (x) put x = a1 in it. If f (a1)  0, there is neither a maximum nor a minimum at x = a1. If f (a1) = 0, 

find f iv(x) and put x = a1 in it. If f iv(a1) is negative, we have maximum at x = a1, if it is positive there is a minimum at 

x = a1. If f 
iv(a1) is zero, we must find f v(x), and so on. Repeat the above process for each root of the equation f (x) = 0. 

Example:  x = 0 is a critical point of f(x) = x3 

 

Fig. 1.5. Graph of 𝒙𝟑 

𝑓(𝑥) = 𝑥3 

   𝑓′(𝑥) = 3𝑥2 = 0       x = 0 

  𝑓′′(𝑥) = 6𝑥 ⇒ 𝑓′′(0) = 6(0) = 0 

• Global maxima and minima : 

 We first find local maxima and minima and then calculate the value of ‘f’ at boundary points of interval given e.g. (a, b) 

we find f(a) and f(b) and compare it with the values of local maxima and minima. The absolute maxima and minima can 

be decided then. 

1.5. Taylor Series  

 If f(x) is continuously differentiable (𝑓′(𝑥), 𝑓"(𝑥), 𝑓′′′(𝑥), . . . . . exists) then the Taylor series expansion of f(x) about the 

point x = a is given by 

 𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3. +. . . ∞ 

 If a = 0, then 𝑓(𝑥) = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3+. . . . . ∞ (Remember that Mc-Lauren Series is same as Taylor 

Series if a = 0) 

 The coefficient of (x – a)n in the Taylor series expansion of f(x) is 
𝑓𝑛(𝑎)

𝑛!
. 

 The general expansion of Taylor series is given by 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ.
𝑓′(𝑥)

1!
+ ℎ

2.
𝑓′′(𝑥)

2!
+ ℎ

3.
𝑓′′′(𝑥)

3!
+. . . . . .∞   



  

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 1.8 

Engineering Mathematics 

• Finding the expansion of ex about x = 0  

 𝑓(𝑥) = 𝑒𝑥 ⇒ 𝑓(0) = 𝑒0 = 1  

 𝑓′(𝑥) = 𝑒𝑥 ⇒ 𝑓′(0) = 𝑒0 = 1; 𝑓"(0) = 𝑓′′′(0) = 𝑓′′′′(0) =. . . . . = 1  

 𝑓(𝑥) = 𝑒𝑥 = 1 + (𝑥 − 0)
1

1!
+ (𝑥 − 0)2.

1

2!
+ (𝑥 − 0)3.

1

3!
+. . . . ..   

  𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+. . . ..  

1.6 Integral Calculus  

 If F(x) is anti-derivative of f(x). That is, continuous and differentiable in (a, b), then we write ∫ 𝑓(𝑥)
𝑥=𝑏

𝑥=𝑎
𝑑𝑥 = 𝐹(𝑏) −

𝐹(𝑎). Here f(x) is integrand 

 If 𝑓(𝑥) > 0 ∀𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡ℎ𝑒𝑛 ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
 represents the shaded area in the given figure. 

y = f x( )

x=a x=b  
Fig.1. 6. Integration of continuous function 

1.6.1 Mean Value Theorem of Integration  

 If f(x) is continuous in [a, b] and differentiable in (a, b) then ‘’ atleast one-point c (a, b) such that   

 𝑓(𝑐) =
∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥

(𝑏−𝑎)
  

 
Fig. 1.7. Mean value of integration 
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1.7.  Newton-Leibnitz Rule  

If f(x) is continuously differentiable and (x), (x) are two functions for which the 1st derivative exists, then  

𝑑

𝑑𝑥
(∫ 𝑓(𝑥)𝑑𝑥

𝜓(𝑥)

𝜙(𝑥)

) = 𝑓(𝜓(𝑥)). 𝜓′(𝑥) − 𝑓(𝜙(𝑥)). 𝜙′(𝑥) 

Example:  
𝑑

𝑑𝑥
(∫ 𝑠𝑖𝑛 𝑥

𝑥2

𝑥
𝑑𝑥) = 𝑠𝑖𝑛(𝑥2) . 2𝑥 − 𝑠𝑖𝑛 𝑥 . 1 = 2𝑥 𝑠𝑖𝑛(𝑥2) − 𝑠𝑖𝑛 𝑥  

1.8.  Some Standard Integrals  

1. ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶, (𝑛 ≠ −1) 

2. ∫
1

𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑒 | 𝑥| + 𝐶 

3. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 = −𝑐𝑜𝑠 𝑥 + 𝐶 

4. ∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑠𝑖𝑛 𝑥 + 𝐶 

5. ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑓(𝑥)| + 𝐶 

6. ∫ 𝑡𝑎𝑛 𝑥 𝑑𝑥 = −∫−
𝑠𝑖𝑛 𝑥

𝑐𝑜𝑠 𝑥
𝑑𝑥 = − 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠 𝑥| + 𝐶 

  ∫ 𝑡𝑎𝑛 𝑥 𝑑𝑥 = 𝑙𝑜𝑔𝑒 | 𝑠𝑒𝑐 𝑥 | + 𝐶 

7. ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥 = ∫
𝑐𝑜𝑠 𝑥

𝑠𝑖𝑛 𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑠𝑖𝑛 𝑥| + 𝐶 = − 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠𝑒𝑐 𝑥| + 𝐶 

8. ∫ 𝑠𝑒𝑐 𝑥 𝑑𝑥 = ∫
𝑠𝑒𝑐 𝑥(𝑠𝑒𝑐 𝑥+𝑡𝑎𝑛 𝑥)

(𝑠𝑒𝑐 𝑥+𝑡𝑎𝑛 𝑥)
𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥| + 𝐶 

9. ∫ 𝑐𝑜𝑠𝑒𝑐 𝑥𝑑𝑥 = 𝑙𝑜𝑔𝑒|𝑐𝑜𝑠𝑒𝑐 𝑥 − 𝑐𝑜𝑡 𝑥| + 𝐶 

10. ∫𝑎𝑥𝑑𝑥 =
𝑎𝑥

𝑙𝑜𝑔𝑒 𝑎
+ 𝐶 

11. ∫
1

𝑥.𝑙𝑜𝑔𝑒 𝑎
𝑑𝑥 = 𝑙𝑜𝑔𝑎 𝑥 + 𝐶 

12. ∫ 𝑥𝑥(1 + 𝑙𝑜𝑔𝑒 𝑥) 𝑑𝑥 = 𝑥𝑥 + 𝐶 

13. ∫𝑓(𝑥) . 𝑓′(𝑥)𝑑𝑥 =
1

2
(𝑓(𝑥))

2
+ 𝐶 

14. ∫
𝑓′(𝑥)

√𝑓(𝑥)
𝑑𝑥 = 2.√𝑓(𝑥) + 𝐶 

15. If f(x), g(x) are two functions. that are differentiable, then  

 ∫𝑓(𝑥) 𝑔(𝑥)𝑑𝑥 = 𝑓(𝑥). ∫ 𝑔(𝑥) 𝑑𝑥 − ∫[𝑓′(𝑥) 𝑔(𝑥)]𝑑𝑥 + 𝐶 
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 Before integrating the product, the functions f(x) and g(x) are to be arranged according to the ILATE Principle.  

 Here, ILATE stands for INVERSE LOGARITHMIC ALGEBRAIC TRIGONOMETRIC EXPONENTIAL.   

1.9 Properties of Definite Integrals  

1. If f(x) is differentiable in interval (a, b), then  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = −∫ 𝑓(𝑥)

𝑎

𝑏
𝑑𝑥   

2. If  a point c  (a, b) such that f(x) is not differentiable, then  

 ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(𝑥)

𝑐

𝑎
𝑑𝑥 + ∫ 𝑓(𝑥)

𝑏

𝑐
𝑑𝑥  

3. If f(x) is continuously differentiable function,  

 ∫ 𝑓(𝑥)
𝑎

−𝑎
𝑑𝑥 = 2 × ∫ 𝑓(𝑥)

𝑎

0
𝑑𝑥; if 𝑓(−𝑥) = 𝑓(𝑥), (“f(x) is even function”) 

               = 0;  if 𝑓(−𝑥) = −𝑓(𝑥), ("𝑓(𝑥) is odd function")   

4. ∫ 𝑓(𝑥)
2𝑎

0
𝑑𝑥 = 2 × ∫ 𝑓(𝑥)

𝑎

0
𝑑𝑥, if 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥) 

5. ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(𝑎 + 𝑏 − 𝑥)

𝑏

𝑎
𝑑𝑥       

6. ∫
𝑓(𝑥)

𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥)

𝑏

𝑎
= (

𝑏−𝑎

2
) 

Example: 

 (i) ∫
𝑠𝑖𝑛 𝑥

𝑠𝑖𝑛 𝑥+𝑐𝑜𝑠 𝑥
=

𝜋

4

𝜋/2

0
 

 (ii) ∫
1

1+√𝑡𝑎𝑛 𝑥
𝑑𝑥 = ∫

1

1+(
√𝑠𝑖𝑛𝑥

√𝑐𝑜𝑠𝑥
)
𝑑𝑥 = ∫

√𝑐𝑜𝑠 𝑥

√𝑐𝑜𝑠 𝑥+√𝑠𝑖𝑛 𝑥
𝑑𝑥 =

𝜋

4

𝜋/2

0

𝜋/2

0

𝜋/2

0
 

 (iii) ∫
√𝑥

√𝑥+√5−𝑥

3

2
= (

3−2

2
) =

1

2
 

 (iv) ∫
√𝑡𝑎𝑛 𝑥

√𝑡𝑎𝑛 𝑥+√𝑐𝑜𝑡 𝑥

𝜋/2

0
𝑑𝑥 =

𝜋

4
 

7. ∫ 𝑠𝑖𝑛𝑚 𝑥
𝜋/2

0
𝑑𝑥 = ∫ 𝑐𝑜𝑠𝑚 𝑥  𝑑𝑥

𝜋/2

0
=

(𝑚−1)×(𝑚−3)×(𝑚−5)

𝑚×(𝑚−2)×(𝑚−4)
×. . . (

1

2
) (or)

2

3
× 𝐾 

 Where K = /2 if m is even  

    = 1 if m is odd.  

