Series S3RQP/3

रोल नं.				
Roll No				

प्रश्न-पत्र कोड Q.P. Code

55/3/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

	नोट		NOTE
(1)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं।	(1)	Please check that this question paper contains 27 printed pages.
(II)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।	(II)	Please check that this question paper contains 33 questions.
(III)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(III)	Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
/IX /\	~	/n /	
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(1V)	Please write down the serial number of the question in the answer-book before attempting it.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पिंढ्ए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ** /
- (iii) खण्ड क में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** में प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **2** अंकों का है ।
- (v) **खण्ड ग** में प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **3** अंकों का
- (vi) **खण्ड घ** में प्रश्न संख्या **29** तथा **30** प्रकरण अध्ययन आधारित प्रश्न हैं । प्रत्येक प्रश्न **4** अंकों का
- (vii) खण्ड ङ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$
 $h = 6.63 \times 10^{-34} \text{ Js}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$
 $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान $(m_e) = 9.1 \times 10^{-31} \text{ kg}$
न्यूट्रॉन का द्रव्यमान $= 1.675 \times 10^{-27} \text{ kg}$
प्रोटॉन का द्रव्यमान $= 1.673 \times 10^{-27} \text{ kg}$
आवोगाद्रो संख्या $= 6.023 \times 10^{23} \text{ प्रति ग्राम मोल}$
बोल्ट्ज़मान नियतांक $= 1.38 \times 10^{-23} \text{ JK}^{-1}$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Sections A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. 1 to 16 are Multiple Choice type questions. Each question carries 1 mark.
- (iv) In **Section B** Questions no. **17** to **21** are Very Short Answer type questions. Each question carries **2** marks.
- (v) In **Section C** Questions no. **22** to **28** are Short Answer type questions. Each question carries **3** marks.
- (vi) In **Section D** Questions no. **29** and **30** are case study based questions. Each question carries **4** marks.
- (vii) In **Section E** Questions no. **31** to **33** are Long Answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

 $You \ may \ use \ the \ following \ values \ of \ physical \ constants \ wherever \ necessary:$

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

1. कोई वियुक्त चालक, जिसमें एक कोटर है, पर नेट आवेश +Q है । कोटर के भीतर कोई बिन्दु आवेश +q है । कोटर की दीवारों और बाह्य पृष्ठों पर क्रमशः आवेश हैं :

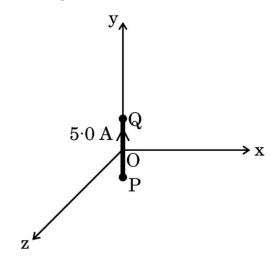
(A) 0 और Q

(B) − q और Q − q

(C) - q और Q + q

(D) 0 और Q - q

2. किसी प्रोटॉन को बिन्दु P_1 से बिन्दु P_2 तक ले जाया गया है, ये दोनों बिन्दु किसी विद्युत क्षेत्र में स्थित हैं । बिन्दु P_1 और P_2 पर विभव क्रमश: -5~V और +5~V हैं । यह मानते हुए कि बिन्दुओं P_1 और P_2 पर प्रोटॉन की गतिज ऊर्जाएँ शून्य हैं, तो प्रोटॉन पर किया गया कार्य है :


(A) $-1.6 \times 10^{-18} \text{ J}$

 $(B)~1\cdot 6\times 10^{-18}~J$

(C) शून्य

(D) $0.8 \times 10^{-18} J$

3. आरेख में दर्शाए अनुसार तार के किसी $2\cdot 0$ cm लम्बे खण्ड से, जो y-अक्ष के अनुदिश रखा गया है, धनात्मक y-दिशा में $5\cdot 0$ A धारा प्रवाहित हो रही है । इस खण्ड (परिपथ के भाग) के कारण बिन्दु $(3\ m, 4\ m, 0)$ पर चुम्बकीय क्षेत्र है :

(A) $(0.12 \text{ nT}) \hat{j}$

(B) $-(0.10 \text{ nT}) \dot{j}$

(C) -(0.24 nT) k

(D) (0.24 nT) k

SECTION A

1. An isolated conductor, with a cavity, has a net charge +Q. A point charge +q is inside the cavity. The charges on the cavity wall and the outer surface are respectively:

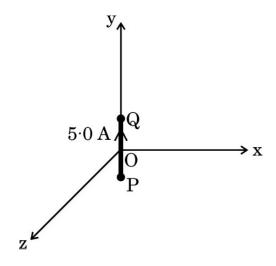
(A) 0 and Q

(B) -q and Q-q

(C) -q and Q + q

(D) 0 and Q - q

A proton is taken from point P_1 to point P_2 , both located in an electric field. The potentials at points P_1 and P_2 are -5 V and +5 V respectively. Assuming that kinetic energies of the proton at points P_1 and P_2 are zero, the work done on the proton is :


(A) $-1.6 \times 10^{-18} \,\mathrm{J}$

(B) $1.6 \times 10^{-18} \, \text{J}$

(C) Zero

(D) $0.8 \times 10^{-18} \, J$

3. A 2.0 cm segment of wire, carrying 5.0 A current in positive y-direction lies along y-axis, as shown in the figure. The magnetic field at a point (3 m, 4 m, 0) due to this segment (part of a circuit) is:

(A) $(0.12 \text{ nT}) \hat{j}$

(B) $-(0.10 \text{ nT}) \dot{j}$

(C) -(0.24 nT) k

(D) (0.24 nT) k

4.	दो पतले लम्बे समान्तर तारों, जिनके बीच पृथकन दूरी 'a' है, से विपरीत दिशाओं में धारा 'I'
	प्रवाहित हो रही है। ये तार एक-दूसरे की प्रति एकांक लम्बाई पर:

