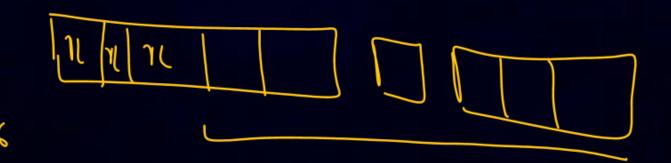


JEE MAIN 2024 ATTEMPT - 01, 27TH JAN 2024, SHIFT - 02

PAPER DISCUSSION

CHEMISTRY

INORGANIC CHEMISTRY



Identify from the following species in which d2sp3 hybridization is shown by central atom.

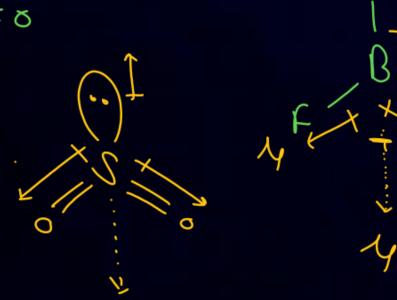
- - $BrF_5 \qquad 1+5=6 \qquad sp^3d^2$

- - $[\underline{PtCl_4}]^{2-}$ $p + ^{2+}$ (q^0) dsp^2

- SF_6 Sp^3d^2
- $(Co(\overline{NH}^3)^9)^{3+}$

Choose the incorrect pair from below pairs:

- Haber process Iron
- Polyethene TiCl₄/Al(CH₃)₃ В
- Wacker process PtCl₂ (Pau
- Photography AgBr



The total number of non-polar molecule are

$$\frac{H_2O,CO_2,SO_2,CH_4,NH_3,BF_3,CHCl_3}{P}$$
, $\frac{H_2}{P}$, $\frac{H}{P}$

$$0 = 0 = 0$$

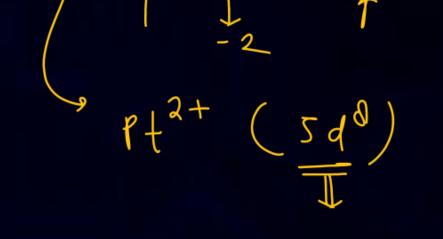
Which of the following group has d10 configuration?

- Cr, Cd, Cu, Ag
- Cd, Cr, Ag, Zn
- Ag, Cr, Cu, Zn
- Cu, Cd, Zn, Ag

3d | 4d | 5d

Cy Ag Au Pt Cr Mo Ry Rh

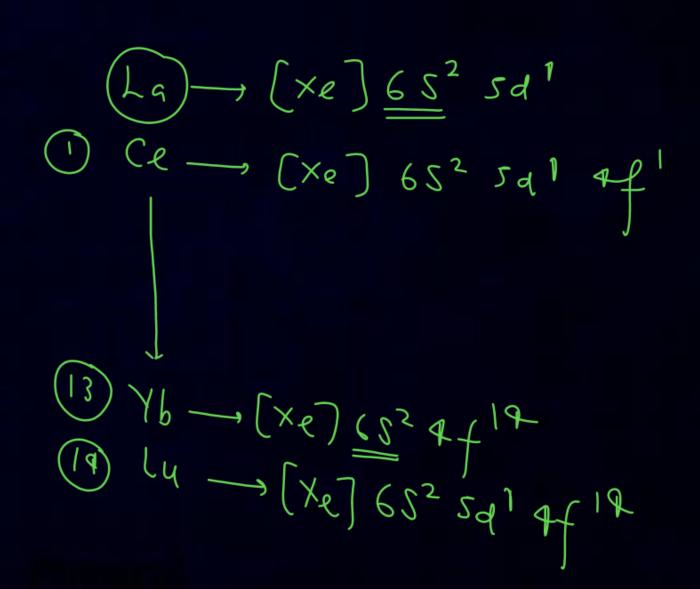
JEE MAIN 2024


PAPER DISCUSSION

The value of magnetic moment for the complex is [Pt(NH₃)Cl₂(CH₃NH₂)]

