JEST-2015

Part-A Three Mark Questions

A circular loop of radius R, carries a uniform line charge density λ . The electric field, calculated at a distance z directly above the center of the loop, is maximum if z is equal to.

(a) $\frac{R}{\sqrt{3}}$

(b) $\frac{R}{\sqrt{2}}$ (c) $\frac{R}{2}$

(d)2R

Consider two point charges q and λq located at the points, x = a and $x = \mu a$, respectively. Assuming that the sum of the two charges is constant, what is the value of λ for which the magnitude of the electrostatic force is maximum?

(a) μ

3.

 $(c) = \frac{1}{\mu}$

Consider a harmonic oscillator in the state $|\psi\rangle = e^{-\frac{|\alpha|^2}{2}}e^{\alpha a^+}$ $|0\rangle$, where $|0\rangle$ is the ground state, a^+ is the raising operator and α is a complex number. What is the probability that the harmonic oscillator is in the n-th eigenstate $|n\rangle$?

(a) $e^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!}$ (c) $e^{-|\alpha|^2} \frac{|\alpha|^n}{n!}$

(b) $e^{-\frac{|a|^2}{2}\frac{|a|^2}{\sqrt{n!}}}$

(d) $e^{\frac{|\alpha|^2}{2}} \frac{|\alpha|^{2n}}{n}$

The distance of a star from the Earth is 4.25 light years, as measured from the Earth. A space ship travels from Earth to the star at a constant velocity in 4.25 years, according to the clock on the ship. The speed of the space ship in units of the speed of light is,

(a) $\frac{1}{2}$

(b) $\frac{1}{\sqrt{2}}$

 $(d)\frac{1}{\sqrt{2}}$

5. Given an analytic function $f(z) = \phi(x, y) + i\psi(x, y)$, where $\phi(x, y) = x^2 + 4x - y^2 + 2y$. If C is a constant, which of the following relations is true?

(a)
$$\psi(x, y) = x^2y + 4y + C$$

(b)
$$\psi(x, y) = 2xy - 2x + C$$

(c)
$$\psi(x.y) = 2xy + 4y - 2x + C$$

(d)
$$\psi(x, y) = x^2y - 2x + C$$

For a system in thermal equilibrium with a heat bath at temperature T, which one of the following equalities is correct? ($\beta = \frac{1}{k_{\perp}T}$)

(a)
$$\frac{\partial}{\partial \beta} \langle E \rangle = \langle E \rangle^2 - \langle E^2 \rangle$$

(b)
$$\frac{\partial}{\partial \beta} \langle E \rangle = \langle E^2 \rangle - \langle E \rangle^2$$

(c)
$$\frac{\partial}{\partial B} \langle E \rangle = \langle E^2 \rangle + \langle E \rangle^2$$

(d)
$$\frac{\partial}{\partial \beta} \langle E \rangle = -\left(\langle E^2 \rangle + \langle E \rangle^2 \right)$$

A classical particle with total energy E moves under the influence of a potential $V(x, y) = 3x^3 + 2x^2y + 2xy^2 + y^3$. The average potential energy, calculated over a long time is equal to,

(a)
$$\frac{2E}{3}$$

(b)
$$\frac{E}{3}$$

(c)
$$\frac{E}{5}$$

(c)
$$\frac{E}{5}$$
 (d) $\frac{2E}{5}$

If two ideal dice are rolled once, what is the probability of getting at least one '6'?

(a)
$$\frac{11}{36}$$

(b)
$$\frac{1}{36}$$

(c)
$$\frac{10}{36}$$

(d)
$$\frac{5}{36}$$

9.

What is the maximum number of extrema of the function $f(x) = P_k(x)e^{-\left(\frac{x^4}{4} + \frac{x^2}{2}\right)}$ where $x \in (-\infty, \infty)$ and $P_k(x)$ is an arbitrary polynomial of degree k?