(A)
$$\frac{\mu_0 I^2}{2\pi a^2}$$
 का प्रतिकर्षण बल आरोपित करेंगे ।

$$(B) = rac{\mu_0 I^2}{2\pi a^2}$$
 का आकर्षण बल आरोपित करेंगे ।

(C)
$$\frac{\mu_0 I^2}{2\pi a}$$
 का आकर्षण बल आरोपित करेंगे ।

(D)
$$\frac{\mu_0 I^2}{2\pi a}$$
 का प्रतिकर्षण बल आरोपित करेंगे ।

5. कोई धारावाही वृत्ताकार पाश जिसका चुम्बकीय आघूर्ण \overrightarrow{M} है, किसी बाह्य चुम्बकीय क्षेत्र \overrightarrow{B} में ऊर्ध्वाधर तल में इस प्रकार निलंबित है कि इसका तल \overrightarrow{B} के अभिलम्बवत् है । इस पाश को \overrightarrow{B} के लम्बवत् अक्ष के परितः 45° पर घूर्णित कराने में किया गया कार्य किसके निकटतम है ?

(A) -0.3 MB

(B) 0.3 MB

(C) -1.7 MB

(D) 1.7 MB

6. दो कुण्डलियों C_1 और C_2 का अन्योन्य प्रेरकत्व $20~\mathrm{mH}$ है । कुण्डली C_1 में, $0.2~\mathrm{s}$ में $4~\mathrm{A}$ से शून्य का धारा परिवर्तन होता है । यदि कुण्डली C_2 का प्रतिरोध $4~\Omega$ है, तो इससे प्रति सेकण्ड प्रवाहित आवेश होगा :

(A) 4.0 C

(B) 1.5 C

(C) 0.05 C

(D) 0·1 C

7. किसी ऐसी परिनालिका पर विचार कीजिए जिसकी लम्बाई l,अनुप्रस्थ-काट क्षेत्रफल A तथा फेरों की संख्या नियत है । इस परिनालिका के स्वप्रेरकत्व में वृद्धि होगी यदि :

- (A) l और A दोनों में वृद्धि हो
- (B) l में कमी और A में वृद्धि हो
- (C) l में वृद्धि और A में कमी हो
- (D) l और A दोनों में कमी हो

- **4.** Two thin long parallel wires separated by a distance 'a' carry current 'I' in opposite directions. The wires will:
 - (A) Repel each other with a force $\frac{\mu_0 I^2}{2\pi a^2}$, per unit length.
 - (B) Attract each other with a force $\frac{\mu_0 I^2}{2\pi a^2}$, per unit length.
 - (C) Attract each other with a force $\frac{\mu_0 I^2}{2\pi a}$, per unit length.
 - (D) Repel each other with a force $\frac{\mu_0 I^2}{2\pi a}$, per unit length.
- 5. A current carrying circular loop of magnetic moment \overrightarrow{M} is suspended in a vertical plane in an external magnetic field \overrightarrow{B} such that its plane is normal to \overrightarrow{B} . The work done in rotating this loop by 45° about an axis perpendicular to \overrightarrow{B} is closest to:
 - (A) 0.3 MB

(B) 0.3 MB

(C) -1.7 MB

- (D) 1.7 MB
- 6. The mutual inductance of two coils C_1 and C_2 is 20 mH. In coil C_1 , the current changes from 4 A to zero in 0.2 s. If the resistance of coil C_2 is 4Ω , then the charge that flows through it per second will be:
 - (A) 4.0 C

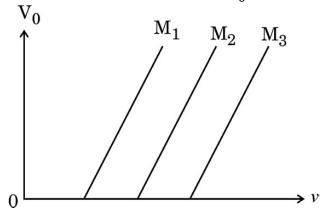
(B) 1.5 C

(C) 0.05 C

- (D) 0.1 C
- **7.** Consider a solenoid of length *l* and area of cross-section A with fixed number of turns. The self-inductance of the solenoid will increase if :
 - (A) both l and A are increased
 - (B) l is decreased and A is increased
 - (C) l is increased and A is decreased
 - (D) both l and A are decreased

- **8.** $1.0 \times 10^{18} \; \text{Hz}$ आवृत्ति की विद्युत-चुम्बकीय तरंगें कहलाती हैं :
 - (A) अवरक्त किरणें

(B) पराबैंगनी किरणें


(C) X-किरणें

- (D) गामा किरणें
- 9. समान वेग से गतिमान कोई प्रोटॉन और कोई ऐल्फा कण किसी लक्ष्य नाभिक पर उपगमन करते हैं। ये क्षणिक विराम में आते हैं और फिर अपनी दिशाओं को व्युत्क्रमित करते हैं। प्रोटॉन के उपगमन की निकटतम दूरी तथा ऐल्फा कण के उपगमन की निकटतम दूरी का अनुपात होगा:
 - $(A) \qquad \frac{1}{2}$

(B) 2

(C) $\frac{1}{4}$

- (D) 4
- 10. आरेख में तीन पदार्थों ${
 m M}_1, {
 m M}_2$ व ${
 m M}_3$ जिनके कार्य फलन क्रमशः ${
 m \phi}_1, {
 m \phi}_2$ व ${
 m \phi}_3$ हैं, के लिए आवृत्ति v के आपितत विकिरण के साथ निरोधी विभव ${
 m V}_0$ का विचरण दर्शाया गया है। तब :

- (A) $\phi_1 > \phi_2 > \phi_3$
- (B) $\phi_2 > \phi_3 > \phi_1$
- (C) $\phi_3 > \phi_2 > \phi_1$
- (D) $\phi_2 > \phi_1 > \phi_3$
- 11. हाइड्रोजन परमाणु के बोर मॉडल में कोई इलेक्ट्रॉन n=2 स्तर से n=1 स्तर को संक्रमण करता है । इसके परिक्रमण काल में :
 - (A) 87·5% की वृद्धि होगी
 - (B) 87·5% की कमी होगी
 - (C) 43·75% की वृद्धि होगी
 - (D) 43.75% की कमी होगी