8. ∫
𝑑𝑥

𝑎2 𝑐𝑜𝑠2 𝑥+𝑏2 𝑠𝑖𝑛2 𝑥

𝜋

0
=

𝜋

𝑎𝑏
 

9. ∫
𝑑𝑥

𝑎2 𝑐𝑜𝑠2 𝑥+𝑏2 𝑠𝑖𝑛2 𝑥

𝜋/2

0
=

𝜋

2𝑎𝑏
 

1.10 Length of a Curve  

 (a) The length of the arc of the curve y = f(x) between the points where x = a and x = b is 
2

1
b

a

dy
s dx

dx

  
= +  

   
  
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Fig.1.8. Length of the curve  

 

  (b) The length of the arc of the curve ( )x f y=  between the points where y = a and y = b, is 

2

1
b

a

dx
s dy

dy

  
 = +  
   

  

  (c) The length of the arc of the curve ( ), ( )x f t y f t= =  between the points where t = a and t = b, is 

2 2
b

a

dx dy
s dt

dt dt

   
= +   

   
  

  (d)  The length of the arc of the curve ( ),r f=   between the points where  =  and  = , is 
2

2 dr
s r d

d





  
= +   

   
  

1.11 Surface Area of Solid generated by revolving a curve about a fixed axis  

Elemental Surface Area  

𝑑𝐴 = 2𝜋𝑦 × 𝑑𝑠 = 2𝜋𝑦𝑑𝑠  

 Total surface area = A = ∫ 2𝜋𝑦
𝑥=𝑏

𝑥=𝑎
√1 + (

𝑑𝑦

𝑑𝑥
)
2
𝑑𝑥  

 

Fig.1.9. Surface area 
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1.12 Volume of the solid 

A. The volume of the solid obtained by revolving the curve y = f (x) between the lines x = a and x = b is given by  

  𝑉 ≈ ∫ 𝜋𝑦2𝑑𝑥
𝑥=𝑏

𝑥=𝑎
 

 

Fig. 1.10. Volume of the solid 

 

B. Revolution about the y-axis. Interchanging x and y in the above formula, we see that the volume of the solid generated 

by the revolution, about y-axis, of the area, bounded by the curve ( ),x f y=  the y-axis and the abscissa y = a, y = b is 

2b

a
x dy . 

1.13 Gamma Function  

The integral ∫ 𝑒−𝑥 . 𝑥𝑛−1∞

0
𝑑𝑥, (𝑛 > 0) is called Gamma function of n. It is denoted by Γ𝑛 = ∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥

∞

0
 . 

Note :  

/2

0

1 1

2 2
sin cos

2
2

2

m n

m n

x xdx
m n


+ +   

    
   =

+ + 
 

 

  

 Where (x) is called the gamma function. 

1.13.1 Properties of Gamma Function     

(i) Γ𝑛 = (𝑛 − 1)!        (ii) Γ(𝑛 + 1) = (𝑛)! 

(iii) Γ(𝑛 + 1) = 𝑛Γ𝑛        (iv) Γ (
1

2
) = √𝜋  

1.14 Beta Function 

The function  (m, n) = ∫ 𝑥𝑚−1. (1 − 𝑥)𝑛−11

0
𝑑𝑥 (m, n > 0) is called  function of m and n.  
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1.14.1 Properties of  function 

(i) 𝛽(𝑚, 𝑛) =
Γ𝑚.Γ𝑛

Γ(m+𝑛)
 

(ii) 𝛽(𝑚, 𝑛) = 𝛽(𝑛,𝑚) 

(iii) 𝛽(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

0
𝑑𝑥 

 𝛽(𝑛,𝑚) = ∫
𝑥𝑛−1

(1+𝑥)𝑚+𝑛

∞

0
𝑑𝑥 

(iv) 𝑠𝑖𝑛𝑝𝜃. 𝑐𝑜𝑠𝑞 𝜃 𝑑𝑥 =
1

2
𝛽 (

𝑝+1

2
,
𝑞+1

2
) , (𝑝, 𝑞 > −1)   

1.15 Area between the curves 

If the function f(x) > g(x) for all values of x between x=a and x=b then  

 𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
− ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 ⇒ 𝐴 = ∫ (𝑓(𝑥) − 𝑔(𝑥))

𝑏

𝑎
𝑑𝑥  

 
 

Fig. 1.11. Area under curve 

Note : Area bounded by curve ( )r f=   between  =   and  is 
21

2
r d




  

1.16 Multi Variable Calculus 

(a)  Continuity of a function  

A function f(x, y) is said to be continuous at (a, b), if 𝑙𝑖𝑚
𝑥→𝑎
𝑦→𝑏

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏)   

(b) Differentiation of a two-variable function  

 If f(x, y) is a continuous function, then the derivative of f(x, y) with respect to x treating y as constant is given by  

          p = 
𝜕𝑓

𝜕𝑥
= 𝑙𝑖𝑚

ℎ→0

𝑓(𝑥+ℎ,𝑦)−𝑓(𝑥,𝑦)

ℎ
  

 The derivative of f(x, y) with respect to y treating x as constant is given by 

𝑞 =
𝜕𝑓

𝜕𝑦
= 𝑙𝑖𝑚

𝑘→0

𝑓(𝑥, 𝑦 + 𝑘) − 𝑓(𝑥, 𝑦)

𝑘
 

(c)  Homogenous Function  

 A function f (x, y) is said to be homogenous function of degree ‘n’ if 𝑓(𝑘𝑥, 𝑘𝑦) = 𝑘𝑛. 𝑓(𝑥, 𝑦).  



  

 GATE WALLAH COMPUTER SCIENCE & INFORMATION TECHNOLOGY HANDBOOK 1.14 

Engineering Mathematics 

Example:  𝑓(𝑥, 𝑦) = 𝑥3 − 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

  𝑓(𝑘𝑥, 𝑘𝑦) = (𝑘𝑥)3 − 3(𝑘𝑥)2(𝑘𝑦) + 3(𝑘𝑥). (𝑘𝑦)2 + (𝑘𝑦)3 

  =  𝑘3(𝑥3 − 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3) 

  = 𝑘3. 𝑓(𝑥, 𝑦)    𝑓(𝑥, 𝑦) is a homogenous function of degree ‘3’.  

(d) Euler’s Theorem 

 If f (x, y) is a homogeneous function of degree ‘n’ then  

 (i) 𝑥.
𝜕𝑓

𝜕𝑥
+ 𝑦.

𝜕𝑓

𝜕𝑦
= 𝑛𝑓  

 (ii) 𝑥2.
𝜕2𝑓

𝜕𝑥2 + 2𝑥𝑦
𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑦2 𝜕2𝑓

𝜕𝑦2 = 𝑛(𝑛 − 1)𝑓 

  If f(x, y) = g(x, y) + h(x, y) + (x, y) where g (x, y), h (x, y) and (x, y) are homogenous functions of degrees m, n and 

p respectively, then  

  𝑥.
𝜕𝑓

𝜕𝑥
+ 𝑦.

𝜕𝑓

𝜕𝑦
= 𝑚.𝑔(𝑥, 𝑦) + 𝑛. ℎ(𝑥, 𝑦) + 𝑝. 𝜙(𝑥, 𝑦)  

  𝑥2.
𝜕2𝑓

𝜕𝑥2 + 2𝑥𝑦.
𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑦2.

𝜕2𝑓

𝜕𝑦2 = 𝑚(𝑚 − 1). 𝑔(𝑥, 𝑦) + 𝑛(𝑛 − 1). ℎ(𝑥, 𝑦) + 𝑝(𝑝 − 1). 𝜙(𝑥, 𝑦)  

(e) Total derivative: 

 (i)  If u = f(x, y) and if x = (t), y = v(t) then . .
du u dx u dy

dt x dt y dt

 
= +

 
 

 (ii) If u be a function of x and y, where y is a function of x, then .
du u u dy

dx x y dx

 
= +

 
 

 (iii) If u = f(x, y) and 1 1 2( , )x f t t=  and 2 1 2( , ),y f t t=  then  

  
1 1 1

. .
u u x u y

t x t y t

    
= +

    
 and 

2 2 2

. .
u u x u y

t x t y t

    
= +

    
 

 (iv) If x and y are connected by an equation of the form f(x, y) = 0, then 
/

/

dy f x

dx f y

 
= −

 
 

(f) Concept of Maxima and Minima in Two Variables 

 If f(x, y) is a two-variable differentiable function, then to find the maxima (or) minima. 