$$\frac{h = 0}{M} = \sqrt{h(h+2)} \beta M$$

$$= \sqrt{h(h+2)} \beta M$$



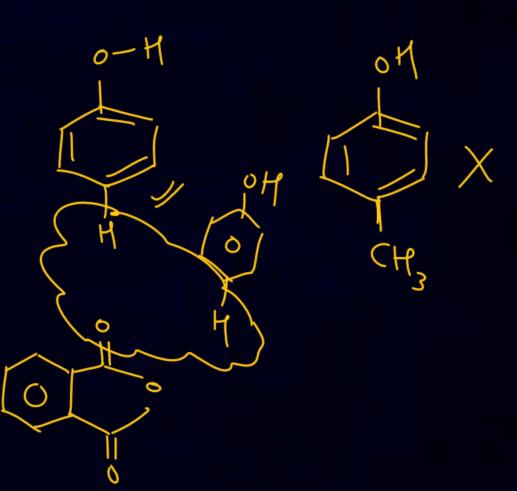
LIVE (**) PAPER DISCUSSION

How many of following ions has/have noble gas configuration? (2)

Assertion: Ce⁴⁺ have inert gas configuration. Reason: Convert to Ce3+ because it is strong oxidizing agent.// O.A. Ce+4 _____ Ce+3

- Both A and R are correct and R is the correct explanation of A.
- Both A and R are correct, but R is <u>not</u> the correct explanation of A.
- A is correct but R is incorrect
- A is incorrect but R is correct

ORGANIC CHEMISTRY



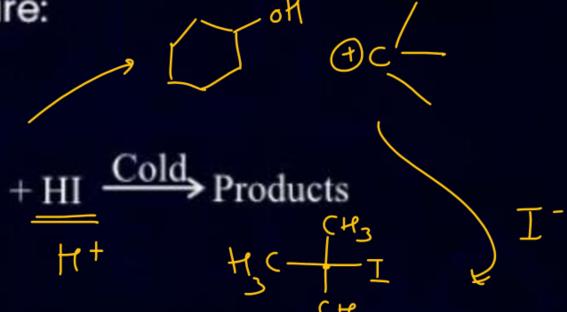
Phenolic group can be identified by a positive

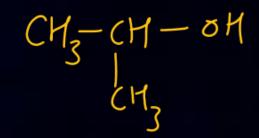
Carbylamine test

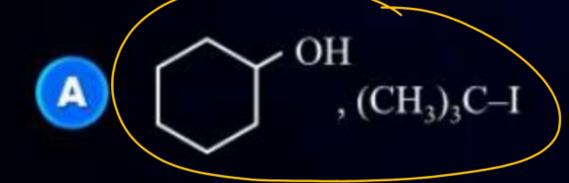
$$R-NH_2$$

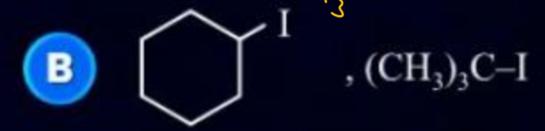
- Phthalic test
- Lucas test
- Tollen's test

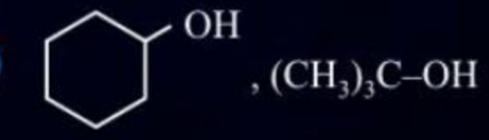

JEE MAIN 2024 DE LIVE (10)




PAPER DISCUSSION




Products for the below reaction are:



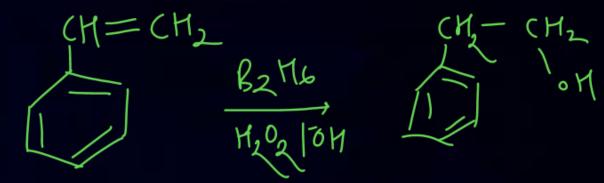
Which type of protein structure can not be denaturized by heating.

- 1° Protein
- 2° Protein В
- 3° Protein
- 4° Protein D

The Second Homologue of monocarboxylic acid is

- CH₃CH₂COOH
- **HCOOH**
- CH₃COOH
- CH₃CH₂CH₂COOH

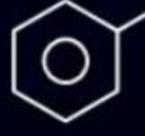
JEE MAIN 2024 ► LIVE ((*))

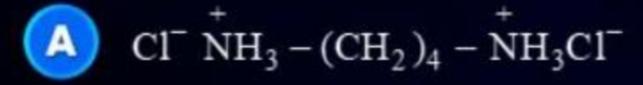

PAPER DISCUSSION

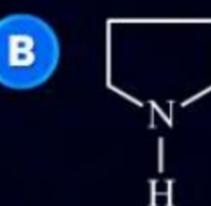
B246 1202 - m The final product of the reactions sequence.