8. Electromagnetic waves with frequency 1.0×10^{18} Hz are known as :

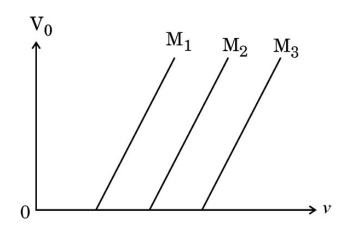
(A) Infrared rays

(B) Ultraviolet rays

(C) X-rays

(D) Gamma rays

9. A proton and an alpha particle having equal velocities approach a target nucleus. They come momentarily to rest and then reverse their directions. The ratio of the distance of closest approach of the proton to that of the alpha particle will be:


$$(A) \qquad \frac{1}{2}$$

(B) 2

(C)
$$\frac{1}{4}$$

(D) 4

10. The figure shows the variation of stopping potential V_0 with frequency ν of incident radiation, for three materials M_1 , M_2 and M_3 with work functions ϕ_1 , ϕ_2 and ϕ_3 respectively. Then :

(A) $\phi_1 > \phi_2 > \phi_3$

(B) $\phi_2 > \phi_3 > \phi_1$

(C) $\phi_3 > \phi_2 > \phi_1$

(D) $\phi_2 > \phi_1 > \phi_2$

11. An electron makes a transition from n = 2 level to n = 1 level in the Bohr model of a hydrogen atom. Its period of revolution :

(A) increases by 87.5%

(B) decreases by 87.5%

(C) increases by 43.75%

(D) decreases by 43.75%

- 12. Si का मादन पंचसंयोजी तत्त्व के साथ किया गया है। अतिरिक्त इलेक्ट्रॉन को मुक्त करने के लिए आवश्यक ऊर्जा है लगभग:
 - (A) 0.01 eV

(B) 0.05 eV

(C) 0.72 eV

(D) 1.1 eV

प्रश्न संख्या 13 से 16 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं। दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या $\mathbf{r}\mathbf{f}\mathbf{l}$ करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है तथा कारण (R) भी ग़लत है।
- 13. अभिकथन (A): किसी अर्धचालक में, चालन बैण्ड के इलेक्ट्रॉनों की ऊर्जा संयोजकता बैण्ड के इलेक्ट्रॉनों की ऊर्जा से कम होती है।
 - कारण (R) : किसी अर्धचालक में दाता ऊर्जा स्तर संयोजकता बैण्ड के ठीक ऊपर होता है।
- 14. अभिकथन (A): प्रकाश-विद्युत प्रभाव प्रकाश की कणात्मक प्रकृति को निदर्शित करता है।

 कारण (R): प्रकाश-विद्युत धारा आपतित विकिरणों की आवृत्ति के अनुक्रमानुपाती होती
 है।
- **15.** अभिकथन (A): कोई प्रोटॉन और कोई इलेक्ट्रॉन किसी एकसमान चुम्बकीय क्षेत्र \overrightarrow{B} में समान संवेग \overrightarrow{p} से इस प्रकार प्रवेश करते हैं कि \overrightarrow{p} चुम्बकीय क्षेत्र \overrightarrow{B} के लम्बवत् है । ये दोनों समान त्रिज्या के वृत्तीय पथ पर गमन करेंगे ।
 - कारण (R) : किसी चुम्बकीय क्षेत्र में कक्षीय त्रिज्या r का मान $\dfrac{p}{qB}$ के बराबर होता है ।

12. Si is doped with a pentavalent element. The energy required to set the additional electron free is about:

(A) 0.01 eV

(B) 0.05 eV

(C) 0.72 eV

(D) 1.1 eV

Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false and Reason (R) is also false.
- **13.** Assertion (A): In a semiconductor, the electrons in the conduction band have lesser energy than those in the valence band.
 - Reason(R): Donor energy level is just above the valence band in a semiconductor.
- **14.** Assertion (A): Photoelectric effect demonstrates the particle nature of light.
 - Reason(R): Photoelectric current is proportional to frequency of incident radiation.
- **15.** Assertion (A): A proton and an electron enter a uniform magnetic field \overrightarrow{B} with the same momentum \overrightarrow{p} such that \overrightarrow{p} is perpendicular to \overrightarrow{B} . They describe circular paths of the same radius.
 - Reason(R): In a magnetic field, orbital radius r is equal to $\frac{p}{qB}$.

16. अभिकथन (A): कोई उत्तल लेंस किसी द्रव में डुबोए जाने पर लुप्त हो जाता है। ant (R): लेंस के पदार्थ और द्रव दोनों के अपवर्तनांक समान हैं।

खण्ड ख

17. (क) किसी चालक में मुक्त इलेक्ट्रॉनों के 'विश्रांति काल' से क्या तात्पर्य है ? यह दर्शाइए कि किसी चालक के प्रतिरोध को $R = \frac{m \, l}{n e^2 \tau \, A}$ द्वारा व्यक्त किया जा सकता है, यहाँ प्रतीकों के अपने सामान्य अर्थ हैं।

अथवा

(ख) किसी व्हीटस्टोन सेतु का परिपथ आरेख खींचिए। वह शर्त प्राप्त कीजिए जब इस परिपथ के गैल्वेनोमीटर से कोई धारा प्रवाहित नहीं होती है। 2

