Part-A: 3-Mark Questions

1. The wavefunction of a hydrogen atom is given by the following superposition of energy eigenfunctions $\psi_{nlm}(\vec{r})$ (n, l, m) are the usual quantum numbers):

$$\psi(\vec{r}) = \frac{\sqrt{2}}{\sqrt{7}}\psi_{100}(\vec{r}) - \frac{3}{\sqrt{14}}\psi_{210}(\vec{r}) + \frac{1}{\sqrt{14}}\psi_{322}(\vec{r}).$$

The ratio of expectation value of the energy to the ground state energy and the expectation value of L^2 are, respectively:

- (A) $\frac{229}{504}$ and $\frac{12\hbar^2}{7}$
- (B) $\frac{101}{504}$ and $\frac{12\hbar^2}{7}$
- (C) $\frac{101}{504}$ and \hbar^2
- (D) $\frac{229}{504}$ and \hbar^2
- 2. An ideal gas with adiabatic exponent γ undergoes a process in which its pressure P is related to its volume V by the relation $P = P_0 \alpha V$, where P_0 and α are positive constants. The volume starts from being very close to zero and increases monotonically to P_0/α . At what value of the volume during the process does the gas have maximum entropy?
 - (A) $\frac{P_0}{\alpha(1+\gamma)}$
 - (B) $\frac{\gamma P_0}{\alpha(1-\gamma)}$
 - (C) $\frac{\gamma P_0}{\alpha(1+\gamma)}$
 - (D) $\frac{P_0}{\alpha(1-\gamma)}$
- 3. The H_2 molecule has a reduced mass $M=8.35\times 10^{-28}$ kg and an equilibrium internuclear distance $R=0.742\times 10^{-10}$ m. The rotational energy in terms of the rotational quantum number J is:
 - (A) $E_{\text{rot}}(J) = 7J(J-1) \text{ meV}$
 - (B) $E_{\text{rot}}(J) = \frac{5}{2}J(J+1) \text{ meV}$
 - (C) $E_{\text{rot}}(J) = 7J(J+1) \text{ meV}$
 - (D) $E_{\text{rot}}(J) = \frac{5}{2}J(J-1) \text{ meV}$

4. The Hamiltonian of a quantum particle of mass m confined to a ring of unit radius is:

$$H = \frac{\hbar^2}{2m} \left(-i \frac{\partial}{\partial \theta} - \alpha \right)^2,$$

where θ is the angular coordinate, α is a constant. The energy eigenvalues and eigenfunctions of the particle are (n is an integer):

(A)
$$\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2\pi}}$$
 and $E_n = \frac{\hbar^2}{2m} (n - \alpha)^2$

(B)
$$\psi_n(\theta) = \frac{\sin(n\theta)}{\sqrt{2\pi}}$$
 and $E_n = \frac{\hbar^2}{2m} (n-\alpha)^2$

(A)
$$\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2\pi}}$$
 and $E_n = \frac{\hbar^2}{2m} (n - \alpha)^2$
(B) $\psi_n(\theta) = \frac{\sin(n\theta)}{\sqrt{2\pi}}$ and $E_n = \frac{\hbar^2}{2m} (n - \alpha)^2$
(C) $\psi_n(\theta) = \frac{\cos(n\theta)}{\sqrt{2\pi}}$ and $E_n = \frac{\hbar^2}{2m} (n - \alpha)^2$
(D) $\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2\pi}}$ and $E_n = \frac{\hbar^2}{2m} (n + \alpha)^2$

(D)
$$\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2\pi}}$$
 and $E_n = \frac{\hbar^2}{2m}(n+\alpha)^2$