(a)
$$k + 2$$

(b)
$$k+6$$

(c)
$$k+3$$

(d)
$$k$$

(a)
$$\frac{Mgx}{L}$$

(b)
$$\frac{2Mgx}{L}$$

(b)
$$\frac{2Mgx}{L}$$
 (c) $\frac{3Mgx}{L}$ (d) $\frac{4Mgx}{L}$

(d)
$$\frac{4Mgx}{L}$$

11.

For non-interacting Fermions in d-dimensions, the density of states D(E) varies as $E^{\left(\frac{d}{2}-1\right)}$. The Fermi energy E_F of an N particle system in 3-, 2- and 1-dimensions will scale respectively as,

(a)
$$N^2$$
, $N^{2/3}$, N

(b)
$$N, N^{2/3}, N^2$$

(c)
$$N, N^2, N^{2/3}$$

(d)
$$N^{2/3}, N, N^2$$

A particle of mass m moves in 1-dimensional potential V(x), which vanishes at infinity. The exact ground state eigenfunction is $\psi(x) = A$ such (λx) where A and λ are constants. The ground state energy eigenvalue of this system is,

(a)
$$E = \frac{\hbar^2 \lambda^2}{m}$$

(b)
$$E = -\frac{\hbar^2 \lambda^2}{m}$$

(c)
$$E = -\frac{\hbar^2 \lambda^2}{2m}$$

(d)
$$E = \frac{\hbar^2 \lambda^2}{2m}$$

13.

Consider a spin $-\frac{1}{2}$ particle characterized by the Hamiltonian $H = \omega S_z$. Under a perturbation $H' = gS_x$, the second order correction to the ground state energy is given by,

$$(a) - \frac{g^2}{4\omega}$$

(b)
$$\frac{g^2}{4\omega}$$

(c)
$$-\frac{g^2}{2\omega}$$

(d)
$$\frac{g^2}{2\omega}$$

Given that ψ_1 and ψ_2 are eigenstates of a Hamiltonian with eigenvalues E_1 and E_2 respectively, what is the energy uncertainty in the state $(\psi_1 + \psi_2)$?

(a)
$$-\sqrt{E_1E_2}$$

(b)
$$\frac{1}{2} |E_1 - E_2|$$

(c)
$$\frac{1}{2}(E_1 + E_2)$$

(d)
$$\frac{1}{\sqrt{2}} |E_2 - E_1|$$

15.

An ideal gas is compressed adiabatically from an initial volume V to a final volume αV and a work W is done on the system in doing so. The final pressure of the gas will be

$$\left(\gamma = \frac{C_P}{C_V}\right)$$

(a)
$$\frac{W}{V^{\gamma}} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$$

(b)
$$\frac{W}{V'} \frac{\gamma - 1}{\alpha - \alpha'}$$

(c)
$$\frac{W}{V} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$$

(d)
$$\frac{W}{V} \frac{\gamma - 1}{\alpha - \alpha^{\gamma}}$$

16.

What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure?

(a)
$$\frac{2\pi^2}{\sqrt{3}A^2}$$

(b)
$$\frac{\sqrt{3}\pi^2}{2A^2}$$

(c)
$$\frac{2\pi^2}{A^2}$$

$$(d) \frac{\pi^2}{\sqrt{3}A^2}$$

A particle in thermal equilibrium has only 3 possible states with energies $-\in$, $0, \in$. If the system is maintained at a temperature $T >> \frac{\in}{k_B}$, then the average energy of the particle can be approximated to,

(a) $\frac{2 \in^2}{3k_B T}$

(b) $\frac{-2 \in^2}{3k_B T}$

(c) $\frac{-\epsilon^2}{k_B T}$

(d) 0

18.

What is the voltage at the output of the following operational amplifier circuit. [See in the

figure]?

- (a) 1V
- (b) 1mV
- (c) $1\mu V$
- (d)1nV

19.