2

2

2

2

2

- 18. किसी खगोलीय दूरदर्शक की आवर्धन क्षमता 24 है। सामान्य समायोजन में, इसके दो लेंसों के बीच की दूरी 150 cm है। अभिदृश्यक लेंस की फोकस दूरी ज्ञात कीजिए।
- 19. प्रकाश के व्यतिकरण तथा विवर्तन में अंतर के दो बिन्दु लिखिए।
- 20. सीज़ियम धातु (कार्य-फलन 2·14 eV) पर 500 nm तरंगदैर्घ्य का प्रकाश आपतन करता है और इलेक्ट्रॉनों का प्रकाशिक-उत्सर्जन होता है । (i) तीव्रतम इलेक्ट्रॉनों की गतिज ऊर्जा (eV में) तथा (ii) इस स्थिति के लिए निरोधी विभव परिकलित कीजिए। (hc = 1240 eV. nm लीजिए)
- **21.** मान लीजिए किसी शुद्ध Si क्रिस्टल में प्रति घन मीटर 5×10^{28} परमाणु हैं । इसका मादन बोरॉन की 1~ppm सांद्रता द्वारा किया गया है । होलों और इलेक्ट्रॉनों की सांद्रता परिकलित कीजिए, दिया गया है $n_i = 1.5 \times 10^{16}~m^{-3}$ । क्या यह मादित क्रिस्टल n-प्रकार का है अथवा p-प्रकार का, उल्लेख कीजिए ।

- **16.** Assertion (A): A convex lens, when immersed in a liquid, disappears.
 - Reason (R): The refractive indices of material of the lens and the liquid are equal.

SECTION B

17. (a) What is meant by 'relaxation time' of free electrons in a conductor ? Show that the resistance of a conductor can be expressed by $R = \frac{m \, l}{n e^2 \tau \, A}, \text{ where symbols have their usual meanings.}$

OR

(b) Draw the circuit diagram of a Wheatstone bridge. Obtain the condition when no current flows through the galvanometer in it.

2

2

18. The magnifying power of an astronomical telescope is 24. In normal adjustment, distance between its two lenses is 150 cm. Find the focal length of the objective lens.

2

19. Write two points of difference between interference and diffraction of light.

2

20. Light of wavelength 500 nm is incident on caesium metal (work function 2·14 eV) and photoemission of electrons occurs. Calculate the (i) kinetic energy (in eV) of the fastest electrons and (ii) stopping potential for this situation. (Take hc = 1240 eV. nm)

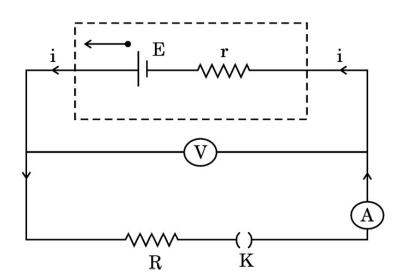
2

21. Suppose a pure Si crystal has 5×10^{28} atoms m⁻³. It is doped by 1 ppm concentration of boron. Calculate the concentration of holes and electrons, given that $n_i = 1.5 \times 10^{16}$ m⁻³. Is the doped crystal n-type or p-type?

2

13-55/3/2 13 P.T.O.

खण्ड ग

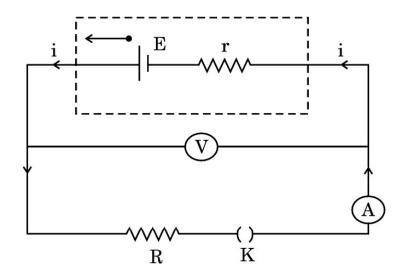

22. अज्ञात वि.वा. बल (emf) E तथा आन्तरिक प्रतिरोध r की कोई बैटरी आरेख में दर्शाए अनुसार किसी परिपथ से संबद्ध है । कुंजी (K) के खुले होने पर वोल्टमीटर का पाठ्यांक $10\cdot0$ V तथा ऐमीटर का पाठ्यांक शून्य ऐम्पियर है । परिपथ बन्द होने पर वोल्टमीटर का पाठ्यांक $6\cdot0$ V तथा ऐमीटर का पाठ्यांक $2\cdot0$ A है । परिकलित कीजिए :

3

3

3

- (क) बैटरी का वि.वा. बल (emf),
- (ख) बैटरी का आन्तरिक प्रतिरोध (r), तथा
- (ग) बाह्य प्रतिरोध (R) ।



- **23.** क्षेत्रफल \overrightarrow{A} का कोई आयताकार पाश जिससे धारा I प्रवाहित हो रही है, किसी एकसमान चुम्बकीय क्षेत्र \overrightarrow{B} में स्थित है । उपयुक्त आरेख की सहायता से इस पाश पर कार्य करने वाले बल-आधूर्ण के लिए सदिश रूप में व्यंजक व्युत्पन्न कीजिए ।
- 24. किसी ac परिपथ की प्रतिघात और प्रतिबाधा के बीच विभेदन कीजिए । यह दर्शाइए कि किसी ac परिपथ में किसी आदर्श प्रेरक में कोई शक्ति क्षय नहीं होती है ।

SECTION C

- 22. A battery of unknown emf E and internal resistance r is connected in a circuit as shown in the figure. When the key (K) is open, the voltmeter reads 10·0 V and ammeter reads 0 A. In the closed circuit, the voltmeter reads 6·0 V and ammeter reads 2·0 A. Calculate:
- 3

- (a) emf of the battery,
- (b) internal resistance of the battery (r), and
- (c) external resistance (R).

23. A rectangular loop of area \overrightarrow{A} , carrying current I, is placed in a uniform magnetic field \overrightarrow{B} . With the help of a suitable diagram, derive an expression, in vector form, for the torque acting on the loop.

3

24. Distinguish between reactance and impedance of an ac circuit. Show that an ideal inductor in an ac circuit does not dissipate any power.