- 5. Consider a quantum particle of mass m in one dimension in an infinite potential well, i.e., V(x) = 0for -a/2 < x < a/2, and $V(x) = \infty$ for $|x| \ge a/2$. A small perturbation, $V'(x) = 2\epsilon |x|/a$, is added. The change in the ground state energy to $O(\epsilon)$ is:
 - $(A) \tfrac{\epsilon}{2\pi^2} (\pi^2 4)$
 - (B) $\frac{\epsilon}{2\pi^2}(\pi^2 + 4)$
 - (C) $\frac{\epsilon \pi^2}{2} (\pi^2 + 4)$
 - (D) $\frac{\epsilon \pi^2}{2} (\pi^2 4)$
- 6. A spin-1 particle is in a state $|\psi\rangle$ described by the column matrix $(1/\sqrt{10})\{2,\sqrt{2},2i\}$ in the S_z basis. What is the probability that a measurement of operator S_z will yield the result \hbar for the state $S_x|\psi\rangle$?
 - (A) 1/2
 - (B) 1/3
 - (C) 1/4
 - (D) 1/6

7. The energy of a particle is given by E = |p| + |q|, where p and q are the generalized momentum and coordinate, respectively. All the states with $E \le E_0$ are equally probable and states with $E > E_0$ are inaccessible. The probability density of finding the particle at coordinate q, with q > 0 is:

(A)
$$(E_0+q)/E_0^2$$

(B)
$$q/E_0^2$$

(C)
$$(E_0 - q)/E_0^2$$

- (D) $1/E_0$
- 8. A hoop of radius a rotates with constant angular velocity ω about the vertical axis as shown in the figure. A bead of mass m can slide on the hoop without friction. If $g < \omega^2 a$, at what angle θ apart from 0 and π is the bead stationary (i.e., $\frac{d\theta}{dt} = \frac{d^2\theta}{dt^2} = 0$)?

(A)
$$\tan\theta = \pi g/\omega^2 a$$

(B)
$$\sin\theta = g/\omega^2 a$$

(C)
$$\cos\theta = g/\omega^2 a$$

(D)
$$\tan\theta = g/\pi\omega^2 a$$

9. A gas of N molecules of mass m is confined in a cube of volume $V = L^3$ at temperature T. The box is in a uniform gravitational field $-g\hat{z}$. Assume that the potential energy of a molecule is U = mgz, where $z \in [0, L]$ is the vertical coordinate inside the box. The pressure P(z) at height z is:

(A)
$$P(z) = \frac{N}{V} \frac{mgL}{2} \frac{\exp\left(-\frac{mg(z-L/2)}{k_BT}\right)}{\sinh\left(\frac{mgL}{2k_BT}\right)}$$

(B)
$$P(z) = \frac{N}{V} \frac{mgL}{2} \frac{\exp\left(-\frac{mg(z-L/2)}{k_BT}\right)}{\cosh\left(\frac{mgL}{2k_BT}\right)}$$

(C)
$$P(z) = \frac{k_B T N}{V}$$

(D)
$$P(z) = \frac{N}{V} mgz$$

10. A point charge q of mass m is released from rest at a distance d from an infinite grounded conducting plane (ignore gravity). How long does it take for the charge to hit the plane?

$$(A) \frac{\sqrt{2\pi^3\epsilon_0 md^3}}{q}$$

(B)
$$\frac{\sqrt{2\pi^3\epsilon_0 md}}{q}$$

(C)
$$\frac{\sqrt{\pi^3\epsilon_0md^3}}{q}$$

(D)
$$\frac{\sqrt{\pi^3\epsilon_0 md}}{q}$$

11. The strength of magnetic field at the center of a regular hexagon with sides of length a carrying a steady current I is:

(A)
$$\frac{\mu_0 I}{\sqrt{3}\pi a}$$

(B)
$$\frac{\sqrt{6}\mu_0I}{\pi a}$$

(C)
$$\frac{3\mu_0I}{\pi a}$$

(D)
$$\frac{\sqrt{3}\mu_0I}{\pi a}$$

- 12. The maximum relativistic kinetic energy of β particles from a radioactive nucleus is equal to the rest mass energy of the particle. A magnetic field is applied perpendicular to the beam of β particles, which bends it to a circle of radius R. The field is given by:
 - (A) $3m_0c/eR$
 - (B) $\sqrt{2}m_0c/eR$
 - (C) $\sqrt{3}m_0c/eR$
 - (D) $\sqrt{3}m_0c/2eR$
- 13. Light takes approximately 8 minutes to travel from the Sun to the Earth. Suppose in the frame of the Sun an event occurs at t=0 at the Sun and another event occurs on Earth at t=1 minute. The velocity of the inertial frame in which both these events are simultaneous is:
 - (A) c/8 with the velocity vector pointing from Earth to Sun
 - (B) c/8 with the velocity vector pointing from Sun to Earth
 - (C) The events can never be simultaneous no such frame exists
 - (D) $c\sqrt{1-(\frac{1}{8})^2}$ with velocity vector pointing from Sun to Earth
- 14. The central force which results in the orbit $r = a(1 + \cos \theta)$ for a particle is proportional to:
 - (A) r
 - (B) r^2
 - (C) r^{-2}
 - (D) None of the above
- 15. A spin-1/2 particle in a uniform external magnetic field has energy eigenstates $|1\rangle$ and $|2\rangle$. The system is prepared in ket-state $(|1\rangle + |2\rangle)/\sqrt{2}$ at time t=0. It evolves to the state described by the ket $(|1\rangle |2\rangle)/\sqrt{2}$ in time T. The minimum energy difference between two levels is:
 - (A) h/6T
 - (B) h/4T
 - (C) h/2T
 - (D) h/T

16. It is found that when the resistance R indicated in the figure below is changed from $1 \text{ k}\Omega$ to $10 \text{ k}\Omega$, the current flowing through the resistance R' does not change. What is the value of the resistor R'?

- (A) $5 k\Omega$
- (B) 100 Ω
- (C) $10 \text{ k}\Omega$
- (D) $1 \text{ k}\Omega$
- 17. The sum of the infinite series 1 1/3 + 1/5 1/7 + ... is:
 - (A) 2π
 - **(B)** π
 - (C) $\pi/2$
 - **(D)** $\pi/4$
- 18. A spherical shell of radius R carries a constant surface charge density σ and is rotating about one of its diameters with an angular velocity ω . The magnitude of the magnetic moment of the shell is:
 - $\langle A \rangle 4\pi\sigma\omega R^4$
 - (B) $4\pi\sigma\omega R^4/3$
 - (C) $4\pi\sigma\omega R^4/15$
 - (D) $4\pi\sigma\omega R^4/9$

- 19. Given a matrix $M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, which of the following represents $\cos(\pi M/6)$?
 - $(A) \, \frac{1}{2} \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right)$
 - **(B)** $\frac{\sqrt{3}}{4} \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right)$
 - (C) $\frac{\sqrt{3}}{4}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - (D) $\frac{1}{2}$ $\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$
- 20. Consider N non-interacting electrons $(N \sim N_A)$ in a box of sides L_x, L_y, L_z . Assuming that the dispersion relation is $\epsilon(k) = C k^4$ where C is a constant, the ratio of the ground state energy per particle to the Fermi energy is:
 - (A) 3/7
 - **(B)** 7/3
 - (C) 3/5
 - (D) 5/7
- 21. A transistor in common base configuration has ratio of collector current to emitter current β and ratio of collector to base current α . Which of the following is true?
 - (A) $\beta = \alpha/(\alpha+1)$
 - **(B)** $\beta = (\alpha + 1)/\alpha$
 - (C) $\beta = \alpha/(\alpha 1)$
 - (D) $\beta = (\alpha 1)/\alpha$
- 22. You receive on average 5 emails per day during a 365-days year. The number of days on average on which you do not receive any emails in that year are:
 - (A) More than 5
 - (B) More than 2
 - (C) 1
 - (D) None of the above