The energy difference between the 3p and 3s levels in Na is $2.1 \, eV$. Spin-orbit coupling splits the 3p level, resulting in two emission lines differing by $6\mathring{A}$. The splitting of the 3p level is approximately,

- (a) 2 eV
- (b) 0.2eV
- (c) 0.02eV
- (d) 2meV

For a 2-dimensional honeycomb lattice as shown in the figure 3, the first Bragg spot occurs for the grazing angle θ_1 while sweeping the angle from 0° . The next Bragg spot is obtained at θ_2 given by

(a) $\sin^{-1}(3\sin\theta_1)$

(b)
$$\sin^{-1}\left(\frac{3}{2}\sin\theta_1\right)$$

(c)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\sin\theta_1\right)$$

(d)
$$\sin^{-1}\left(\sqrt{3}\sin\theta_1\right)$$

A spherical shell of inner and outer radii a and b, respectively, is made of a dielectric material with frozen polarization $\vec{P}(r) = \frac{k}{r} \hat{r}$, where k is a constant and r is the distance from the its centre. The electric field in the region a < r < b is,

(a)
$$\vec{E} = \frac{k}{\epsilon_0 r} \hat{r}$$

(b)
$$\vec{E} = -\frac{k}{\epsilon_0 r} \hat{r}$$

(c)
$$\vec{E} = 0$$

$$(d) \vec{E} = \frac{k}{\epsilon_0 r^2} \hat{r}$$

22.

The electrostatic potential due to a charge distribution is given by $V(r) = A \frac{e^{-\lambda r}}{r}$ where A and λ are constants The total charge enclosed within a sphere of radius $\frac{1}{2}$, with its origin at r = 0 is given by,

(a)
$$\frac{8\pi \in_0 A}{e}$$

(b)
$$\frac{4\pi \in_0 A}{e}$$
 (c) $\frac{\pi \in_0 A}{e}$

(c)
$$\frac{\pi \in_0 A}{e}$$

A bike stuntman rides inside a well of frictionless surface given by $z = a(x^2 + y^2)$, under the action of gravity acting in the negative z direction. $\vec{g} = -g\hat{z}$ What speed should he maintain to be able to ride at a constant height z_0 without falling down?

- (a) $\sqrt{gz_0}$
- (b) $\sqrt{3gz_0}$
- (c) $\sqrt{2gz_0}$
- (d) The biker will not be able to maintain a constant height, irrespective of speed. 24.

A particle of mass m is confined in a potential well given by V(x) = 0 for $\frac{-L}{2} < x < \frac{L}{2}$

L/2 and $V(x) = \infty$ elsewhere. A perturbing potential H'(x) = ax has been applied to the system. Let the first and second order corrections to the ground state be $E_0^{(1)}$ and $E_0^{(2)}$, respectively. Which one of the following statements is correct?

(a)
$$E_0^{(1)} < 0$$
 and $E_0^{(2)} > 0$

(b)
$$E_0^{(1)} = 0$$
 and $E_0^{(2)} > 0$

(c)
$$E_0^{(1)} > 0$$
 and $E_0^{(2)} < 0$

(d)
$$E_0^{(1)} = 0$$
 and $E_0^{(2)} < 0$

The Bernoulli polynominals $B_n(s)$ are defined by, $\frac{xe^{xs}}{e^x-1} = \sum B_n(s) \frac{x^n}{n!}$. Which one of the following relations is true?

(a)
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s) \frac{x^n}{(n+1)!}$$

(b)
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s)(-1)^n \frac{x^n}{(n+1)!}$$

(c)
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n (-s)(-1)^n \frac{x^n}{n!}$$

(d)
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s)(-1)^n \frac{x^n}{n!}$$

Part-B One Mark Questions

The skin depth of a metal is dependent on the conductivity (σ) of the metal and the angular frequency ω of the incident field. For a metal of high conductivity, which of the following relations is correct? (Assume that $\sigma >> \in \omega$, where \in is the electrical permittivity of the medium.)