Step-1: Calculate 𝑝 =
𝜕𝑓

𝜕𝑥
 and 𝑞 =

𝜕𝑓

𝜕𝑦
 and equate p = 0, q = 0 

  Let (x0, y0) be a stationary point. 

Step-2: Calculate r, s, t where 𝑟 =
𝜕2𝑓

𝜕𝑥2|
(𝑥0,𝑦0)

;  𝑠 =
𝜕2𝑓

𝜕𝑥.𝜕𝑦
|
(𝑥0,𝑦0)

; 𝑡 =
𝜕2𝑓

𝜕𝑦2|
(𝑥0,𝑦0)

  

Case (i):  If 𝑟𝑡 − 𝑠2 > 0 and r > 0, then the function f (x, y) has minimum at (x0, y0) and the minimum value is f(x0, y0). 

Case (ii):  If 𝑟𝑡 − 𝑠2 > 0 and r < 0, then the function f (x, y) has maximum at (x0, y0) and the maximum value is 
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    f(x0, y0). 

Case (iii): If 𝑟𝑡 − 𝑠2 < 0 ; then we cannot comment on the existence of maxima and minima.  

   Such stationary points where 𝑟𝑡 − 𝑠2 = 0  are called saddle points.        

(g)  Concept of Constraint Maxima and Minima (Method of Lagrange’s unidentified multipliers). 

 If f(x, y, z) is a continuous and differentiable function, such that the variables x, y and z are related/constrained by the 

equation (x, y, z) = C then to calculate the extreme value of f(x, y, z) using Lagrange’s Method of unidentified multipliers.  

Step-1: Form the function F(x, y, z) = f(x, y, z) + {(x, y, z) – C}, where 𝜆 is a multiplier. 

Step-2:  Calculate 
𝜕𝐹

𝜕𝑥
, 
𝜕𝐹

𝜕𝑦
 and 

𝜕𝐹

𝜕𝑧
 and equate them to zero  

Step-3:  Equate the values of  from the above 3 equations and obtain the relation between the variables x, y and z.  

Step-4:  Substitute the relation between x, y and z in (x, y, z) = C and get the values of x, y, z. Let they be (x0, y0, z0). 

Step-5:  Calculate f(x0, y0, z0) 

  The value f(x0, y0, z0) is the extreme value of f(x, y, z). 

(h) Multiple Integrals 

 If f(x, y) is continuous and differentiable at every point within a region ‘R’ bounded by some curves is given by  

 𝐼 = ∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦   

 If there is a double integral, 

 𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦=𝜓(𝑥)

𝑦=𝜙(𝑥)

𝑥=𝑏

𝑥=𝑎
   [Let (x) > (x)]   

 Then I = area of the region bounded by the curves, y = (x); y = (x), x = a and x = b if f(x, y) = 1 

 Value of x – co-ordinate of centroid of the region bounded by y = (x); y = (x); x = a, x = b if f(x, y) = x 

(i) Change of Orders of Integration 

 𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦=𝜓(𝑥)

𝑦=𝜙(𝑥)

𝑥=𝑏

𝑥=𝑎
   →  𝐼 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥=ℎ(𝑦)

𝑥=𝑔(𝑦)

𝑦=𝑑

𝑦=𝑐
 

 In change of order of Integration, the order of the Integrating variables changes and the limits as well. 

Note : When limits are constants, the order of integration does not matter,  

   ( , ) ( , )

y d y dx b x b

y c x a x a y c

f x y dxdy f x y dydx

= == =

= = = =

=     

1.17 Jacobian of the Transformation 

(i) The Jacobian of the transformation, ( )1 2, , ( , )x f u v y f u v= =  is defined as, 

 
( , )

( , )

u v

u v

x xx y
J

y yu v


= =


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(ii) The Jacobian of the transformation,  

 1 2 3( , , ), ( , , ), ( , , )x f u v w y f u v w z f u v w= = =  is defined as 

 
( , , )

( , , )

u v w

u v w

u v w

x x x
x y z

J y y y
u v w

z z z


= =


 

1.18 Change of Variables Formula 

(i) 1 2( , ) ( ( , ), ( , ) | |

R R

f x y dx dy f f u v f u v J du dv=   

(ii) 1 2 3( , , ) ( ( , , ), ( , , ), ( , , )) | |

R R

f x y z dxdydz f f u v w f u v w f u v w J du dv dw=   

1.19 Change of Variables 

(i) Cartesian to polar co-ordinates : 

  cosx r=   

  siny r=   

  J = r 

 dx dy rdrd=   

(ii) Cartesian to cylindrical polar co-ordinate : 

  cosx r=   

  siny r=    

  z = z 

  J = r 

 dxdydz rdr d dz=   

(iii) Cartesian to spherical polar co-ordinates : 

  sin cosx =     

  sin siny =     

  cosz =    

  2 sinJ =    

 2 sindxdydz d d d=      

❑❑❑
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2 
LINEAR ALGEBRA 

   Matrix 

An array of elements in horizontal lines (Rows) and Vertical Lines (Columns) is called a Matrix. 

Example: 𝐴 =  [
𝑖 𝑛 𝑑 𝑖 𝑎
𝑗 𝑎 𝑝 𝑎 𝑛

]  

2.1.1 Size of Matrix  

 If a matrix has 'm' rows and 'n' columns, then we say that the size of the matrix is m × n (read as m by n) 

 𝐴 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13. . . . . . . . . 𝑎1𝑛

𝑎21 𝑎22 𝑎23. . . . . . . . . 𝑎2𝑛

. . . .

. . . .
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3. . . . . . . . . 𝑎𝑚𝑛]

 
 
 
 

 ;  𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
  such that 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  and 𝑎𝑖𝑗 = 𝑓(𝑖, 𝑗)  

2.1.2 Addition of Matrices 

(i) Two matrices 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
 & 𝐵 = [𝑏𝑖𝑗]𝑝×𝑞

can be added only if m = p & n = q. 

(ii) Matrix Addition is commutative (A + B = B + A) 

(iii) Matrix Addition is Associative.  A + (B + C) = (A + B) + C 

(iv) Existence of additive identity : If O be m × n matrix each of whose elements are zero. Then, A + O = A = O + A for every 

m × n matrix A. 

(v) Existence of additive inverse : Let ij m n
A a


 =   then the negative of matrix A is defined as matrix ij m n

a


 −   and is 

denoted by –A. 

  Matrix –A is additive inverse of A. Because (–A) + A = O = A + (–A). Here O is null matrix of order m × n. 

(vi) Cancellation laws holds good in case of addition of matrices, which is X = –A. 

  A + X = B + X  A = B 

 X + A = X + B  A = B 

(vii) The equation A + X = 0 has a unique solution in the set of all m × n matrices. 

2.1.3 Multiplication of Matrices  

The multiplication of two matrices 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛
 and 𝐵 = [𝑏𝑖𝑗]𝑝×𝑞

 (⇒ 𝐴𝐵𝑚×𝑞) is feasible only if n = P. 

 𝐴𝑚×𝑛 ⋅ 𝐵𝑝×𝑞 = 𝐶  
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 A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]

3×3

   𝐵 = [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

]

3×2

   𝐴3×3 ×  𝐵3×2  

 ⇒ [

𝑎11. 𝑏11 + 𝑎12 ⋅ 𝑏21 + 𝑎13. 𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

𝑎21. 𝑏11 + 𝑎22. 𝑏21 + 𝑎23. 𝑏31 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32

𝑎31.𝑏11 + 𝑎32 ⋅ 𝑏21 + 𝑎33 ⋅ 𝑏31 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32

]

3×2

  

2.1.4 Properties of Multiplication of Matrices 

(i) Matrix Multiplication Need not be commutative. 

(ii) Matrix Multiplication is Associative (A(BC)) = ((AB)C) 

(iii) Matrix Multiplication is distributive A(B + C) = (AB + AC) 

(iv) The product of two Matrices 𝐴𝑚×𝑛, 𝐵𝑛×𝑞 (i.e. 𝐴𝐵𝑚×𝑞) can be a zero matrix even if 𝐴 ≠ 𝑂&𝐵 ≠ 𝑂. 