- 23. If $Y_{xy} = \frac{1}{\sqrt{2}} (Y_{2,2} Y_{2,-2})$ where $Y_{l,m}$ are spherical harmonics, then which of the following is true?
 - (A) Y_{xy} is an eigenfunction of both L^2 and L_z
 - (B) Y_{xy} is an eigenfunction of L^2 but not L_z
 - (C) Y_{xy} is an eigenfunction of L_z but not L^2
 - (D) Y_{xy} is not an eigenfunction of either L^2 or L_z
- 24. A two dimensional box in a uniform magnetic field B contains N/2 localised spin-1/2 particles with magnetic moment μ , and N/2 free spinless particles which do not interact with each other. The average energy of the system at a temperature T is:
 - (A) $3NkT \frac{1}{2}N\mu B \sinh(\mu B/k_BT)$
 - (B) $NkT \frac{1}{2}N\mu B \tanh(\mu B/k_BT)$
 - (C) $\frac{1}{2}NkT \frac{1}{2}N\mu B \tanh(\mu B/k_BT)$
 - **(D)** $\frac{3}{2}NkT + \frac{1}{2}N\mu B \cosh(\mu B/k_B T)$
- 25. The value of the integral $\int_0^\infty \frac{\ln x}{(x^2+1)} dx$ is:
 - (A) $\pi^2/4$
 - **(B)** $\pi^2/2$
 - (C) π^2
 - (D) 0

Part-B: 1-Mark Questions

- 26. An ideal gas has a specific heat ratio $C_P/C_V=2$. Starting at a temperature T_1 the gas undergoes an isothermal compression to increase its density by a factor of two. After this an adiabatic compression increases its pressure by a factor of two. The temperature of the gas at the end of the second process would be:
 - (A) $T_1/2$
 - **(B)** $\sqrt{2} T_1$
 - (C) $2T_1$
 - (D) $T_1/\sqrt{2}$
- 27. The electric field $\vec{E} = E_0 \sin(\omega t kz)\hat{x} + 2E_0 \sin(\omega t kz + \pi/2)\hat{y}$ represents:
 - (A) a linearly polarized wave
 - (B) a right-hand circularly polarized wave
 - (C) a left-hand circularly polarized wave
 - (D) an elliptically polarized wave
- 28. If \vec{k} is the wavevector of incident light ($|\vec{k}| = 2\pi/\lambda$, λ is the wavelength of light) and \vec{G} is a reciprocal lattice vector, then the Bragg's law can be written as:
 - $(\mathbf{A})\,\vec{k} + \vec{G} = 0$
 - (B) $2\vec{k}\cdot\vec{G}+G^2=0$
 - (C) $2\vec{k}\cdot\vec{G}+k^2=0$
 - (D) $\vec{k} \cdot \vec{G} = 0$
- 29. The number of different Bravais lattices possible in two dimensions is:
 - (A) 2
 - **(B)** 3
 - (C)5
 - (D) 6

- 30. An electron confined within a thin layer of semiconductor may be treated as a free particle inside an infinitely deep one-dimensional potential well. If the difference in energies between the first and the second energy levels is δE , then the thickness of the layer is:
 - (A) $\sqrt{\frac{3\hbar^2\pi^2}{2m\delta E}}$
 - (B) $\sqrt{\frac{2\hbar^2\pi^2}{3m\delta E}}$
 - (C) $\sqrt{\frac{\hbar^2\pi^2}{2m\delta E}}$
 - (D) $\sqrt{\frac{\hbar^2 \pi^2}{m \delta E}}$
- 31. The *adjoint* of a differential operator $\frac{d}{dx}$ acting on a wavefunction $\psi(x)$ for a quantum mechanical system is:
 - (A) $\frac{d}{dx}$
 - (B) $-i\hbar \frac{d}{dx}$
 - $(C) \frac{d}{dx}$
 - (D) $i\hbar \frac{d}{dx}$
- 32. In the ground state of hydrogen atom, the most probable distance of the electron from the nucleus, in units of Bohr radius a_0 is:
 - (A) 1/2
 - **(B)** 1
 - (C) 2
 - (D) 3/2
- 33. Circular fringes are obtained with a Michelson interferometer using 600nm laser light. What minimum displacement of one mirror will make the central fringe from bright to dark?
 - (A) 600 nm
 - (B) 300 nm
 - (C) 150 nm
 - (D) 120 Å