(a)
$$d \propto \sqrt{\frac{\sigma}{\omega}}$$

(b)
$$d \propto \sqrt{\frac{1}{\sigma\omega}}$$

(c)
$$d \propto \sqrt{\sigma \omega}$$

(d)
$$d \propto \sqrt{\frac{\omega}{\sigma}}$$

27.

The blackbody at a temperature of 6000 K emits a radiation whose intensity spectrum peaks at 600 nm. If the temperature is reduced to 300 K, the spectrum will peak at,

- (a) $120 \mu m$
- (b) $12 \mu m$
- (c) 12 mm
- (d)120mm

28.

The wavelength of red helium-neon laser in air is 6328 Å. What happens to its frequency in glass that has a refractive index of 1.50?

- (a) Increases by a factor of 3
- (b) Decreases by a factor of 1.5
- (c) Remains the same
- (d) Decreases by a factor of 0.5

29.

Which of the following excited states of a hydrogen atom has the highest lifetime?

(a) 2p

(b) 2s

(c) 3s

(d) 3p

30.

The Lagrangian of a particle is given by $L = \dot{q}^2 - q\dot{q}$. Which of the following statements is true?

- (a) This is a free particle
- (b) The particle is experiencing velocity dependent damping
- (c) The particle is executing simple harmonic motion
- (d) The particle is under constant acceleration.

A particle moving under the influence of a potential $V(r) = \frac{kr^2}{2}$ has a wavefunction

 $\psi(r,t)$. If the wavefunction changes to $\psi(\alpha r,t)$, the ratio of the average final kinetic energy to the initial kinetic energy will be,

(a) $\frac{1}{\alpha^2}$

(b) α

- (c) $\frac{1}{\alpha}$
- (d) α^2

How is your weight affected if the Earth suddenly doubles in radius, mass remaining the same?

- (a) Increases by a factor of 4
- (b) Increases by a factor of 2
- (c) Decreases by a factor of 4
- (d) Decreases by a factor of 2

33. The approximate force exerted on a perfectly reflecting mirror by an incident laser beam of power $10\bar{m}W$ at normal incidence is

(a)
$$10^{-13} N$$

(b)
$$10^{-11}N$$

(c)
$$10^{-9} N$$

(d)
$$10^{-15} N$$

34.

Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration $1s^22s^22p^2$?

(a)
$${}^{3}P < {}^{1}D < {}^{1}S$$

(b)
$${}^{3}P < {}^{1}S < {}^{1}D$$

(c)
$${}^{3}P < {}^{1}F < {}^{1}S$$

$$(d)^3 P < ^1 F < ^1 D$$

The entropy-temperature diagram of two Carnot engines, A and B, are shown in the figure 4. The efficiencies of the engines are η_A and η_B respectively. Which one of the

following equalities is correct?

(b)
$$\eta_A = \eta_B$$

(c)
$$\eta_A = 3\eta_B$$

(d)
$$\eta_A = 2\eta_R$$

36.

The reference voltage of an analog to digital converter is 1V. The smallest voltage step that the converter can record using a 12-bit converter is,

(a)
$$0.24V$$

(b)
$$0.24 \, mV$$

(c)
$$0.24 \mu V$$

(d)
$$0.24nV$$

37.

A spring of force constant k is stretched by x. It takes twice as much work to stretch a second spring by $\frac{x}{2}$. The force constant of the second spring is,

(a)
$$k$$

(b)
$$2k$$

(c)
$$4k$$

(d) 8k

38

Which of the following expressions represents an electric field due to a time varying magnetic field?

(a)
$$K(x\hat{x} + y\hat{y} + z\hat{z})$$

(b)
$$K(x\hat{x} + y\hat{y} - z\hat{z})$$

(c)
$$K(x\hat{x}-y\hat{y})$$

(d)
$$K(y\hat{y}-x\hat{y}+2z\hat{z})$$

39.