 Example:  𝐴 = [
3 0
0 0

] ; 𝐵 = [
0 0
0 4

] ⇒ 𝐴𝐵 = [
0 0
0 0

] 

• For the multiplication of two matrices 𝐴𝑚×𝑛 & 𝐵𝑛×𝑞  

  (i)  The No. of Multiplications required = m n q 

  (ii)  The number of Additions required = m (n –1) q   

2.2 Types of Matrices 

(1) Upper triangular Matrix: A matrix 𝐴 = [𝑎𝑖𝑗]; 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be an upper triangular matrix if  

      𝑎𝑖𝑗 = 0 ∀ 𝑖 > 𝑗  

(2) Lower Triangular Matrix: A matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛
; 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be a lower Triangular Matrix  

      if 𝑎𝑖𝑗 = 0 ∀ 𝑖 < 𝑗 

(3) Diagonal Matrix: A matrix 𝐴 = [𝑎𝑖𝑗], ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to be a diagonal matrix if 𝑎𝑖𝑗 = 𝑂 ∀ 𝑖 ≠ 𝑗 

 Example: 𝐴 = [

𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

]. The diagonal Matrix is also denoted as 𝐴 = 𝑑𝑖𝑎𝑔 [𝑑1, 𝑑2, 𝑑3] 

(4) Scalar Matrix: A Matrix 'A' = [𝑎𝑖𝑗] ;  1 ≤ 𝑖, 𝑗 ≤ 𝑛  is said to be a scalar Matrix if 𝑎𝑖𝑗 = {
𝐾; 𝑖 = 𝑗
0; 1 ≠ 𝑗

  

  If K = 1, then A → Identity Matrix,   

  If K = 0, then A → Null Matrix. 

(5) Idempotent Matrix: 

 A Matrix '𝐴𝑛×𝑛 ' is said to be an idempotent matrix if 𝐴2 = 𝐴. 

 Example: 𝐴 = [
4 −1
12 −3

] 

 ⇒ 𝐴 ⋅ 𝐴 = [
4 −1
12 −3

] [
4 −1
12 −3

] = [
4 −1
12 −3

] = 𝐴 
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(6) Nilpotent Matrix: A matrix A is said to be nilpotent of class x or index if Ax = 0 and Ax– 1  0 i.e. x is the smallest index 

which makes Ax = 0. 

 Example: The matrix A = 

1 1 3

5 2 6

2 1 3

 
 
 
 − − − 

 is nilpotent class 3, since A  0 and A2  0, but A3 = 0. 

(7) Orthogonal Matrix: A matrix A is said to be orthogonal if A. AT = I 

 Example: [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

(8) Involutory Matrix: A matrix A is said to be involutory if A2 = I 

 Example: [
2 3

−1 −2
] 

2.3 Transpose of a Matrix 

 For a given matrix = [𝑎𝑖𝑗]; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, we can say that 'B' where 𝐵 = [𝑏𝑖𝑗], 𝑖 ≤ 𝑖 ≤ 𝑛   𝑖 ≤ 𝑗 ≤ 𝑚  is the 

transpose of the Matrix 'A' if 𝑎𝑖𝑗 = 𝑏𝑗𝑖 

2.3.1 Properties of Transpose of a Matrix 

 (i) (𝐴𝑇)𝑇 = 𝐴  

 (ii) (𝐴𝐵)𝑇 = 𝐵𝑇 ⋅ 𝐴𝑇 

 (iii) (𝐾𝐴)𝑇 = 𝐾𝐴𝑇 where 'K' is a scalar. 

2.4  Conjugate of a matrix 

 The matrix obtained by replacing each element of matrix by its complex conjugate. 

2.4.1 Properties of conjugate matrix 

 (a) (A) A=  (b) ( )A B A B+ = +  

 (c) ( )KA K A=  (d) ( )AB AB=  

 (e) A A=  if A is real matrix 

  A A= −  if A is purely imaginary matrix 

2.5 Transposed Conjugate of a Matrix 

 The transpose of conjugate of a matrix is called transposed conjugate. It is represented by A. 

 (a) ( )A A  =        (b) ( )A B A B  + = +    

 (c) (KA) = KA
 (K : Complex number)  (d) ( )AB B A  =  

2.6 Trace of a Matrix  

Trace is simply sum of all diagonal elements of a matrix.  
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2.6.1 Properties of Trace of a matrix 

Let A and B be two square matrices of order  and  is scalar then 

1.  ( ) ( )Tr A Tr A =   

2.  ( ) ( ) ( )Tr A B Tr A Tr B+ = +  

3.  ( ) ( )Tr AB Tr BA=  [If both AB and BA are defined] 

2.7 Type of Real Matrix 

(a) Symmetric matrix : (A)T = A 

(b) Skew symmetric matrix : (AT) = –A 

(c) Orthogonal matrix : (AT = A–1, AAT = I) 

Note : (a) If A and B are symmetric, then (A + B) and (A – B) are also symmetric. 

  (b) For any matrix AAT is always symmetric. 

 (c) For any matrix, 
2

TA A +
  
 

 is symmetric and 
2

TA A −
  
 

 is skew symmetric. 

 (d) For orthogonal matrices, |A| =  1 

 (e) We can write any matrix A as a sum of symmetric and skew symmetric matrix 
2 2

T TA A A A
A

+ −
= +  

2.8 Type of complex matrix 

 (a)  Hermitian matrix : (A = A) 

 (b)  Skew-Hermitian matrix: A = –A 

 (c)  Unitary matrix : (A = A–1, AA = I) 

Note : (a) 
2

A A+
 is Hermitian and 

2

A A−
 is skew Hermitian matrix. 

  (b) We can write any matrix as a sum of Hermitian and skew Hermitian matrix 
2 2

A A A A
A

 + −
= +  

2.9 Determinant  

The summation of the product of elements of a row(or) column of a matrix with their corresponding Co-factors. 

𝐴 ⋅ 𝑎𝑑𝑗(𝐴) = |𝐴| ⋅ I 

Determinant can be calculated only if matrix is a square matrix. 

Suppose, we need to calculate a 3 × 3 determinant, 

      
3 3 3

1 1 2 2 3 3
1 1 1

( ) ( ) ( )j j j j j j
j j j

a cof a a cof a a cof a
= = =

 = = =    

 We can calculate determinant along any row or column of the matrix. 
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2.9.1 Properties of Determinants 

(i)  If 'A' is a Square Matrix of size ' 𝑛 × 𝑛 ' and 'k' is a Scalar then 

 |𝐾 ⋅ 𝐴𝑛×𝑛| = 𝐾𝑛 ⋅ |𝐴𝑛×𝑛| 

(ii)  |𝑎𝑑𝑗(𝐴)| = |𝐴|(𝑛−1) 

(iii)  |𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴))| = (|𝐴|)(𝑛−1)2  

(iv)  |𝐴𝐵| = |𝐴| ⋅ |𝐵| 

(v) |(𝐴𝐵)𝑇| = |𝐵𝑇| ⋅ |𝐴𝑇| 

(vi) If two rows (or) two columns of a determinant are interchanged, then the determinant changes its sign. 

(vii) The determinant of an upper triangular Matrix/a lower triangular Matrix/a diagonal Matrix is the product of the 

principal  diagonal elements of the Matrix. 

(viii)  The determinant of Every Skew-Symmetric Matrix of odd order (𝐴𝑛×𝑛)(′𝑛′′𝑖𝑠 𝑜𝑑𝑑) is zero. 

(ix) The determinant of an orthogonal Matrix 𝐴𝑛×𝑛 is ±1 

(x) The determinant of an Idempotent Matrix is either 0 (or) 1. 

(xi) The determinant of an Involuntary Matrix is ±1  

(xii) The determinant of a Nilpotent Matrix is always zero. 

(xiii) If the product of two Non-zero Matrices 𝐴𝑛×𝑛 ≠ 0; 𝐵𝑛×𝑛 ≠ 0 is a zero Matrix ((𝐴𝐵)𝑛×𝑛 = 0), then both |𝐴| = 0 & 

|𝐵| = 0.  

(xiv) If two rows (or) two columns of a Matrix are either equal or Proportional, then the determinant of the Matrix is equal to 

zero. 

(xv) The number of terms in the general expansion of an 'n × n' determinant is 𝑛! 

(xvi) Value of the determinant is invariant under row and column interchange i.e., TA A=  

(xvii) If any row or column is completely zero, then |A| = 0. 

(xviii) If any single row or column of the matrix is multiplied by k then the determinant the of new matrix = K|A| 

(xix) In a determinant the sum of the product of the element of any row or column with its cofactor gives a determinant of 

the matrix. 

(xx)  In determinant the sum of the product of the element of any row or column with a cofactor of another row or column 

will give zero. 

(xxi) |AB| = |A| × |B| 

(xxii) Elementary operations don’t effect the determinant that is 
i i jR R KR

A B
= +

⎯⎯⎯⎯⎯→  then |A| = |B|  

  
i i jC C KC

A B
= +

⎯⎯⎯⎯⎯→  then |A| = |B| 
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2.10 Minors, Cofactor and Adjoint of a Matrix 

Minor of an element is equal to the determinant of the remaining elements of the matrix, after excluding the row and column 

containing the particular element. The cofactor of an element can be calculated from the minor of the element. The cofactor of 

an element is equal to the product of the minor of the element, and -1 to the power of position values of row and column of the 

element. 

   Cofactor of an Element ( )1
i j+

= −   Minor of an Element 

Here i and j are the positional values of the row and column of the element. 

Example : 

 If   

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 =  

 Minor of element 21a : 
12 13

21
32 33

a a
M

a a
=  

 Co-factor of an element, ( )1
i j

ij ija M
+

= −  

 • To design co-factor matrix, we replace each element by its co-factor. 