निर्वात में किसी विद्युत-चुम्बकीय तरंग के विद्युत क्षेत्र को इस प्रकार दिया गया है : **25.**

 \overrightarrow{E} = (6·3 N/C) [cos (1·5 rad/m) y + (4·5 × 10⁸ rad/s) t] \overrightarrow{i}

- तरंग की तरंगदैर्घ्य और आवृत्ति ज्ञात कीजिए। (क)
- इस तरंग के चुम्बकीय क्षेत्र का आयाम क्या है ? (ख)
- इस तरंग के चुम्बकीय क्षेत्र के लिए व्यंजक लिखिए। (₁)

बोर सिद्धांत का उपयोग करके हाइड्रोजन परमाणु की स्पेक्ट्रमी रेखाओं के उद्भव की व्याख्या **26.** कीजिए । हाइड्रोजन परमाणु के ऊर्जा स्तर आरेख को आरेखित कीजिए और उसमें विभिन्न स्पेक्ट्रमी श्रेणियाँ दर्शाइए ।

- परमाणु द्रव्यमान मात्रक (u) को परिभाषित कीजिए । 27. (क)
 - किसी ड्यूटेरॉन को इसके अवयवों (प्रोटॉन और न्यूट्रॉन) में पृथक् करने के लिए (ख) आवश्यक ऊर्जा परिकलित कीजिए । दिया गया है :

m(D) = 2.014102 u

 $m_H = 1.007825 u$

 $m_n = 1.008665 u$

किसी p-n संधि डायोड का V-I अभिलाक्षणिक प्राप्त करने के लिए परिपथ आरेख 28. (क) खींचिए । (i) अग्रदिशिक बायस, और (ii) पश्चिदशिक बायस में V-Iअभिलाक्षणिक के मुख्य लक्षणों की संक्षेप में व्याख्या कीजिए।

अथवा

ऊर्जा बैण्ड आरेखों के आधार पर किसी (i) विद्युतरोधी, (ii) अर्धचालक और (ख) (iii) चालक के बीच विभेदन कीजिए।

13-55/3/2 16 3

3

3

3

25. The electric field in an electromagnetic wave in vacuum is given by :

$$\overrightarrow{E}$$
 = (6·3 N/C) [cos (1·5 rad/m) y + (4·5 × 10⁸ rad/s) t] \overrightarrow{i}

- (a) Find the wavelength and frequency of the wave.
- (b) What is the amplitude of the magnetic field of the wave?
- (c) Write an expression for the magnetic field of this wave.
- **26.** Explain the origin of the spectral lines of hydrogen atom using Bohr's theory. Draw the energy level diagram of hydrogen atom showing its various spectral series.
- **27.** (a) Define atomic mass unit (u).
 - (b) Calculate the energy required to separate a deuteron into its constituent parts (a proton and a neutron). Given:

$$m(D) = 2.014102 u$$

$$m_H = 1.007825 u$$

$$m_n = 1.008665 u$$

28. (a) Draw the circuit diagrams for obtaining the V - I characteristics of a p-n junction diode. Explain briefly the salient features of the V - I characteristics in (i) forward biasing, and (ii) reverse biasing.

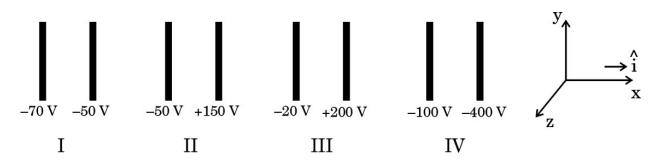
OR

(b) On the basis of energy band diagrams, distinguish between (i) an insulator, (ii) a semiconductor, and (iii) a conductor.

3

3

3


3

खण्ड घ

प्रकरण अध्ययन आधारित प्रश्न

प्रश्न संख्या **29** तथा **30** प्रकरण अध्ययन आधारित प्रश्न हैं । निम्नलिखित अनुच्छेदों को पढ़ कर दिए गए प्रश्नों के उत्तर दीजिए ।

29. आरेख में समान्तर सर्वसम चालक पट्टिकाओं के चार जोड़े, जिनमें सभी में पट्टिकाओं के बीच $2\cdot 0$ cm दूरी का समान पृथकन है, x-अक्ष के लम्बवत् व्यवस्थित किए गए हैं । प्रत्येक पट्टिका का विद्युत विभव अंकित है । पट्टिकाओं के किसी जोड़े के बीच विद्युत क्षेत्र एकसमान है तथा पट्टिकाओं के अभिलम्बवत् है ।

- (i) पट्टिकाओं के किस जोड़े के लिए विद्युत क्षेत्र \overrightarrow{E} , \hat{i} के अनुदिश है ?
 - (A) I

(B) II

(C) III

(D) IV

1

1

1

- (ii) किसी इलेक्ट्रॉन को जोड़े IV की पट्टिकाओं के बीच मध्य मुक्त किया गया है। यह :
 - (A) नियत चाल से \hat{i} के अनुदिश गमन करेगा
 - (B) नियत चाल से $-\hat{i}$ के अनुदिश गमन करेगा
 - (C) i के अनुदिश त्वरित होगा
 - (D) $-\stackrel{\wedge}{i}$ के अनुदिश त्विरत होगा
- (iii) मान लीजिए किसी भी सेट की बायीं पट्टिका जिसे x=0~m पर लिया गया है, पर विभव V_0 है । तब उन पट्टिकाओं के बीच सेट के किसी बिन्दु $(0 \le x \le 2~cm)$ पर विभव V को इस प्रकार व्यक्त किया जा सकता है :
 - (A) $V = V_0 + \alpha x$
- (B) $V = V_0 + \alpha x^2$
- (C) $V = V_0 + \alpha x^{1/2}$
- (D) $V = V_0 + \alpha x^{3/2}$

यहाँ α कोई धनात्मक अथवा ऋणात्मक नियतांक है ।

SECTION D

Case Study Based Questions

Questions number 29 and 30 are case study based questions. Read the following paragraphs and answer the questions that follow.