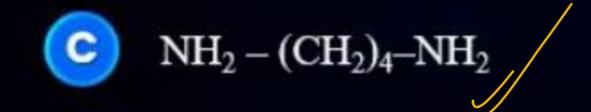
$$Ph - CH_2 - CH = CH_2 \xrightarrow{(i) HBO}$$
 Final Product

Ph-CH-CH-
$$\frac{CH_2}{H}$$
 $\frac{(iii) Mig/DE}{(iv) H_2O}$
H $\frac{(iv) H_2O}{H}$





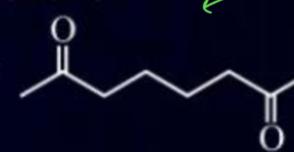


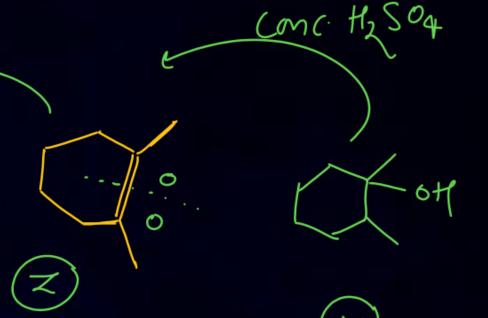


Identify B formed in this reaction sequence.
CI –
$$(CH_2)_4$$
–CI $\xrightarrow{excess\ NH_3}$ A \xrightarrow{NaOH} B + H_2O + NaCI

JEE MAIN 2024 DE LIVE (**)

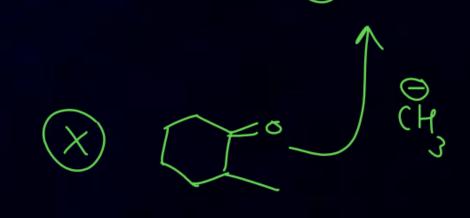
PAPER DISCUSSION


Which of the following will not give SN1.


- Ph-CH₂-CI
- CH₂=CH-CH₂-CI
- (H3C)C-CI
- CH₃-CH=CH-CI

Consider the following sequence of reactions.

$$X \xrightarrow{(1) CH_3MgBr} Y \xrightarrow{H_2}$$



The compound (X) cannot be:

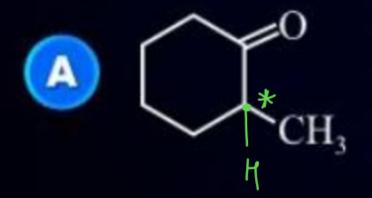
Compare the stability of resonating structures.

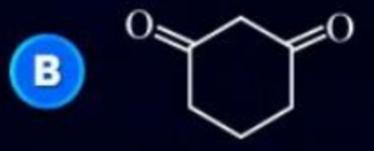
$$CH_{3}-C-OH \leftrightarrow CH_{3}-C=OH \leftrightarrow CH_{3}-C-OH$$

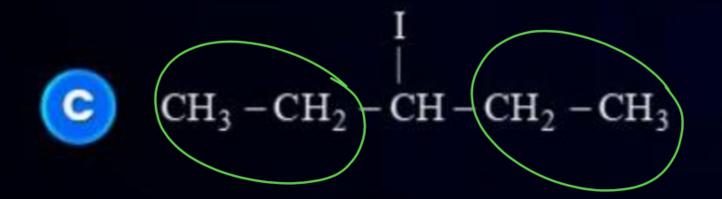
$$O \qquad \rightarrow O^{\Theta} \qquad O^{\Theta}$$

$$O \qquad (II) \qquad (III)$$

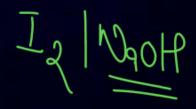
11 < 11 < 11 В


11>1>11





How many compound(s) given below have chiral carbon?