 • Adjoint of a matrix = transpose of cofactor matrix 

 • 1 ( )

| |

Adj A
A

A

− =  

2.11 Inverse of a matrix 

Inverse of a matrix only exists for square matrices. 

      ( )1 ( )Adj A
A

A

− =  and 0A   

Properties: 

 (a)  
1 1AA A A I− −= =  

 (b)  1 1 1( )AB B A− − −=  

 (c)  1 1 1 1( )ABC C B A− − − −=  

 (d)  1 1( ) ( )T TA A− −=  

 (e)  The inverse of 2 × 2 matrix should be remembered, 

  
( )

1
1a b d b

c d c aad bc

−
−   

=   −−   
 

  (i)  Interchange the diagonal elements and put negative sign on the rest. 

  (ii)  Divide by determinant. 
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2.12 Rank of a Matrix 

•  The rank of the matrix refers to the number of linearly independent rows or columns in the matrix. ρ(A) is used to denote 

the rank of matrix A.   

•  A matrix is said to be of rank zero when all of its elements become zero.  

•  The rank of the matrix is the dimension of the vector space obtained by its columns.  

•  The rank of a matrix cannot exceed more than the number of its rows or columns. The rank of the null matrix is zero. 

•  The nullity of a matrix is defined as the number of vectors present in the null space of a given matrix. In other words, it 

can be defined as the dimension of the null space of matrix A called the nullity of A. Rank + Nullity is the number of all 

columns in matrix A. 

 A real Number 'r' is said to be the rank of a matrix '𝐴𝑚×𝑛' if  

(1)  There is at least one square sub-matrix of A of order r whose determinant is not equal to zero.   

(2)  If the matrix A contains any square sub-matrix of order (r + 1) and above, then the determinant of such a matrix 

should be zero. 

 It is mathematically denoted by 𝜌(𝐴) = 𝑟  

2.12.1 Properties of Rank of a Matrix 

(i) 𝜌(𝐴𝑚×𝑛) ≤ (𝑚, 𝑛) 

(ii) 𝜌(𝐴𝐵) ≤ 𝑚𝑖𝑛{𝜌(𝐴), 𝜌(𝐵)} 

(iii) Rank of transpose of matrix is equal to rank of matrix  

(iv) Elementary operations do-not affect the rank the matrix  

(v) 𝜌(𝐴 + 𝐵) ≤ {𝜌(𝐴) + 𝜌(𝐵)} 

2.12.2 Row Echelon Form 

A Matrix 𝐴𝑚×𝑛 is said to be in row-echelon form if  

(i) Number of zeroes before the 1st Non-zero element in any row is less than the number of such zeroes in its succeeding row. 

(ii) Zero rows (if any) should lie at the bottom of the Matrix. 

 𝜌(𝐴𝑚×𝑛) = Number of non-zero rows in the Row-Echelon form of A. 

  System of Equations 

The given system of equations 

   𝑎11𝑥1 + 𝑎12𝑥12 + 𝑎13𝑥3 = 𝑏1  

   𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2    

   𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3  

can be written in Matrix form as 
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 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝑥1

𝑥2

𝑥3

] = [

𝑏1

𝑏2

𝑏3

] 

 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝑥1

𝑥2

𝑥3

] = [

𝑏1

𝑏2

𝑏3

]  

                  Ax = B 

              Coefficient           Variable     Constants 

          Matrix               Matrix         Matrix  

 The system Ax = B is said to be a homogeneous system if B = 0. 

 The system of Ax = B is said to be a non-homogeneous system if 𝐵 ≠ 0. 

2.13.1 Consistency of a non-homogeneous system of Equations 

For the above system of non – homogeneous equations, Ax = B; Augmented Matrix = [A/B] = [

𝑎11 𝑎12 𝑎13 𝑏1

𝑎21 𝑎22 𝑎23 𝑏2

𝑎31 𝑎32 𝑎33 𝑏3

] 

(i) If 𝜌(𝐴) = 𝜌(𝐴/𝐵) = Number of unknowns, then the system Ax = B has a unique solution. 

(ii) If 𝜌(𝐴) = 𝜌(𝐴/𝐵) < Number of unknowns, then the system has infinitely many solutions. 

(iii) If 𝜌(𝐴) ≠ 𝜌(𝐴/𝐵), then the system has no solution.  

 Number of linearly independent solutions for a system of 'n' equations given by Ax = B is 𝑛 − 𝜌(𝐴) 

2.13.2 Consistency of Homogeneous System of Equations 

 𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 0  

 𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 0  

 𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 = 0  

      Ax = 0⇒ [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [
𝑥
𝑦
𝑧
] = [

0
0
0
] [𝐴/𝐵] = [

𝑎11 𝑎12 𝑎13 0
𝑎21 𝑎22 𝑎23 0
𝑎31 𝑎32 𝑎33 0

]

3×4

 

 If 𝜌(𝐴) = 𝜌(𝐴/𝐵) = 𝑛 (𝑖. 𝑒 |𝐴| ≠ 0); the system has a unique solution.  

 (Trivial solution; x = 0, y = 0, z = 0)  

 If 𝜌(𝐴) = 𝜌(𝐴/𝐵) < 𝑛(|𝐴| = 0); the system has infinitely many solutions  (Non-trivial solution exists for the system). 

2.14 Linear Combination of Vectors 

If 𝑥1, 𝑥2, 𝑥3, . . . . . . , 𝑥𝑛  are 'n' rows vectors, then the combination 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛  is called a linear   

combination of 𝑥1, 𝑥2, . . . . , 𝑥𝑛(𝑘1, 𝑘2, 𝑘3, . . . . . 𝑘𝑛 are scalars) 

(1)  The linear combination 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛is said to be linearly dependent if 𝑘1𝑥1 + 𝑘2𝑥2 +

𝑘3𝑥3+. . . . . +𝑘𝑛𝑥𝑛 = 0 when 𝑘1, 𝑘2, 𝑘3, . . . . . , 𝑘𝑛 (NOT All zeroes).  
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 If 𝑥1 = [𝑎1 𝑏1 𝑐1]; 𝑥2[𝑎2 𝑏2 𝑐2]; 𝑥3 = [𝑎3 𝑏3 𝑐3], then the vectors 𝑥1, 𝑥2, 𝑥3are said to be linearly dependent if 

|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = 0. 

(2)  The combination 𝑘1𝑥1 + 𝑘2𝑥2+. . . . . . +𝑘𝑛𝑥𝑛is said to be linearly independent if 𝑘1𝑥1 + 𝑘2𝑥2+. . . . . . . . +𝑘𝑛𝑥𝑛 = 0 when 

𝑘1 = 𝑘2 = 𝑘3 =. . . . . 𝑘𝑛 = 0 

 2.14.1 Eigen Values and Eigen Vectors 

For any square Matrix 𝐴𝑛×𝑛, the equation |𝐴 − 𝜆𝐼| = 0 where '' is a scalar is called the characteristic equation. 

 The roots of the characteristic equation of a Matrix are called Eigen Values. 

2.14.2 Properties of Eigen Values 

(i) If 𝜆1, 𝜆2, 𝜆3, . . . . . . , 𝜆𝑛are 'n' Eigen Values of 𝐴𝑛×𝑛, then  

 (a)  Sum of Eigen Values of 'A' = 𝜆1 + 𝜆2 + 𝜆3+. . . . +𝜆𝑛 = ∑ 𝜆𝑖 = 𝑡𝑟𝑎𝑐𝑒(𝐴)𝑛
𝑖=1  = Sum of Principal diagonal elements 

 (b)  Product of all the Eigen Values of 'A' = 𝜆1 ⋅ 𝜆2 ⋅ 𝜆3 ⋅. . . . . . 𝜆𝑛 = ∏ 𝜆𝑖 = |𝐴|𝑛
𝑖=1  

 (c)   Eigen Values of  𝐴𝑚 are 𝜆1
𝑚, 𝜆2

𝑚, 𝜆3
𝑚, . . . . . . 𝜆𝑛

𝑚 

 (d)  Eigen Values of adj(A) are 
|𝐴|

𝜆1
,
|𝐴|

𝜆2
,
|𝐴|

𝜆3
, . . . . . . ,

|𝐴|

𝜆𝑛
 

 (e)  Eigen Values of A & AT
 are the same. 

 (f)  Eigen Values of 𝑘1𝐴 + 𝑘2𝐼 (Where 𝑘1and 𝑘2are scalar) are  

𝑘1𝜆1 + 𝑘2, 𝑘1𝜆2 + 𝑘2, 𝑘1𝜆3 + 𝑘2, 𝑘1𝜆4 + 𝑘2, . . . . . . . . 𝑘1𝜆𝑛 + 𝑘2 

(ii) '0' is always an Eigen Value of an odd-order Skew-Symmetric Matrix. 

(iii) Eigen Values of a Real Symmetric Matrix are always real. 

(iv) Eigen Values of the Skew-Symmetric Matrix are either zero (or) purely Imaginary. 

(v) The Eigen values of an Orthogonal Matrix are of unit modulus. 