In Millikan's oil drop experiment the electronic charge e could be written as $k\eta^{1.5}$, where κ is a function of all experimental parameters with negligible error. If the viscosity of air η is taken to be 0.4% lower than the actual value, what would be the error in the calculated value of e?

- (a) 1.5%
- (b) 0.7%
- (c) 0.6%
- (d) 0.4%

Given the tight binding dispersion relation $E(k) = E_0 + A \sin^2\left(\frac{ka}{2}\right)$, where E_0 and A are

constants and a is the lattice parameter. What is the group velocity of an electron at the second Brillouin zone boundary?

(a) 0

- (b) $\frac{a}{b}$
- (c) $\frac{2a}{h}$

(d) $\frac{a}{2h}$

41.

The total number of Na⁺ and Cl⁻ ions per unit cell of NaCl is,

(a) 2

(c) 6

(d) 8

if a Hamiltonian H is given as $H = |0\rangle\langle 0| - |1\rangle\langle 1| + i(0)\langle 1| - |1\rangle\langle 0|)$, where $|0\rangle$ and $|1\rangle$ are orthonormal states, the eigenvalues of H are

(a) ± 1

- (b) $\pm i$ (c) $\pm \sqrt{2}$
- (d) $\pm i\sqrt{2}$

43.

The stable nucleus that has $\frac{1}{2}$ the radius of ^{189}Os nucleus is,

(a) Li

(d) ^{14}N

44.

A charged particle is released at time t = 0, from the origin in the presence of uniform static electric and magnetic fields given by $E = E_0 \hat{y}$ and $B = B_0 \hat{z}$ respectively. Which of the following statements is true for t > 0?

- (a) The particle moves along the x-axis.
- (b) The particle moves in a circular orbit.
- (c) The particle moves in the (x, y) plane.
- (d) particle moves in the (y, z) plane

Consider the differential equation $G'(x)+kG(x)=\delta(x)$; where k is a constant. Which following statements is true?

- (a) Both G(x) and G'(x) are continuous at x = 0.
- (b) G(x) is continuous at x = 0 but G'(x) is not.
- (c) G(x) is discontinuous at x = 0.
- (d) The continuity properties of G(x) and G'(x) at x = 0 depends on the value of k. 46.

The sum $\sum_{m=1}^{99} \frac{1}{\sqrt{m+1} + \sqrt{m}}$ is equal to

(b)
$$\sqrt{99} - 1$$

(b)
$$\sqrt{99} - 1$$
 (c) $\frac{1}{(\sqrt{99} - 1)}$ (d) 11

47.

Let λ be the wavelength of incident light. The diffraction pattern of a circular aperture of dimension r_0 will transform from Fresnel to Fraunhofer regime if the screen distance z is,

(a)
$$z \gg \frac{r_0^2}{\lambda}$$

(a)
$$z >> \frac{r_0^2}{\lambda}$$
 (b) $z >> \frac{\lambda^2}{r_0}$ (c) $z << \frac{\lambda^2}{r_0}$ (d) $z << \frac{r_0^2}{\lambda}$

(c)
$$z \ll \frac{\lambda^2}{r_0}$$

(d)
$$z \ll \frac{r_0^2}{\lambda}$$

48.

For the logic circuit shown in figure 5, the required input condition (A, B, C) to make the output (X)=1 is,

The reaction $e^+ + e^- \rightarrow \gamma$ is forbidden because,

- (a) lepton number is not conserved
- (b) linear momentum is not conserved
- (c) angular momentum is not conserved
- (d) charge is not conserved

50.

Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity distribution. The most probable speed of these electrons is,

(a)
$$\sqrt{\left(\frac{kT}{2\pi m}\right)}$$

(b)
$$\sqrt{\left(\frac{2kT}{m}\right)}$$

(d)
$$\sqrt{\frac{8kT}{\pi m}}$$