- 34. Given the condition $\nabla^2 \Phi = 0$, the solution of the equation $\nabla^2 \Psi = k \vec{\nabla} \Phi \cdot \vec{\nabla} \Phi$ is given by:
 - (A) $\Psi = k\Phi^2/2$
 - (B) $\Psi = k\Phi^2$
 - (C) $\Psi = k\Phi \ln \Phi$
 - (D) $\Psi = k\Phi \ln \Phi/2$
- 35. The output intensity I of radiation from a single mode of resonant cavity obeys

$$\frac{d}{dt}I = -\frac{\omega_0}{Q}I,$$

where Q is the quality factor of the cavity and ω_0 is the resonant frequency. The form of the frequency spectrum of the output is:

- (A) Delta function
- (B) Gaussian
- (C) Lorentzian
- (D) Exponential
- 36. For operators P and Q, the commutator $[P, Q^{-1}]$ is:
 - (A) $Q^{-1}[P,Q]Q^{-1}$
 - (B) $-Q^{-1}[P,Q]Q^{-1}$
 - (C) $Q^{-1}[P,Q]Q$
 - (D) $-Q[P,Q]Q^{-1}$
- 37. For a quantum mechanical harmonic oscillator with energies, $E_n = (n + 1/2)\hbar\omega$, where n = 0, 1, 2, ..., the partition function is:
 - (A) $\frac{e^{\hbar\omega/k_BT}}{e^{\hbar\omega/k_BT}-1}$
 - (B) $e^{\hbar\omega/2k_BT}-1$
 - (C) $e^{\hbar\omega/2k_BT} + 1$
 - (D) $\frac{e^{\hbar\omega/2k_BT}}{e^{\hbar\omega/k_BT}-1}$

- 38. A semicircular piece of paper is folded to make a cone with the centre of the semicircle as the apex. The half-angle of the resulting cone would be:
 - $(A) 90^{\circ}$
 - **(B)** 60°
 - (C) 45°
 - (D) 30°
- 39. A spin 1/2 particle is in a state $(|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$, where $|\uparrow\rangle$ and $|\downarrow\rangle$ are the eigenstates of S_z operator. The expectation value of the spin angular momentum measured along x direction is:
 - $(A) \hbar$
 - $(B) \hbar$
 - (C)0
 - $(\mathbf{D})\hbar/2$
- 40. The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is:
 - (A) 7/8
 - **(B)** 1/3
 - (C) 5/6
 - (D) $1/2^{1/3}$
- 41. If the Rydberg constant of an atom of finite nuclear mass is αR_{∞} , where R_{∞} is the Rydberg constant corresponding to an infinite nuclear mass, the ratio of the electronic to nuclear mass of the atom is:
 - (A) $(1-\alpha)/\alpha$
 - (B) $(\alpha 1)/\alpha$
 - (C) $(1-\alpha)$
 - (D) $1/\alpha$