(vi) If the sum of all the elements in a row (or Column) is constant (= k) for all the rows (or columns) in the matrix 

respectively, then 'k' is an Eigen Value of the Matrix. 

 Example: If 𝐴 = [

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

] and if 𝑎1 + 𝑏1 + 𝑐1 = 𝑎2 + 𝑏2 + 𝑐2 = 𝑎3 + 𝑏3 + 𝑐3 = 𝑘,   

 then 'k' is an Eigen Value of 'A'. 

(vii) The Eigen Values of an upper triangular Matrix, a lower triangular Matrix, a diagonal Matrix are the Principal diagonal 

elements of the Matrix. 
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  Eigen Vector 

A non-zero column vector 𝑋𝑛×1 is said to be an Eigen Vector of 𝐴𝑛×𝑛 corresponding to the Eigen Value '',  

if 𝐴𝑋 = 𝜆𝑋(𝑋 ≠ 0). 

2.15.1 Properties of Eigen Vectors 

(i) Eigen Vectors of A & AT are not the same. 

(ii) Eigen Vectors of A & AM are same. 

(iii) The Eigen Vectors of a Real Symmetric Matrix are always orthogonal. 

(iv) The number of linearly independent Eigen Vectors of '𝐴𝑛×𝑛 ' is equal to the number of distinct Eigen Values of '𝐴𝑛×𝑛 '. 

2.15.2 Cayley Hamilton Theorem 

Every Matrix satisfies its characteristic equation. 

This means that, if 
1

0 1 1... 0n
n nc c c c−
− +  + +  + = is the characteristic equation of a square matrix A of order n, then 

1

0 1 1... 0n n

n nc A c A c A c I−

−+ + + + =  …(i) 

Note: When 𝜆 is replaced by A in the characteristic equation, the constant term cn should be replaced by cnI to get the result 

of the Cayley-Hamilton theorem, where I is the unit matrix of order n. 

  Also, 0 in the R.H.S. of (i) is a null matrix of order n. 

2.16.  Subspace (Basis of Dimensions) 

2.16.1 Vector 

An ordered n-tuple of numbers is called an n-vector. 

2.16.2 Linearly Independent and Dependent Vector 

Let X1 and X2 be the non-zero vectors: 

• {x1, x2, …., xk} are linearly independent if r1x1 + r2x2 + … + rk xk = 0 only for r1 = r2 = … + rk  = 0. 

• The vectors x1, r2, …., xk = are linearly dependent if they are not linearly independent; that is, if there exist scalars r1, r2, 

… , rk which are not all zero such that 

 r1x1 + r2x2 + …. + rk xk = 0 

Note:  Let X1, X2…….Xn be ‘n’ vector of matrix A. 

  • If rank (A) = number of vectors then vector X1, X2…..Xn are linearly independent. 

  • If rank (A) ≠ number of vectors then vector X1, X2 ….. Xn are linearly dependent.  
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2.16.3 Vector Space Rn 

If n positive integer, then an ordered n-tuple is a sequence of n real numbers (α1, α2,…. αn). the set of all ordered n-tuples is 

called n-space and is denoted by ℝn. 

2.16.4 Subspaces of an N-vector space Vn 

A non-empty set S, of vectors of Vn(F) ,is called a subspace of Vn(F), if 

• 𝜉1, 𝜉2 are any two members of S, then ξ1 + ξ2 is also a member of S; and 

• 𝜉 is a member of S, and k is a scalar then kξ is also a member of S. 

 Briefly, we may say that a set S of vectors Vn(F) is a subspace of Vn(F) it closed w.r.t. the compositions of “addition” and 

"multiplication with scalars". 

 Every subspace of Vn contains the zero vector; being the product of any vector with the scalar zero. 

2.16.5 Construction of Subspaces 

• A subspace Spanned by a Set of Vectors: A subspace that arises as a set of all linear combinations of any given set of 

vectors is said to be spanned by the given set of vectors. 

• Basis of a subspace: A set of vectors is said to be a basis of a subspace, if 

➢ The subspace is spanned by the set, and 

➢ The set is linearly independent. 

Note: If we have N vectors and they are independent then they span N-dimension space. But if they are dependent then they 

span only a subspace of N-dimension space. 

2.16.6 Orthogonality of Vectors 

• Two vectors are orthogonal if each is non-zero and 1 2 0TX X =  

• If n vectors X1, X2 …. Xn each of n dimensions is orthogonal then they are surely linearly independent and form the basis 

for n-dimension space. 

• The set of the vector is orthonormal if they are orthogonal and have unit magnitude. 

2.17  Similar Matrices 

• Two matrix A and B are similar if there exist a non singular matrix P such that B = P–1AP 

• Similar matrix has same eigen valves 

• If A is similar to B then B is also similar to A 

• If A is similar to B and B is similar to C then A is similar to C. 

2.18 Diagonalization of a matrix 

Finding a matrix D which is a diagonal matrix and which is similar to A is called diagonalization i.e., we wish to find a non-

singular matrix M such that A = M–1DM where D is a diagonal matrix. 
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 2.18.1 Condition for a Matrix to be Diagonalizable 

1. A necessary and sufficient condition for a matrix An × n to be diagonalizable is that the matrix must have n linearly 

independent eigen vectors. 

2. A sufficient (but not necessary) condition for a matrix An × n to be diagonalizable is that the matrix must have n linearly 

independent eigen values. 

 This is because if a matrix has n linearly independent eigen values then it surely has n linearly independent eigen vectors 

(although the converse of this is not true). 

 

❑❑❑ 
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3 

PROBABILITY 
AND STATISTICS 

3.1 Random Experiment  

The experiment in which the outcome is uncertain is called a Random Experiment (RE). 

Example: Flipping a coin, rolling a pair of dice, Picking a ball from a bag. 

3.1.1 Sample Space 

The set contains all the possible outcomes of a random experiment. It is denoted by 'S'. 

If RE is flipping a coin, S = {Head, Tail} 

If RE is rolling a dice, S = {1,2,3,4,5,6} 

3.2 Event 

Any subset of sample space 'S' is called an Event. 

Example:  If RE is flipping a coin, then the occurring of a Head is an Event. 

    If RE is rolling a dice, then getting an odd number is an Event.   

3.2.1 Probability of an Event 

If 'A' is any event with in the sample space 'S' of a Random experiment, then the probability of event 'A' is given by   

     ( )
( )
( )

No. of outcomes favouring event 'A' to happen

Total number of elements in 'S'

n A
P A

n S
= =   

Probability of getting an Even Number when a dice is rolled. 

   P(Even Number) = 
3

6
= 0.5 

        S = {1,2,3,4,5,6},   

        A = {2,4,6} 

Note: Probability can also be expressed as odds if favour and odds against an event: 

  •  Odds is favour of an event: 

   Odds in favour of an event = Number of successes : Number of failures = m: (n – m). 

  •  Odds against an event: 

   Odds against an event = Number of failures : Number of successes = (n – m) : m. 
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3.2.2 Axioms Probability 

(i)  If 'A' is any event with in the sample space 'S' of a RE, then 0 ≤ 𝑃(𝐴) ≤ 1 

 
0 n(A) n(S)

n(S) n(S) n(S)


 

 0 ≤ 𝑃(𝐴) ≤ 1   

(ii) P(S) = 1 

 When a RE is conducted the experiment yields a possible outcome. 

3.2.3 Types of Events 

(i)  Mutually Exclusive Events: 

 If A, B are two events within a sample space 'S', then A & B are said to be mutually exclusive if A∩B = . 

Example: If 'A' is the event of getting a prime number when a dice is rolled and 'B' is the event of getting a composite 

number when a dice is rolled then  

   S = {1,2,3,4,5,6}, A = {2,3,5},B = {4,6}  A  B =   P(A  B) = 0 

 

Fig. 5.1. Mutually exclusive event 

(ii) Mutually Exhaustive Events: 

 If 'A', and 'B' are two events within a sample space 'S', then 'A' & 'B' are said to be mutually   exhaustive if A  B = S   

Example:  If 'A' is the event of getting an odd number when a dice is rolled and 'B' is the event of getting an Even 

Number, then 

         = S  

       S = {1,2,3,4,5,6} 

       A = {1,3,5}, B ={2,4,6}                   

         B = S 

 

Fig. 5.2. Mutually exhaustive event 
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(iii) Independent Events: 

 Two events 'A' & 'B' within the sample space 'S' (or) within two different sample spaces 'S1' & 'S2' are said to be independent 

if P(  ) = P(A)  P(B). 

 

Fig. 5.3. Independent Event 

(iv) Impossible Event (): 

 The event with zero probability is called an Impossible Event P() = 0. 

3.3 Addition Theorem of Probability 

If A, and B are two events with a sample space 'S' of a Random Experiment, then 

    P(  ) = P(A) + P(B) – P(  ) 

    
n(A B) n(A) n(B) n(A B)

n(S) n(S) n(S) n(S)

 = + −  

 

Fig. 5.4. Addition theorem 

     P(A  B) = P(A) + P(B) – P(A  B)   

 When  A, and B are mutually exclusive events, A  B = . 

