

Sample Paper-01

Dropper NEET (2024)

CHEMISTRY

SECTION-A

- 1. On treating a mixture of two alkyl halides with sodium metal in dry ether, 2-Methylpropane was obtained. The alkyl halides are;
 - (1) 2-Chloropropane & Chloromethane
 - (2) 2-Chloropropane & Chloroethane
 - (3) Chloromethane & Chloroethane
 - (4) Chloromethane & 1-Chloropropane
- 2. The energy absorbed by each molecule (A2) of a substance is 4.4×10^{-19} J and bond energy per molecule is 4.0×10^{-19} J. The kinetic energy of the molecule per atom will be;
 - (1) $2.2 \times 10^{-19} \,\mathrm{J}$
- (2) $2.0 \times 10^{-19} \,\mathrm{J}$
- (3) $4.0 \times 10^{-20} \,\mathrm{J}$
- (4) $2.0 \times 10^{-20} \,\mathrm{J}$
- 3. De-Broglie wavelength for electron is related to applied voltage as;

 - (1) $\lambda = \frac{12.3}{\sqrt{h}} \text{Å}$ (2) $\lambda = \frac{12.3}{\sqrt{V}} \text{Å}$
 - (3) $\lambda = \frac{12.3}{\sqrt{r}} \text{Å}$ (4) $\lambda = \frac{12.3}{\sqrt{m}} \text{Å}$
- 4. The group having trigonal planar structures is;
 - (1) NCl₃, BCl₃, SO₃
 - (2) CO_3^{2-} , NO_3^- , SO_3
 - (3) NH₃, SO₃, CO₃²⁻
 - (4) BF₃, NF₃, CO₂²
- 5. For the reaction.

 $H_2(g) + I_2(g) \leftrightharpoons 2HI(g)$

 $K_C = 66.9$ at 350°C and $K_C = 50.0$ at 448°C. The reaction has;

- (1) $\Delta H > 0$
- (2) $\Delta H < 0$
- (3) $\Delta H = 0$
- (4) ΔH sign cannot be determined
- The formation of oxide ion, O²⁻ (g) requires first 6. an exothermic and then an endothermic step as shown below:
 - $O(g) + e^{-} \rightarrow O^{-}(g); \quad \Delta H^{\circ} = -142 \text{ kJ mol}^{-1}$

 $O^{-}(g) + e^{-} \rightarrow O^{2-}(g); \quad \Delta H^{\circ} = 844 \text{ kJ mol}^{-1}$

This is because;

- (1) Oxygen is more electronegative
- (2) Oxygen has high electron affinity
- (3) O ion will tend to resist the addition of another electron
- (4) O has comparatively larger size than oxygen atom

7. The IUPAC name of the following compound is;

- (1) 4-Methylchlorobenzene
- (2) 4-Chlorotoluene
- (3) 2-Chloro-4-methylbenzene
- (4) 1-Methyl-4-chlorobenzene
- 8. Solution of 0.1 M NH₄OH and 0.1 M NH₄Cl has pH 9.25, The pK_b of NH₄OH is;
 - (1) 9.25
- 4.75
- (3) 3.75
- (4) 8.25
- 9. The reducing character of hydrides of group 14 elements is;
 - (1) Maximum for CH₄ and minimum for PbH₄
 - (2) Maximum for CH₄ and minimum for SnH₄
 - (3) Maximum for PbH₄ and minimum for SiH₄
 - (4) Maximum for PbH₄ and minimum for CH₄
- 10. The reaction,

$$R_2CO + 4[H] \xrightarrow{\text{Zn-Hg}} R_2CH_2 + H_2O$$

is well known as:

- (1) wurtz reaction
- (2) rosenmund reduction
- (3) kolbe reaction
- (4) clemmensen reduction
- 11. A compound (80 g) on analysis gave C = 24 g, H = 4 g, O = 32 g. Its empirical formula is;
 - (1) $C_2H_2O_2$
- (2) C_2H_2O
- (3) CH₂O₂
- (4) CH₂O
- Assertion (R): Scandium and zinc are two 12. members of first transition series which do not form coloured compounds.