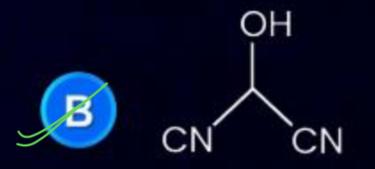
reagent which can be used to distinguish acetophenone from benzophenone is

Α 2, 4-dinitrophenylhydrazine

В Aqueous solution of NaHSO3

- Benedict reagent
- I₂ and Na₂CO₃

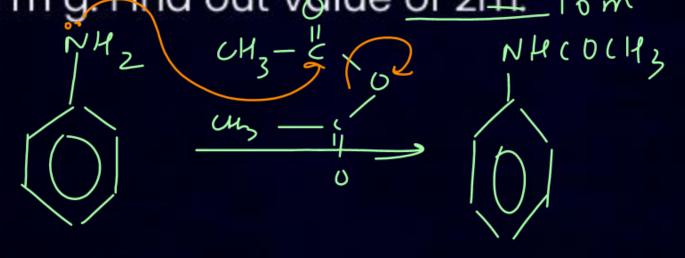
The technique used for purification of steam volatile water immiscible substance is:


- Steam distillation
- В Simple distillation
- Fractional distillation
- D Distillation under reduce pressure

What is the bond line structure of (OH)CH(CN)2

$$C \equiv N / C \equiv N$$

$$OH - C \leq V$$



PHYSICAL CHEMISTRY

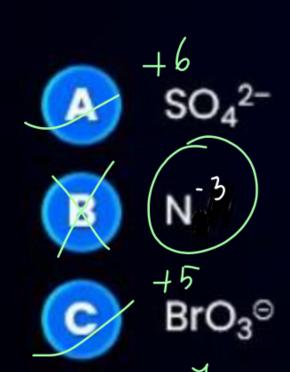
When 9.3 g of Aniline is reacted with acetic anhydride, mass of acetanilide obtained is mg. Find out value of 2m._ 10 m

The quantity which changes with temperature is

Mass percentage

C Molarity

Mole fraction


Those conceterns which are vot dependent are temp dependent.

Which of the following can not act as an oxidising agent?

it reduce é/111 - O.A.

DISCUSSION PAPER DISCUSSION

The time taken to complete 99.9% of a first order reaction is 'x' times half life.

$$t_{99.9}' = \frac{2.303}{k} log \frac{A_o}{(A_o/1000)} = \frac{2.303}{k} log 1000$$


$$= \frac{2.303}{12} \times 3 = \frac{6.909}{12}$$

If longest wavelength for Paschen Series in H-atom is α . Find $\alpha/7R$.

JEE MAIN 2024

- - 0.18/

PAPER DISCUSSION

For hydrogen electrode the reduction potential at pH = 3 is

- **A** −0.18 V
- **B** −1.8 ∨
- C -0.8 V
- _1.2 ∨

$$pH = -10g[H^{+}]$$

$$(\mu^{+}) = 10^{-3} M$$

1 of ul K.E = 3 x x x T = 3 x 2 x 300 = 900 cal.

Total translational kinetic energy in calorie of 1 mol of oxygen at 27°C.

- 900
- 1200
- 1600
- 600

JEE MAIN 2024

PAPER DISCUSSION

The threshold frequency of metal with work function 6.63 eV is $(x \times 10^{14} \text{ sec}^{-1})$ {h = 6.63 × 10⁻³⁴ J sec}, then find 'x'?

$$W = h v_0$$

$$6.63 \times 1.6 \times 10^{-19} = 6.63 \times 10^{-34}$$

$$v_0 = 1.6 \times 10^{15}$$

$$= 16 \times 10^{14} = 2 \times 10^{14}$$

$$= 16$$

The volume of NaOH in dm³ of 3 M NaOH solution contain 84 g of NaOH.

$$\frac{84}{40}$$

$$V = \frac{84}{120}Ut = \frac{84}{120}Um^{3}$$

$$\Delta H^0 = 77.2 \text{ ks}, \quad \Delta S^0 = 122 \text{ J/mol·k} \quad T = 300 \text{ k}$$

$$\Delta G^0 = \Delta H - T \Delta S^0 = -2.303 \text{ Rt logk}$$

$$= 77.2 - 300 \left(\frac{122}{1080}\right) = -2.303 \text{ kg/k} \times 300 \text{ logk}$$

Mathematics

Coefficient of x^{2012} in $(1-x)^{2008} (1+x+x^2)^{2007}$

- 0

$$\lim_{x\to 0} \frac{3-a sin x-b cos x-log_e(1+x)}{3 tan^2 x} \text{ is non zero finite find 2b-a}$$

- 9

$$\frac{dy}{dx} = \frac{(x+y-2)}{x-y}$$
 find solution of this differential equation.

If $tan^{-1}x + tan^{-1}2x = \frac{\pi}{4}$, then find number of solutions.