      P(A  B) = 0 

     P(  ) = P(A) + P(B) 

• If E1, E2, E3,…….En are mutually exclusive events (Ei  j = ), then P(E1  E2  E3  …….  En ) = ∑ 𝑃(𝐸𝑖)
𝑛
𝑖=1  

 = P(E1) + P(E2) + P(E3) + …… p(En) 

 3.3.1   De Morgan’s Law 

 • ( )
C C CA B A B =   

 • ( )
C C CA B A B =   
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3.3.2 Union and Intersection properties 

For any two events A and B:   

(a) ( ) ( ) ( ) ( )P A B P A P B P A B = + −   

(b) ( ) 1 ( )c cP A B P A B = −   

For any three events A, B and C: 

(a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P A B C P A P B P C P A B P B C P C A P A B C  = + + −  −  −  +    

(b) ( ) 1 ( )c c cP A B C P A B C  = −    

3.3.3 Conditional Probability:  

The probability of the happening of event 'A' when it is known that event 'B' has already occurred is given by P(A/B) 

𝑃(𝐴/𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=

𝑛(𝐴 ∩ 𝐵)

𝑛(𝐵)
 

3.3.4 Joint Probability: 
 

➢ f(x, y) is the joint probability of two RV’S x, y. 

➢ If the two RV are Independent then 

 f(x, y) = f(x) ⋅ f(y) 

➢ ( , ) ( , )
b d

a c

P a x b c y d f x y dydx    =    

➢ ( ) ( , )f x f x y dy


−

=   

➢ ( ) ( , )f y f x y dx


−

=   

3.3.5 Multiplication Theorem of Probability: 

If A, and B are two events within a sample space 'S', then P(A/B)  P(B) = P(B/A)  P(A) 

 P(A/B) = 
𝑃(𝐴∩𝐵)

𝑃(𝐵)
⇒ 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴/𝐵) ⋅ 𝑃(𝐵) → (1)   

 P(B/A) = 
𝑃(𝐵∩𝐴)

𝑃(𝐴)
⇒ 𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵/𝐴) ⋅ 𝑃(𝐴) → (2) 

 From (1) & (2)  

 𝑃(𝐴/𝐵) ⋅ 𝑃(𝐵) = 𝑃(𝐵/𝐴) ⋅ 𝑃(𝐴)  

3.3.6 Total Theorem of Probability: 

 If E1, E2, E3,……En are 'n' mutually exclusive (𝐸𝑖 ∩ 𝐸𝑗 = 𝜙; ∀𝑖 ≠ 𝑗) and collectively exhaustive event (E1  E2  E3 

 ……  En = S) and 'A' is any event with in the sample space 'S', then 

 𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴/𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴/𝐸2)+. . . . . . +𝑃(𝐸𝑛) ⋅ 𝑃(𝐴/𝐸𝑛) 

1

( ) ( ) ( / )
n

i i
i

P A P E P A E
=

=   
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3.3.7 Baye's Theorem 

If E1,E2,E3,……En are mutually exclusive (𝐸𝑖 ∩ 𝐸𝑗 = 𝜙∀𝑖 ≠ 𝑗)  and collectively exhaustive event (𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪. . . . . . .∪

𝐸𝑛 = 𝑆) and 'A' is any event with in the sample space 'S', then 

  

𝑃(𝐸𝑖/𝐴) =
𝑃(𝐸𝑖) ⋅ 𝑃(𝐴/𝐸𝑖)

∑ 𝑃(𝐸𝑖) ⋅ 𝑃(𝐴/𝐸𝑖)
𝑛
𝑖=1

 

 

Fig. 5.5. Baye’s theorem 

3.3.8  Use of permutation and combination 

What is combination? 

A combination of ‘n’ objects taken ‘r’ at a time (r-combination of ‘n’ objects is an unordered selection of ‘r’ of the objects). 

Number of ways of combining of ‘r’ object out of ‘n’ objects without repetition 

      
!

( )! !
r

n
C

n r r

 =
−

 

What is permutation? 

A combination of ‘n’ objects taken ‘r’ at a time (r-combination of ‘n’ objects is an ordered selection of ‘r’ of the objects). 

Number of ways of selection of r object out of n objects without repetition 

      
!

( )!
r

n
P

n r

 =
−

 

 Result: 

(i) 
n n

r n rC C −=  

(ii)  0 1 2 .... 2n n n n n
nC C C C+ + + + =  

(iii)  
1

0 2 4 .... 2n n n nC C C −+ + + +=  

(iv)  
1

1 3 5 .... 2n n n nC C C −+ + + +=  

(v)  
1

0 1 20. 1. 2. .... . .2n n n n n
nC C C n C n −+ + + + =  

Permutations with Repetition  
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The number of permutations of n objects, where p objects are of one kind, q objects are of another kind and the rest, if any, are 

of a different kind is 
! !

n
rP

p q
.  

Combination with Repetition 

Number of combinations of ‘n’ distinct things taking ‘r’ at a time when each thing may be repeated any number of times is 

given by
1n r

rC− +
. 

3.4  STATISTICS 

Statistics → Collection and  Analysis of Data 

 

3.4.1 Analysis of Ungrouped Data 

If x1, x2, x3, …….,xn are 'n' observations, then  

(1)  The range of the data = R = max{x1, x2, …….,xn} – min{x1, x2, x3, ….., xn}  

(2)  Arithmetic mean : Mean of the data is equal to sum of observaions divided by the total number of observations. 

𝑥̄(𝑜𝑟)𝜇 =
𝑥1 + 𝑥2+. . . . . . +𝑥𝑛

𝑛
=

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
= 𝑥̄ = 𝜇  

• The mean of 1st 'n' natural numbers = 
(
𝑛(𝑛+1)

2
)

𝑛
=

𝑛+1

2
 

• The mean of 1st 'n' odd numbers = 
𝑛2

𝑛
= 𝑛 

• The mean of 1st 'n' even numbers = n +1 

3.4.2 Median 

The middle most observation of the data (𝑥1, 𝑥2, 𝑥3, . . . . . 𝑥𝑛) When the data is arranged in either ascending or descending order. 

If 𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . . . . . 𝑥𝑛 are 'n' observations that are arranged in ascending/descending order then 

(i)  Median of the Data = (
𝑛+1

2
)
𝑡ℎ

observation, if 'n' is odd. 

(ii)  Median of the Data = Mean of (
𝑛

2
)
𝑡ℎ

&(
𝑛

2
+ 1)

𝑡ℎ
observations, if 'n' is even. 

3.4.3 Mode 

The observation with highest frequency is called mode. 

Any Data with two Modes is called → Bimodel Data 

If 𝑥1, 𝑥2,𝑥3, . . . . . . , 𝑥𝑛 are 'n' data points, 𝑥̄ = 𝜇 =
𝑥1+𝑥2+.......+𝑥𝑛

𝑛
  

Mean Deviation of the observation (𝑥𝑖) = 𝑑𝑖 = 𝑥𝑖 − 𝑥̄ 
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Fig. 5.6. Discrete data 

Sum of derivations of all the observations = 𝛴𝑑𝑖 = (𝑥1 − 𝑥̄) + (𝑥2 − 𝑥̄)+. . . . . .0 + (𝑥𝑛 − 𝑥̄) 

= 𝛴𝑑𝑖 = (𝑥1 + 𝑥2+. . . . . +𝑥𝑛) − 𝑛𝑥̄ 

𝛴𝑑𝑖 = 0  

The sum of mean deviations of all the observations is equal to zero. 

3.4.4 Absolute Mean Deviation 

If x1, x2, x3,…….,xn are 'n' data points with Mean = 𝑥̄, then the absolute mean deviation of 𝑥𝑖  about 𝑥̄ is given by |𝑑𝑖| = |𝑥 − 𝑥̄| 

The sum of absolute mean derivations of given data is not zero. 

(𝛴|𝑑𝑖| ≠ 0) ⇒ (|𝑥1 − 𝑥̄| + |𝑥2 − 𝑥̄|+. . . . . . . . +|𝑥𝑛 − 𝑥̄| ≠ 0) 

3.4.5 Standard Deviation  

If x1, x2, x3,……,xn ('n' is very large), then the standard deviation of the data is given by 

Population Standard Deviation 𝜎 = √
1

𝑛
𝛴(𝑥𝑖 − 𝑥̄)2  ,  n → size of population 

Sample Standard derivation: 𝜎 = √
1

(𝑛−1)
𝛴(𝑥𝑖 − 𝑥̄)2 , n→ size of sample  

Generally (n > 29 → population) (n < 29 →sample) 

 

Note: Measures of skewness (The degree of asymmetry) 

  A lack of symmetry is skewness. 

 • For symmetric distribution mean (M) = Median (Md) = Mode (Me) 

 • For negatively skewed distribution mean (M) < Median (Md) < Mode (Me) 

 • For positively skewed distribution Mean (M) > Median (Md) > Mode Me). 
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3.5 Random Variables 

The variable that connects the outcome of a Random Experiment to a real number. 

Example: 'x' is the value of the number that a dice shows when it is rolled. 