29. The figure shows four pairs of parallel identical conducting plates, separated by the same distance 2.0 cm and arranged perpendicular to x-axis. The electric potential of each plate is mentioned. The electric field between a pair of plates is uniform and normal to the plates.

- (i) For which pair of the plates is the electric field \overrightarrow{E} along \hat{i} ?
 - (A) I

(B) II

(C) III

- (D) IV
- (ii) An electron is released midway between the plates of pair IV. It will:
 - (A) move along i at constant speed
 - (B) move along $-\hat{i}$ at constant speed
 - (C) accelerate along i
 - (D) accelerate along $-\dot{i}$
- (iii) Let V_0 be the potential at the left plate of any set, taken to be at x=0 m. Then potential V at any point $(0 \le x \le 2$ cm) between the plates of that set can be expressed as :
 - (A) $V = V_0 + \alpha x$
- (B) $V = V_0 + \alpha x^2$
- (C) $V = V_0 + \alpha x^{1/2}$
- (D) $V = V_0 + \alpha x^{3/2}$

where α is a constant, positive or negative.

1

1

(iv)	(क)	मान लीजिए पट्टिकाओं के जोड़ों I, II, III और IV के बीच विद् परिमाण क्रमश: $\mathrm{E}_1,\mathrm{E}_2,\mathrm{E}_3$ और E_4 हैं। तब:	र्गत क्षेत्रों के			
		(A) $E_1 > E_2 > E_3 > E_4$ (B) $E_3 > E_4 > E_1 > E_3$	2			
		(C) $E_4 > E_3 > E_2 > E_1$ (D) $E_2 > E_3 > E_4 > E_4$	1			
		अथवा				
	(ख)	किसी इलेक्ट्रॉन को सेट I की दायीं पट्टिका से सीधे ही बायीं पट्टिका की ओर प्रक्षेपित किया गया है । यह ठीक पट्टिका पर विराम में आ जाता है । जिस चाल से इसे प्रक्षेपित किया गया था वह है लगभग : (e/m =1.76 × 10^{11} C/kg लीजिए)				
		$(A) 1.3\times 10^5 \text{ m/s} \qquad \qquad (B) 2.6\times 10^6 \text{ m/s}$				
		$(C) 6.5\times 10^5 \text{ m/s} \qquad \qquad (D) 5.2\times 10^7 \text{ m/s}$				
विवर्तन और व्यतिकरण निकटतम परिघटनाएँ हैं जो एक साथ घटती हैं। विवर्तन ऐसी परिघटना है जिसमें प्रकाश बाधा के कोणों (शीर्षों) पर झुकता है, जबिक प्रकाश के व्यतिकरण						

1

1

1

1

30. विवर्तन और व्यक्तिकरण निकटतम परिघटनाएँ है जो एक साथ घटती है । विवर्तन ऐसी परिघटना है जिसमें प्रकाश बाधा के कोणों (शीर्षों) पर झुकता है, जबिक प्रकाश के व्यतिकरण में तरंगों के संयोजन से एक नया तरंग पैटर्न बनता है । व्यतिकरण के लिए कम-से-कम विवर्तन करती दो तरंगों का होना आवश्यक है । अत: विवर्तन बिना व्यतिकरण के हो सकता है, जबिक व्यतिकरण बिना विवर्तन के नहीं हो सकता है ।

किसी अपारदर्शी पदार्थ में दो झिरियाँ हैं, जिनमें प्रत्येक की चौड़ाई $2~\mu m$ है तथा उनके बीच की दूरी $6~\mu m$ है, झिरियों पर तरंगदैर्घ्य 450~nm के एकवर्णी प्रकाश का लम्बवत् आपतन कराकर परदे पर संयुक्त व्यतिकरण और विवर्तन पैटर्न प्राप्त होता है।

- (i) विवर्तन पैटर्न के आवरण के केन्द्रीय शीर्ष के भीतर बनने वाले व्यतिकरण फ्रिंजों के शीर्षों की संख्या होगी :
 - (A) 2

(B) 3

(C) 4

(D) 6

(ii) झिरियों के बीच की दूरी को समान रखते हुए यदि झिरियों की चौड़ाई दो गुनी कर दें, तो बनने वाले व्यतिकरण के शीर्षों की संख्या होगी :

(A) 1

(B) 2

(C) 3

(D) 4

(iv)	(a)	Let E_1 , E_2 , E_3 and E_4 be the magnitudes of the electric field between the pairs of plates, I, II, III and IV respectively. Then:				
		(A) $E_1 > E_2 > E_3 > E_4$ (B) $E_3 > E_4 > E_1 > E_2$				
		(C) $E_4 > E_3 > E_2 > E_1$ (D) $E_2 > E_3 > E_4 > E_1$				
		OR				
	(b)	An electron is projected from the right plate of set I directly towards its left plate. It just comes to rest at the plate. The speed with which it was projected is about : $(\text{Take (e/m)} = 1.76 \times 10^{11} \text{ C/kg})$				
		$(A) 1.3\times 10^5 \text{ m/s} \qquad \qquad (B) 2.6\times 10^6 \text{ m/s}$				
		$(C) 6.5\times 10^5 \text{ m/s} \qquad \qquad (D) 5.2\times 10^7 \text{ m/s}$				
Diffraction and interference are closely related phenomena that occur together. Diffraction is the phenomenon of bending of light around the						

30. Diffraction and interference are closely related phenomena that occur together. Diffraction is the phenomenon of bending of light around the edges of the obstacle, while interference is the combination of waves that results in a new wave pattern. In order to get interference, there must be at least two waves that are diffracting. So while diffraction can occur without interference, interference cannot occur without diffraction.