- 42. A gas contains particles of type A with fraction 0.8, and particles of type B with fraction 0.2. The probability that among 3 randomly chosen particles at least one is of type A is:
 - (A) 0.8
 - (B) 0.25
 - (C) 0.33
 - (D) 0.992
- 43. A cylindrical shell of mass m has an outer radius b and an inner radius a. The moment of inertia of the shell about the axis of the cylinder is:
 - (A) $\frac{1}{2}m(b^2-a^2)$
 - (B) $\frac{1}{2}m(b^2+a^2)$
 - (C) $m(b^2 + a^2)$
 - (D) $m(b^2 a^2)$
- 44. If the direction with respect to a right-handed cartesian coordinate system of the ket vector $|z, +\rangle$ is (0, 0, 1), then the direction of the ket vector obtained by application of rotations: $\exp(-i\sigma_z \pi/2) \exp(i\sigma_y \pi/4)$, on the ket $|z, +\rangle$ is (σ_y, σ_z) are the Pauli matrices):
 - (A)(0,1,0)
 - **(B)** (1,0,0)
 - (C) $(1,1,0)/\sqrt{2}$
 - (D) $(1,1,1)/\sqrt{3}$
- 45. Suppose yz plane forms the boundary between two linear dielectric media I and II with dielectric constant $\epsilon_I = 3$ and $\epsilon_{II} = 4$, respectively. If the electric field in region I at the interface is given by $\vec{E}_I = 4\hat{x} + 3\hat{y} + 5\hat{z}$, then the electric field \vec{E}_{II} at the interface in region II is:
 - $(A) 4\hat{x} + 3\hat{y} + 5\hat{z}$
 - (B) $4\hat{x} + 0.75\hat{y} 1.25\hat{z}$
 - (C) $-3\hat{x} + 3\hat{y} + 5\hat{z}$
 - (D) $3\hat{x} + 3\hat{y} + 5\hat{z}$

1-

- 46. How much force does light from a 1.8 W laser exert when it is totally absorbed by an object?
 - (A) $6.0 \times 10^{-9} \text{ N}$
 - **(B)** $0.6 \times 10^{-9} \text{ N}$
 - (C) 6.0×10^{-8} N
 - (D) $4.8 \times 10^{-9} \text{ N}$
- 47. Self inductance per unit length of a long solenoid of radius R with n turns per unit length is:
 - (A) $\mu_0 \pi R^2 n^2$
 - (B) $2\mu_0\pi R^2n$
 - (C) $2\mu_0\pi R^2n^2$
 - **(D)** $\mu_0 \pi R^2 n^{-1}$
- 48. In Millikan's oil-drop experiment an oil drop of radius r, mass m and charge $q = 6\pi \eta r(v_1 + v_2)/E$ is moving upwards with a terminal velocity v_2 due to an applied electric field of magnitude E, where η is the coefficient of viscosity. The acceleration due to gravity is given by:
 - (A) $g = 6\pi \eta r v_1/m$
 - (B) $g = 3\pi \eta r v_1/m$
 - (C) $g = 6\pi \eta r v_2/m$
 - (D) $g = 3\pi \eta r v_2/m$

49. For the coupled system shown in the figure, the normal coordinates are $x_1 + x_2$ and $x_1 - x_2$, corresponding to the normal frequencies ω_0 and $\sqrt{3}\omega_0$, respectively.

At t=0, the displacements are $x_1=A,\ x_2=0$, and the velocities are $v_1=v_2=0$. The displacement of the second particle at time t is given by:

(A)
$$x_2(t) = \frac{A}{2} \left(\cos(\omega_0 t) + \cos(\sqrt{3}\omega_0 t) \right)$$

(B)
$$x_2(t) = \frac{A}{2} \left(\cos(\omega_0 t) - \cos(\sqrt{3}\omega_0 t) \right)$$

(C)
$$x_2(t) = \frac{A}{2} \left(\sin(\omega_0 t) - \sin(\sqrt{3}\omega_0 t) \right)$$

(D)
$$x_2(t) = \frac{A}{2} \left(\sin(\omega_0 t) - \frac{1}{\sqrt{3}} \sin(\sqrt{3}\omega_0 t) \right)$$

- 50. The mean value of random variable x with probability density $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-(x^2 + \mu x)/(2\sigma^2)]$, is:
 - (A)0
 - **(B)** $\mu/2$
 - $(C)' \mu/2$
 - (D) σ