   Discrete RV      → The RV whose value is obtained by counting, defined by PMF 

   Random Variable 

   Continuous RV → The RV whose value is obtained by Measuring, defined by PDF 

 

• If a data consists of 'f1' data points with value ′𝑥1′, ′𝑓2′ data points with value ′𝑥2′. . . . . . ′𝑓𝑛′ data point with value ′𝑥𝑛
′ , then  

 (i)  Expectation of 'x'  = 𝐸(𝑥) = ∑ 𝑥𝑖𝑃(𝑥 = 𝑥𝑖)
𝑛
𝑖=1  

(ii)  Variance of ‘x’ = 𝜎2 = 𝐸(𝑥2) − (𝐸(𝑥))2 and σ is the standard deviation. 

3.5.1 Probability Mass Function (PMF) 

 The PMF p(x) of a discrete random variable X taking values 1 2, ,..... nx x x  is defined such that, 

 (i) ( ) 0ip x   

 (ii) 
1

( ) 1
n

i
i

p x
=

=  

 (iii) ( ) ( )i ip x p X x= =  

3.5.2 Probability Density Function (PDF) 

 The pdf f(x) of a continuous random variable X is defined such that, 

 (i) ( ) 0f x   

 (ii) ( ) 1f x dx



−

=  

 (iii) ( ) ( )

b

a

P a X b f x dx  =   

3.5.3 Expected Value 

1. Expected value of a random variable X, E [X], is defined as,  

( ); X is discrete rv

( ) ; X is continuous rv

xp x

E X
xf x dx



−










 

2. Expected value of X2 is,  

     

2

2

2

( ); X is discrete rv

[ ]
( ) ; X is continuous rv

x p x

E X
x f x dx



−




= 






 

 Note: [ ]nE X  is called nth moment.  
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3.5.4 Mean of Random Variable ‘X’ 

  Mean [ ]E X=  =  

3.5.5 Variance of a Random Variable ‘X’ 

 Var 
2( ) [( ) ]X E X= −  

Or,  Var 
2 2( ) [ ]X E X= −  

3.5.6 Properties of Expectation  

 (i) E[c] = c, c is a constant. 

 (ii) E[ax] = aE[X] 

 (iii) E(aX + b) = aE(X) + b 

 (iv) If X and Y are random variable E[X  Y] = E(x)  E(Y). 

 (v) If X and Y are random variables E(X. Y) = E(X). E(Y / X). 

 (vi) If X and Y independent random variables E(X. Y) = E(X). E (Y). 

3.5.7 Properties of Variance 

 (i) Var[C] = 0, C is constant. 

 (ii) Var (aX) = a2V(X) where X is random variable and ‘a’ constant. 

  Var(–X) = (–1)2 Var(X) = Var(X) Variance is always positive. 

 (iii) Var(ax + b) = a2 Var(X) + 0 

 (iv) If X and Y are independent random variables. 

  Var(X + Y) = Var(X) + Var(Y) 

  Var(X – Y) = Var(X) + Var(Y) 

 (v) Var(ax + by) = a2 v(x) + b2 v(y) + 2ab Cov (x, y) 

 (vi) Cov (x, y) = E(x, y) – E(x) E(y) 

 (vii) For independent random variables Cov(x, y) = 0 

3.5.8 Continuous RV 

The value of the Random Variable is obtained by Measuring. 

3.6 Probability Distribution Function (PDF)  

A continuous & differentiable function P(x) is said to be a probability distribution/density function of a continuous random 

variable 'x' if 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑃(𝑥)𝑑𝑥
𝑏

𝑎
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3.6.1 Mean (or) Expectation 

If P(x) is a probability distribution/density function of a continuous Random Variable 'x' then the Mean of 'x' = E(x) = ∫ 𝑥 ⋅
∞

−∞

𝑃(𝑥)𝑑𝑥  

3.6.2 Median  

The value of 'x' for which the total probability is exactly divided into two equal halves is called Median. 

3.6.3 Mode  

The valueof 'x' at which P(x) is maximum is called mode. 

3.6.4 Variance  

 = 𝜎2 = 𝐸(𝑥2) − (𝐸(𝑥))2 

( ) ( )( )
2

2 2x P x dx x P x dx
 

− −
 =  −    

 
Fig. 5.7. Continuous random variables 

3.7 Continous RV distributions 

(1) Gaussian/Normal Distributon: 

 If 'x' is a continuous Random variable with mean '' and standard deviation '', then the probability distribution/density 

function of normally distributed variable 'x' is given by  

 
Fig. 5.8. Normal distribution 
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Mean = Median = Mode =  

𝑃(𝜇 − 𝜎 ≤ 𝑥 ≤ 𝜇 + 𝜎) = 0.6828 

𝑃(𝜇 − 2𝜎 ≤ 𝑥 ≤ 𝜇 + 2𝜎) = 0.9544 

𝑃(𝜇 − 3𝜎 ≤ 𝑥 ≤ 𝜇 + 3𝜎) = 0.9973 

𝑃(𝑥) =
1

𝜎 ⋅ √2𝜋
. 𝑒

−(𝑥−𝜇)2

2𝜎2  

(2)  Standard Normal Distribution: 

 Assuming 𝑧 =
𝑥−𝜇

𝜎
; 𝜇 = 0; 𝜎 = 1, 𝑃(𝑧) =

1

√2𝜋
⋅ 𝑒

−𝑧2

2  

𝑃(−1 ≤ 𝑧 ≤ 1) = 0.6828 

𝑃(−2 ≤ 𝑧 ≤ 2) = 0.9544 

𝑃(−3 ≤ 𝑧 ≤ 3) = 0.9973 

Note: 

1. The normal distribution curve is bell shaped curve 

2. The points of infelection of the normal distribution curve are at 𝑥 = 𝜇 + 𝜎 𝑎𝑛𝑑 𝑥 = 𝜇 − 𝜎. 

3. The cumulative function graph is of ‘S’ Shape. 

4. For a given normal distribution, Mean = median = Mode 

(3)  Uniform Distribution: 

 If 'x' is a uniformly distrbuted random variable such that 𝑎 ≤ 𝑥 ≤ 𝑏 then the Pdf is given by 

𝑃(𝑥) =
1

(𝑏 − 𝑎)
 

 Mean = ∫ 𝑥 ⋅ 𝑃(𝑥)𝑑𝑥 =
𝑏

𝑎
∫ 𝑥 ⋅

1

𝑏−𝑎
𝑑𝑥 =

1

(𝑏−𝑎)

𝑏

𝑎
∫ 𝑥 ⋅ 𝑑𝑥

𝑏

𝑎
 

Mean
2

b a+ 
= 

 
 

  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
(𝑏−𝑎)2

12
  

  Std. deviation = 𝜎 =
(𝑏−𝑎)

√12
  

 
Fig. 5.9. Uniform Distribution 

3.7.1 Properties of Mean and Variance: 

𝐸(𝑎𝑥 + 𝑏𝑦) = 𝑎 ⋅ 𝐸(𝑥) + 𝑏 ⋅ 𝐸(𝑦)  

𝑉(𝑎𝑥 + 𝑏𝑦) = 𝑎2 ⋅ 𝑉(𝑥) + 𝑏2 ⋅ 𝑉(𝑦) − 2𝑎𝑏𝐶𝑂𝑉(𝑥, 𝑦) 

where 𝐶𝑂𝑉(𝑥, 𝑦) = 𝐸(𝑥𝑦) − 𝐸(𝑥) ⋅ 𝐸(𝑦)  
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If x,y are indpendent random variables, then 𝐸(𝑥𝑦) = 𝐸(𝑥) ⋅ 𝐸(𝑦) ⇒ 𝐶𝑂𝑉(𝑥, 𝑦) = 0 

(1) Exponential Dirtibution: 

If 'x' is a continous random variable with mean as 
1

𝜆
 then the exponential distribution of 'x' is 

given by the function  

     𝑓(𝑥) = {𝜆 ⋅ 𝑒−𝜆𝑥 ; 𝑥 ≥ 0
0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

     Mean = 
1

𝜆
 

         𝜎2 =
1

𝜆2 

 Mean = Standard Deviation = 
1

𝜆
 

3.8 Discrete Random Variable Distributions 

If a Random experiment has only two Possible outcomes, (one is Success & other is failure) and the Probability of Success 

doesn't depend on time, then the probability of occuring of exactly 'r-successes' in 'n-trials' is given by  

    𝑃(𝑋 = 𝑟) =𝑛 𝐶𝑟 ⋅ 𝑃𝑟 ⋅ 𝑞𝑛−𝑟  

Where, P → Probability of Success,  

           q → Probability of Failure 

      p + q = 1 

Mean = np,Variance = npq = 2, standard deviation = npq =  

 3.8.1 Poisson Distribution 

If a random experiment has only two possible outcomes, and the average number of successes in a given time 't' is , then the 

probability that exactly 'r' successes occur within the same time 't' given by 

 𝑃(𝑥 = 𝑟)
𝑒−𝜆⋅𝜆𝑟

𝑟!
  

 Mean = . 

 Mean = Variance = 𝜆  

 ⇒ 𝜎 = √𝜆  

❑❑❑ 

Fig. 5.10. Exponential distribution 

 