Two slits of width 2 μm each in an opaque material are separated by a distance of 6 μm . Monochromatic light of wavelength 450 nm is incident normally on the slits. One finds a combined interference and diffraction pattern on the screen.

- (i) The number of peaks of the interference fringes formed within the central peak of the envelope of the diffraction pattern will be:
 - (A) 2

(B) 3

(C) 4

(D) 6

(ii) The number of peaks of the interference formed if the slit width is doubled while keeping the distance between the slits same will be:

 $(A) \quad 1$

(B) 2

(C) 3

(D) 4

13-55/3/2

1

1

1

(iii)	(क)	यदि 450 nm के स्थान पर 680 nm तरंगदैर्घ्य के प्रकाश का एक अन्य प्रकाश प्रयोग किया जाता है, तो विवर्तन पैटर्न के आवरण के केन्द्रीय शीर्ष में बनने वाले व्यतिकरण के शीर्षों की संख्या होगी :			
		(A) 2 (B) 4			
		(C) 6 (D) 9			
		अथवा			
	(ख)	इस प्रकरण अध्ययन में वर्णित एकल झिरी द्वारा प्रकाश के विवर्तन पर विचार कीजिए। पहला निम्निष्ठ जिस कोण 🖰 पर गिरेगा, वह कोण है :	1		
		(A) $\sin^{-1}(0.12)$ (B) $\sin^{-1}(0.225)$			
		(C) $\sin^{-1}(0.32)$ (D) $\sin^{-1}(0.45)$			
(iv)		से $\frac{4}{3} \mathrm{m}$ की दूरी पर स्थित परदे के $1 \mathrm{\ m}$ पर व्यतिकरण के कारण बनने वाली त्री फ्रिंज़ों की संख्या है :	1		
	(A) 2	(B) 3			
	(C) 6	(D) 10			
		खण्ड ङ			
(क)	(i)	किसी समान्तर पट्टिका संधारित्र, जिसकी पट्टिकाओं के बीच कोई परावैद्युत माध्यम है, की धारिता के लिए व्यंजक प्राप्त कीजिए।			
	(ii) 0·2 m त्रिज्या के किसी धात्विक खोखले गोले को 6 µC आवेश दिया गया है। इस गोले के (i) पृष्ठ और (ii) केन्द्र पर विभव ज्ञात कीजिए। अथवा				
(평)	(i)	त्रिज्या R के किसी पतले चालक गोलीय खोल पर + Q आवेश स्थित है। गाउस के प्रमेय का उपयोग करके खोल के किसी बिन्दु (i) जो खोल के भीतर है, तथा (ii) जो खोल से बाहर है, पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए।			
	(ii)	यह दर्शाइए कि समान आवेश घनत्व (ठ) के लिए चालक पट्टिका अथवा पृष्ठ के प्रकरण में विद्युत क्षेत्र किसी कुचालक शीट के विद्युत क्षेत्र का दो गुना होता है।	5		

22

31.

(iii)	(a)	680 nm is used	50 nm light, another light of work number of peaks of the interference ak of the envelope of the diffraction	ice formed	
		(A) 2	(B) 4		
		(C) 6	(D) 9		
		OR			
	(b)	Consider the diffraction of light by a single slit described in this case study. The first minimum falls at an angle θ equato:			

(A) $\sin^{-1}(0.12)$

(B) $\sin^{-1}(0.225)$

(C) $\sin^{-1}(0.32)$

(D) $\sin^{-1}(0.45)$

(iv) The number of bright fringes formed due to interference on 1 m of screen placed at $\frac{4}{3}$ m away from the slits is:

 $(A) \quad 2$

(B) 3

(C) 6

(D) 10

SECTION E

- **31.** (a) (btain the expression for the capacitance of a parallel plate capacitor with a dielectric medium between its plates.
 - (ii) A charge of 6 μ C is given to a hollow metallic sphere of radius 0.2 m. Find the potential at (i) the surface and (ii) the centre of the sphere.

OR

- (b) (i) A charge + Q is placed on a thin conducting spherical shell of radius R. Use Gauss's theorem to derive an expression for the electric field at a point lying (i) inside and (ii) outside the shell.
 - (ii) Show that the electric field for same charge density (σ) is twice in case of a conducting plate or surface than in a nonconducting sheet.

5

5

1

1

1

- **32.** (क) (i) (1) किसी गैल्वेनोमीटर की धारा सुग्राहिता से क्या तात्पर्य है ? उन कारकों का उल्लेख कीजिए जिन पर यह निर्भर करती है।
 - (2) किसी गैल्वेनोमीटर जिसका प्रतिरोध G है, को किसी प्रतिरोध R का उपयोग करके (0-V) परिसर के वोल्टमीटर में परिवर्तित किया गया है । इसी गैल्वेनोमीटर को $\left(0-\frac{V}{2}\right)$ परिसर के वोल्टमीटर में परिवर्तित करने के लिए आवश्यक प्रतिरोध का मान, R और G के पदों में ज्ञात कीजिए।
 - (ii) 5 Ω प्रतिरोध की किसी कुण्डली से गुज़रने वाले चुम्बकीय फ्लक्स में समय के साथ इस प्रकार वृद्धि होती है :