Reason (R): Scandium compounds have 3d⁰ configuration in + 3 state while zinc compounds have 3d¹⁰ configuration in + 2 state due to which there is no d-d transition.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

- 13. Which of the following major product will be obtained when neopentyl alcohol is treated with conc. HCl in presence of ZnCl₂?
 - (1) t-Butyl chloride
 - (2) Isobutylene
 - (3) t-Pentyl chloride
 - (4) Neopentyl chloride
- 14. Product of the given reaction contains;

$$CH_{3}CH_{2} - \overset{O}{C} - OC_{2}H_{5} \xrightarrow{Na\overset{*}{O}H} \overset{Na\overset{*}{O}H}{H_{2}O^{*}} \rightarrow \\ (1) \quad CH_{3} - CH_{2} - \overset{O}{C} - O^{-}$$

(1)
$$CH_3 - CH_2 - C - O^-$$

$$(2)$$
 $CH_3 - CH_2 - C - O^-$

- (3) $CH_3 CH_2 {}^*O H$
- (4) Both (1) and (2)
- **15.** Denaturation of protein;
 - (1) is always irreversible
 - (2) disrupts the secondary and tertiary structures
 - (3) will not affect the original biological activity
 - (4) none of these
- **16.** The **incorrect** statement regarding an octahedral complex is;
 - (1) central metal cation with d⁶ configuration is diamagnetic in strong ligand field.
 - (2) central metal cation with d⁵ configuration has one unpaired electron in both weak and strong ligand field.
 - (3) central metal cation with d⁸ configuration has two unpaired electrons in weak, strong and also in mixed ligand field.
 - (4) central metal cation with d⁴, d⁵, d⁶ and d⁷ configuration have different number of unpaired electrons in weak and strong ligand field.
- **17.** The colour of light absorbed by an aqueous solution of CuSO₄ is;
 - (1) Orange-Red
- (2) Blue-Green
- (3) Yellow
- (4) Violet

- 18. Which of the following material is **not** present in a dry cell?
 - (1) MnO₂
- (2) NH₄Cl
- (3) ZnCl₂
- (4) KCl
- **19.** If specific rotation of glucose solution is 52° and that of fructose solution is -92° then what will be the specific rotation of invert sugar?
 - $(1) -20^{\circ}$
- +20°
- (3) -72°
- (4) +72°
- 20. The shape of ClO_3^- is;
 - (1) Pyramidal
 - (2) Tetrahedral
 - (3) Triangular planar
 - (4) Triangular bipyramidal
- 21. Match the List-I with List-II:

	List-I	List-II					
	(Reaction)	$(\mathbf{K}_{\mathbf{P}}/\mathbf{K}_{\mathbf{c}})$					
A	$A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g)$	P	$(RT)^{-2}$				
В	$A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$	Q	$(RT)^0$				
С	$A(s) + \frac{3}{2}B_2(g) \rightleftharpoons AB_3(g)$	R	$(RT)^{1/2}$				
D	$AB_2(g) \rightleftharpoons AB(g) + \frac{1}{2}B_2(g)$	S	$(RT)^{-1/2}$				

- (1) $A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S$
- (2) $A \rightarrow P, B \rightarrow Q, C \rightarrow S, D \rightarrow R$
- (3) $A \rightarrow S, B \rightarrow R, C \rightarrow Q, D \rightarrow P$
- (4) $A \rightarrow Q, B \rightarrow R, C \rightarrow P, D \rightarrow S$
- 22. An inorganic salt is strongly heated the residue is yellow when hot and white when cold. The salt contains
 - (1) Cu^{2+}
- (2) Zn^{2+}
- (3) Co^{2+}
- (4) Fe^{2+}
- The number of spectral lines that are possible 23. when electrons in 7th shell in different hydrogen atoms return to the 2nd shell is;
 - (1) 12
- (2) 15
- (3) 14
- (4) 10
- 24. Which of the following statements is in accordance with the Arrhenius equation?
 - (1) Rate of a reaction has no effect with increase in temperature.
 - (2) Rate of a reaction increases with decrease in activation energy.
 - Rate constant decreases exponentially with increase in temperature.
 - (4) Rate of reaction decreases with decrease in activation.