If the mean of 15 observations are 12 and S.D is 3 But the replace of 12 write 10 then the new mean is μ and varies is σ^2 then what is the value of 15 ($\mu + \mu^2 + \sigma^2$)

Evaluate:
$$\int \frac{\left(x^2 - \frac{1}{x^4}\right) dx}{\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\left(1 + \left(x^3 + \frac{1}{x^3}\right)^2\right)}$$

$$\frac{1}{3}\log\left[\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right] + C$$

$$\frac{1}{2}\log\left[\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right] + C$$

$$\frac{1}{2}\log\left[\tan^{-1}\left(x^3 - \frac{1}{x^3}\right)\right] - C$$

None of these

Determinant, interval of a. Angle bisector of the given points with same z coordinate. $tan^{-1}x + tan^{-2}x = 1$, no of solutions for positive x. Image of a point wrt x line and which point from give passes through. Summation $k/2^k$ from 1 to n where n was found from another solution.

The position vector of the vertices A, B, C of a triangle arc $2\hat{i} + 3\hat{j} + 3\hat{k}$, $2\hat{i} - 2\hat{j} + 3\hat{k}$, $-\hat{i} + \hat{j} + 3\hat{k}$ respective dy. Let I denotes the length of the angle bisector AD of \(\angle \) BAC where D is on the line segment BC, then $2l^2$ equals.

If 20th term from the end of the progression

20,
$$19\frac{1}{4}$$
, $18\frac{1}{2}$, $17\frac{3}{4}$, $-129\frac{1}{4}$ is

- -120
- -115
- -125
- -110

Difference of subsets of 2 finite sets with m & n elements, is 56 then find distance between (m, n) & (-2, -3).

- 10
- 16
- 14
- None of these

The integral
$$\int \frac{(x^8-x^2)}{(x^{12}+3x^6+1)\tan^{-1}(x^3+\frac{1}{x^3})} dx$$
 is equal to:

- $\frac{1}{3} \ln \left(\tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right) + C$
- B $\ln \left(\tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right) + C$
- $\frac{1}{6} \ln \left(\tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right) + C$
- $\frac{1}{9} \ln \left(\tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right) + C$

If $2\tan^2\theta - 5\sec\theta = 1$ has exactly 7 solutions in $\left[0, \frac{n\pi}{2}\right]$ for least value of $n \in \mathbb{N}$, then $\sum_{k=1}^{n} \frac{k}{2^n}$ is equal to _____.

If
$$\frac{dy}{dx} = \frac{x+y-2}{x-y}$$
, and y(0) = 2, find y(2).

- 0
- B
- D

An urn contains 6 white and 9 black balls. Two successive draws of 4 balls are made without replacement. The probability that the first draw gives all white balls and second draw gives all black balls is:

$$\frac{2}{335}$$

$$\frac{5}{812}$$

If α , β are the roots of $x^2 - x + 1 = 0$ then the value of

Sn =
$$2023\alpha^{n} + 2024\beta^{n}$$
 is

 $2\hat{\imath} + 2\hat{\jmath} + \hat{k}, \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and $2\hat{\imath} + \hat{\jmath} + 2\hat{k}$. let l_1 , l_2 and l_3 be lengths of Perpendicular drawn center of the triangle on the sides AB, BC and CA respectively then $l_1^2 + l_2^2 + l_3^2$.

Let the image of the point (1, a, 7) in the line $\frac{b}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ be the point (α, β, γ) then which one of the following points lie on the line passing through (α, β, γ) then which making angles $\frac{\pi}{3}$ & $\frac{3\pi}{4}$ with y-axis and z axis respectively and an acute angle with x –axis?

- $(1,2,1-\sqrt{2})$
- B) $(3,4,3-2\sqrt{2})$
- (3, -4, 3 + $2\sqrt{2}$)
- D) $(1,-2,1+\sqrt{2})$

A is the area of region $0 \le y \le \min(2x, 6x - x^2)$, then find 12A.

Equation of tangent to circle $(x - \alpha)^2 + (y - \beta)^2 = 50$ is x + y = 0. If distance of point of contact from origin is $4\sqrt{2}$ find $(\alpha + \beta)^2$.