5

5

$$\phi = (2.0 \text{ t}^3 + 5.0 \text{ t}^2 + 6.0 \text{ t}) \text{ mWb}$$

 $t=2~{
m s}$ पर कुण्डली में प्रेरित धारा का परिमाण ज्ञात कीजिए ।

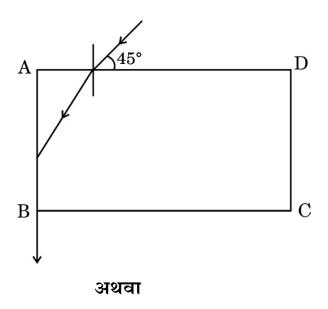
अथवा

- (ख) (i) N फेरों तथा अनुप्रस्थ-काट क्षेत्रफल A की किसी आयताकार कुण्डली को स्थायी कोणीय चाल ω से किसी एकसमान चुम्बकीय क्षेत्र में घूर्णन कराया गया है । किसी भी समय पर कुण्डली में प्रेरित वि.वा. बल (emf) के लिए व्यंजक प्राप्त कीजिए ।
 - (ii) दो समतलीय तथा संकेन्द्री वृत्ताकार पाश ${
 m L}_1$ और ${
 m L}_2$ अपने केन्द्रों को संपाती रखते हुए समाक्ष स्थित हैं । ${
 m L}_1$ और ${
 m L}_2$ की त्रिज्याएँ क्रमश: 1 cm और $100~{
 m cm}$ हैं । इन पाशों का अन्योन्य प्रेरकत्व परिकलित कीजिए । $(\pi^2=10~{
 m cm})$
- 33. (क) (i) किसी त्रिभुजाकार प्रिज़्म से अपवर्तन को दर्शाने वाली प्रकाश किरण का पथ आरेखित कीजिए और A, i और e के पदों में विचलन कोण (δ) के लिए व्यंजक प्राप्त कीजिए। यहाँ प्रतीकों के अपने सामान्य अर्थ हैं। आपतन कोण के साथ विचलन कोण के विचरण को दर्शाने के लिए ग्राफ खींचिए।

- **32.** (a) (i) What is meant by current sensitivity of a galvanometer?

 Mention the factors on which it depends.
 - (2) A galvanometer of resistance G is converted into a voltmeter of range (0-V) by using a resistance R. Find the resistance, in terms of R and G, required to convert it into a voltmeter of range $\left(0-\frac{V}{2}\right)$.
 - (ii) The magnetic flux through a coil of resistance 5 Ω increases with time as:

$$\phi = (2.0 \text{ t}^3 + 5.0 \text{ t}^2 + 6.0 \text{ t}) \text{ mWb}$$

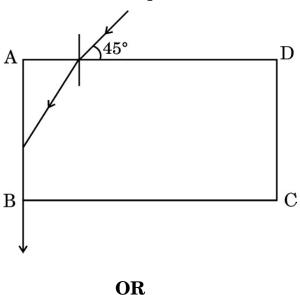

Find the magnitude of induced current through the coil at t = 2 s.

OR

- (b) (i) A rectangular coil of N turns and area of cross-section A is rotated at a steady angular speed ω in a uniform magnetic field. Obtain an expression for the emf induced in the coil at any instant of time.
 - (ii) Two coplanar and concentric circular loops L_1 and L_2 are placed coaxially with their centres coinciding. The radii of L_1 and L_2 are 1 cm and 100 cm respectively. Calculate the mutual inductance of the loops. (Take $\pi^2 = 10$)
- 33. (a) (i) Trace the path of a ray of light showing refraction through a triangular prism and hence obtain an expression for angle of deviation (δ) in terms of A, i and e, where symbols have their usual meanings. Draw a graph showing the variation of angle of deviation with the angle of incidence.

5

(ii) आरेख में कोई प्रकाश किरण किसी पारदर्शी द्रव से भरे पतले काँच के बॉक्स पर उसके एक फलक से 45° के कोण पर आपतन करती है। निर्गत किरण फलक AB के अनुदिश गमन करती है। द्रव का अपवर्तनांक ज्ञात कीजिए।


- (ख) (i) दो कला-संबद्ध प्रकाश स्रोतों से निकलने वाली दो प्रकाश तरंगों, जिनमें प्रत्येक का आयाम 'a' तथा आवृत्ति ω है, के विस्थापन $y_1 = a \cos \omega t$ और $y_2 = a \cos (\omega t + \phi) \text{ द्वारा निरूपित किए गए हैं । यहाँ } \phi \text{ दोनों तरंगों के बीच कलान्तर है । ये दोनों प्रकाश तरंगें किसी बिन्दु पर अध्यारोपण करती हैं । उस बिन्दु पर परिणामी तीव्रता के लिए व्यंजक प्राप्त कीजिए ।$
 - (ii) यंग के द्विझिरी प्रयोग में, जब दो झिरियों से निकलने वाली तरंगें किसी परदे के दो बिन्दुओं पर (i) $\frac{\lambda}{6}$ और (ii) $\frac{\lambda}{12}$ के पथान्तर पर पहुँचती हैं, तो इन बिन्दुओं पर तीव्रताओं का अनुपात ज्ञात कीजिए।

5

(ii) In the figure, a ray of light is incident on a transparent liquid contained in a thin glass box at an angle of 45° with its one face. The emergent ray passes along the face AB. Find the refractive index of the liquid.

5

5

- (b) (i) The displacement of two light waves, each of amplitude 'a' and frequency ω , emanating from two coherent sources of light, are given by $y_1 = a \cos \omega t$ and $y_2 = a \cos (\omega t + \phi)$. ϕ is the phase difference between the two waves. These light waves superpose at a point. Obtain the expression for the resultant intensity at that point.
 - (ii) In Young's double slit experiment, find the ratio of intensities at two points on a screen when waves emanating from two slits reaching these points have path differences (i) $\frac{\lambda}{6}$ and (ii) $\frac{\lambda}{6}$

 $(ii) \frac{\lambda}{12}$.