25. An electrochemical cell consists of two half-cell reactions:

$$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$$

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

The mass of copper (in grams) dissolved on passing 0.5 A current for 1 hour is (Given : Atomic mass of Cu is 63.6; $F = 96500 \text{ C mol}^{-1}$);

- (1) 0.88 g
- (2) 1.18 g
- (3) 0.29 g
- (4) 0.56 g
- **26.** Solubility of AgCl in water, in 0.01M CaCl₂, in 0.01M NaCl and in 0.05M AgNO₃ are S₁, S₂, S₃ and S₄ respectively, then;
 - (1) $S_1 < S_2 < S_3 < S_4$
 - (2) $S_1 > S_3 > S_2 > S_4$
 - (3) $S_1 > S_2 = S_3 > S_4$
 - (4) $S_1 > S_3 > S_4 > S_2$
- **27. Statement-1:** The reciprocal of time in which 66% of the reactant is converted to product is equal to the rate constant of first order reaction.

Statement-2: The rate constant for first order reaction depends on initial concentration of reactants.

- (1) Statement I and statement II both are correct.
- (2) Statement I and statement II both are incorrect.
- (3) Statement I is true but statement II is false.
- (4) Statement I is false but statement II is true.
- **28. Statement-1:** Carbonyl compounds take part in nucleophilic addition reactions.

Statement-2: These reactions are initiated by nucleophilic attack at the electron deficient carbon atom.

- (1) Statement I and statement II both are correct.
- (2) Statement I and statement II both are incorrect.
- (3) Statement I is true but statement II is false.
- (4) Statement I is false but statement II is true.
- **29.** The solution which maintains its pH constant even upon addition of small amounts of acid or base, is called buffer solution. Which can act as a buffer?
 - (1) $NH_4Cl + NH_4OH$
 - (2) CH₃COOH + CH₃COONa
 - (3) 40 mL of 0.1M NaCN + 20 mL of 0.1M HCN
 - (4) All of these

30. Assertion: The pK_a of acetic acid is lower than that of phenol.

Reason: Phenoxide ion is more resonance stabilized than acetate ion.

- (1) If both assertion and reason is true and reason is the correct explanation of assertion.
- (2) If both assertion and reason is true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.
- 31. Basic strength of $CH \equiv \overset{\Theta}{C}(I)$; $CH_2 = \overset{\Theta}{C}H(II)$ and $\overset{\Theta}{CH_3CH_2}(III)$ will be in order:
 - $(1) \quad I < II < III$
- $(2) \quad II < III > I$
- $(3) \quad III < II < I$
- $(4) \quad III < I < II$
- **32.** Match the following lists:

			List-II		
		List-I			
	A	Ethane	P	2 sp carbons	
	В	Ethylene	Q	6 sp ² carbons	
	С	Acetylene	R	2 sp ³ carbons	
	D	Benzene	S	2 sp ² carbons	
	·		T	1 sp and 1 sp ² carbons	

- (1) $A \rightarrow R, B \rightarrow S, C \rightarrow P, D \rightarrow Q$
- (2) $A \rightarrow S, B \rightarrow T, C \rightarrow R, D \rightarrow Q$
- (3) $A \rightarrow R, B \rightarrow P, C \rightarrow Q, D \rightarrow T$
- (4) $A \rightarrow Q, B \rightarrow R, C \rightarrow S, D \rightarrow T$
- **33. Statement-1:** Fluorine molecule has bond order one

Statement-2: The number of electrons in antibonding molecular orbitals is two less than in bonding molecular orbitals.

- (1) Statement I and statement II both are correct.
- (2) Statement I and statement II both are incorrect.
- (3) Statement I is true but statement II is false.
- (4) Statement I is false but statement II is true.
- **34.** At 25°C, the values of rate constant, activation energy and Arrhenius constant of a reaction are $3 \times 10^{-4} \text{ sec}^{-1}$, 129 kJ/mol and $2 \times 10^{15} \text{ sec}^{-1}$ respectively.