The point P on the parabola $y^2 = 4ax$ for which |PR - PQ| is maximum, where R(-a, 0), Q(0, a) is

- (a, 2a)
- (a, -2a)
- (4a, 4a)
- (4a, -4a)

There are four boxes A_1 , A_2 , A_3 and A_4 . Box A_i has **i** cards and on each card a number is printed, the numbers are from 1 to i. A box is selected randomly, the probability of selection of box A_i is $\frac{1}{10}$ and then a card is drawn. Let E_i represents the event that a card with number 'i' is drawn. $P(A_3/E_2)$ is equal to:

If
$$\frac{dy}{dx} + xy = x^3y^3$$
, $y(0) = 1$, then $y(7)$ equals


- 1/50
- 50
- $1/\sqrt{50}$
- $\sqrt{50}$

If $f(x) = \max\{\sin x, \cos x, \frac{1}{2}\}$, then the area of the region bounded by the curves y = f(x), x-axis, y-axis and $x = 2\pi$ is

- $\left(\frac{5\pi}{12} + 3\right)$ sq. units
- $\left(\frac{5\pi}{12} + \sqrt{2}\right)$ sq. units
- $\left(\frac{5\pi}{12} + \sqrt{3}\right)$ sq. units
- $\left(\frac{5\pi}{12} + \sqrt{2} + \sqrt{3}\right) \text{ sq. units}$

A circle cuts two perpendicular lines so that intercept on each of the line is of given length.

The locus of the centre of circle

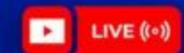
- a hyperbola of eccentricity 5/4
- В a hyperbola of eccentricity $\sqrt{2}$
- an ellipse of eccentricity 4/5
- a parabola

If
$$\lim_{x \to \frac{1}{\sqrt{2}}} \frac{\sin(\cos^{-1}x) - x}{1 - \tan(\cos^{-1}x)} = \frac{-k}{\sqrt{2}}$$
, then the value of k is

- 1/2
- 1/4

If
$$\int \frac{\sin 2x}{\sin 3x \sin 5x} dx = \frac{1}{p} \log_e |\sin 3x| - \frac{1}{q} \log_e |\sin 5x| + C$$
, then $|p - q|$ is equal to (where C is constant of integration)

If
$$a_n = \int_0^{\pi/2} \frac{\sin^2 nx}{\sin x} dx$$
, then $a_2 - a_1$, $a_3 - a_2$, $a_4 - a_3$ are in


- A A.P
- B G.P
- H.P
- A.G.P

If the point $(a, a^2 + 1)$ lies between the lines joining the points (-3, 10), (-1, 2) and $(0, 1), (\frac{1}{3}, \frac{10}{9})$, then find the values of a.

- $(-\infty, -3) \cup (-1,0) \cup \left(\frac{1}{3}, \infty\right)$
- B) $(-\infty, -3) \cup (-1,0)$
- \bigcirc $(0,1) \cup \left(\frac{1}{3}, \infty\right)$
- None of these

Solve the differential equation $(x^2 - 4)dy - (y^2 - 3y) dx = 0$

A is a 2 × 2 matrix, I is 2 × 2 identity matrix. |A - xI| = 0 has the roots -1, 3. Then the sum of diagonal elements of A^2 .

$$0 < a < 1$$
, $\int_0^{\pi} \frac{dx}{1 - 2a\cos x + a^2}$ = value of the integral

- $\frac{\pi^2}{\pi + a^2}$
- $\frac{\pi}{1+a^2}$
- $\frac{\pi^2}{\pi a^2}$
- $\frac{\pi}{1-a^2}$

For $x \in (0, 3)$

$$g(x) = 3f(\frac{x}{3}) + f(3 - x)$$
 and $f''(x) > 0 \ \forall x \in (0,3)$,

If g(x) is increasing in $(\alpha, 3)$ and decreasing in $(0, \alpha)$ then find α .

Let $f: R - \left\{-\frac{1}{2}\right\} \to R$ and $g: R - \left\{-\frac{5}{2}\right\} \to R$ be defined as $f(x) = \frac{2x+3}{2x+1}$ and $g(x) = \frac{|x|+1}{2x+5}$ then the domain of the function f(g(x)) is:

- A
- $\mathbb{B} \quad R \left\{ -\frac{5}{2} \right\}$
- $R \left\{-\frac{1}{2}, -\frac{5}{2}\right\}$
- $R \left\{-\frac{1}{2}\right\}$

Considering the principal values of inverse trigonometric functions the positive real values of x satisfying $tan^{-1}x + tan^{-1}(2x) = \frac{\pi}{4}$ is:

Find the area bounded by:

$$0 \le y \le \min\{2x, 6x - x^2\}$$