The value of rate constant as $T \rightarrow \infty$ is;

- (1) zero
- (2) 2×10^{15}
- (3) 3×10^{-4}
- (4) 6×10^{11}
- **35.** Which of the following statements regarding actinides is **correct**?
 - (1) Pu^{4+} disproportionates to Pu^{3+} and PuO_2^{2+} in strongly acidic medium.
 - (2) Maximum oxidation state of Np is +7.
 - (3) UO_2^{2+} is stable.
 - (4) All of the above statements are correct.

SECTION-B

- The synthesis of alkyl fluorides is best accomplished 36.
 - (1) Swarts reaction
 - (2) Free radical fluorination
 - (3) Finkelstein reaction
 - (4) Sandmeyer reaction
- **37.** In the following reaction 'A' is;

$$C_2H_5MgBr + H_2C - CH_2 \xrightarrow{H_2O} A$$

- (1) C₂H₅CH₂CHO
- (2) C₂H₅CH₂CH₂OH
- (3) C₂H₅CH₂OH
- (4) C₂H₅CHO
- 38. The amount of Al deposited on passage of 2F charge through molten Al₂O₃ is;

[Atomic mass of Al = 27 u]

- (1) 9 g
- (2) 15 g
- (3) 18 g
- (4) 37 g
- 39. The oxidation state of chromium in the final product formed by the reaction between KI and acidified K₂Cr₂O₇ solution is;
 - (1) + 4
- (2) + 6
- (3) + 2
- (4) + 3
- 40. Tollens' reagent is:
 - (1) Alkaline mercuric chloride
 - (2) Alkaline potassium permanganate
 - (3) Ammoniacal silver nitrate
 - (4) Ammonium citrate
- 41. The compound which will react fastest with AgNO₃ solution is:

- 42. A mixture showing negative deviation from Raoult's law is:
 - (1) Hexane + Heptane
 - (2) Benzene + Toluene
 - (3) Water + Ethanol
 - (4) Nitric acid + Water

- Non-reducing sugar out of the given molecules is/are:
 - (1) Maltose
- (2) Lactose
- (3) Sucrose
- (4) Both (1) and (3)
- 44. Consider the following redox reaction:

$$Cu_2S(s) + MnO_4^-(aq) \xrightarrow{H^+}$$

$$Cu^{2+}(aq) + SO_4^{2-}(aq) + Mn^{2+}(aq)$$

The number of moles of MnO_4^- ion that will be needed to oxidise one mole of Cu₂S completely is:

- (1) 2
- (2) 5
- (3) $\frac{2}{5}$
- (4) $\frac{5}{2}$
- 45. Molarity and molality of a solution of caustic soda are respectively 11.12M and 94.12m. The density of the solution is:
 - (1) 0.556 g mL^{-1}
- (2) 5.56 g mL^{-1}
- (3) 55.6 g mL^{-1} (4) None of these
- 46. Which of the following will give white precipitate with ammoniacal silver nitrate solution?
 - $(1) \quad CH_3 C \equiv C CH_3$

- 47. Enthalpy of neutralisation of four acids A, B, C and D with NaOH are -10.5, -13.7, -5.9 and -12.7 kcal eq⁻¹ respectively. Out of A, B, C and D the strongest acid is:
 - (1) C
- (2) A
- (3) D
- (4) B
- What is the pH of the resulting solution when 100 48. ml of 0.1M CH₃COOH is mixed with 50 ml of 0.1M NaOH solution?

 $[pK_a \text{ of } CH_3COOH = 4.74]$

- (1) 4.44
- (2) 4.74
- (3) 5.04
- (4) 9.37

- **49.** 5 moles of an ideal gas at 27°C expands isothermally and reversibly from a volume of 6 L to 60 L. The work done in kJ is:
 - (1) -14.7
- (2) -28.72
- (3) +28.72
- (4) -56.72

- **50.** The number of geometrical isomers of $[Co(NH_3)_3(NO_2)_3]$ are :
 - (1) 2
- (2) 3
- (3) 4
- (4) nil

