

Class-10th

Class- X

Mathematics Basic (241)

Marking Scheme SQP-2022-23

Time Allowed: 3 Hours

Maximum Marks: 80

	Section A	
1	(c) a ³ b ²	1
2	(c) 13 km/hours	1
3	(b) -10	1
4	(b) Parallel.	1
5	(c) $k = 4$	1
6	(b) 12	1
7	(c) ∠B = ∠D	1
8	(b) 5:1	1
9	(a) 25°	1
1	(a) $\frac{2}{\sqrt{3}}$	1
1	(c) $\sqrt{3}$	1
1	(b) 0	1
1	(b) 14:11	1
1	(c) 16:9	1
1	(d) 147π cm ²	1
1	(c) 20	1
1	(b) 8	1
1	(a) $\frac{3}{26}$	1
1	(d) Assertion (A) is false but Reason (R) is true.	1
2	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	1
	Section B	

2	For a pair of linear equations to have infinitel	y many solutions :	
		,	1/2
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$		
	$\frac{k}{12} = \frac{3}{k} \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$		1/2
	Also, $\frac{3}{k} = \frac{k-3}{k} \Rightarrow k^2 - 6k = 0 \Rightarrow k = 0,6$		1/
	Also, k k		½ ½
	Therefore, the value of k, that satisfies both t	the conditions, is $k = 6$.	/2
2	C	(i) In ΔABD and ΔCBE	
	D D		1/2
	/	∠ADB = ∠CEB = 90°	1/
		∠ABD = ∠CBE (Common angle)	1/2
	B		
	E	\Rightarrow \triangle ABD \sim \triangle CBE (AA criterion)	
			1/2
		(ii) In Δ PDC and Δ BEC	
		(DDC (DEC 00°	1/2
		$\angle PDC = \angle BEC = 90^{\circ}$	
	A	∠PCD = ∠BCE (Common angle)	1/2
		⇒ ΔPDC ~ ΔBEC (AA criterion)	/2
	D	·	1/2
		[OR]	
	B F E C	In ΔABC, DE AC	1/2
		BD/AD = BE/EC(i) (Using BPT)	
		In ΔABE, DF AE	1/2
		BD/AD= BF/FE(ii) (Using BPT)	
		From (i) and (ii)	
		BD/AD = BE/EC = BF/FE	
		BF _ BE	
		$\frac{BF}{FE} = \frac{BE}{EC}$	
2		Let O be the centre of the concentric circle of radii 5 cm	
		and 3 cm respectively. Let AB be a chord of the larger	
		circle	
	(5 cm)	touching the smaller circle at P	1/2
	3 cm//	Then AP = PB and OP⊥AB	
	A P B	Applying Bythagoras theorem in AODA we have	1/2
		Applying Pythagoras theorem in Δ OPA, we have	1/2
		$OA^2 = OP^2 + AP^2 \Rightarrow 25 = 9 + AP^2$	1/2
		$\Rightarrow AP^2 = 16 \Rightarrow AP = 4 \text{ cm}$	
		→ /11 - 10 → /11 - ∓ CIII	

		T
	∴ AB = 2AP = 8 cm	
2	$\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$	1/2
	$=\frac{\cos^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2$	1/2
	$= \cot^2 \theta$	1/2
	$=\left(\frac{7}{8}\right)^2 = \frac{49}{64}$	1/2
2	$\frac{1}{4}$	1/2
	Perimeter of quadrant = $2r + 4 \times 2\pi r$	
	$\Rightarrow \text{Perimeter} = 2 \times 14 + \frac{1}{2} \times \frac{22}{7} \times 14$	1/2
		1
	⇒ Perimeter = 28 + 22 = 28 + 22 = 50 cm	
	[OR] Area of the circle = Area of first circle + Area of second circle	½ ½
	$\Rightarrow \pi R^2 = \pi (r_1)^2 + \pi (r_1)^2$	1
	$\Rightarrow \pi R^2 = \pi (24)^2 + \pi (7)^2 \Rightarrow \pi R^2 = 576\pi + 49\pi$	1
	$\Rightarrow \pi R^2 = 625\pi \Rightarrow R^2 = 625 \Rightarrow R = 25$ Thus, diameter of the circle = $2R = 50$ cm.	
	⇒ TIR = 625TF ⇒ R = 625 ⇒ R = 25 THus, diameter of the circle = 2R = 50 cm. Section C	
2		
	Let us assume to the contrary, that $\sqrt{5}$ is rational. Then we can find a and b (\neq 0) such that $\sqrt{5} = \frac{a}{b}$ (assuming that a and b are co-primes).	1
	So, $a = \sqrt{5} b \Rightarrow a^2 = 5b^2$	
	Here 5 is a prime number that divides a^2 then 5 divides a also (Using the theorem, if a is a prime number and if a divides p^2 , then a divides p, where a is a positive integer)	1/2
	Thus 5 is a factor of a Since 5 is a factor of a, we can write $a = 5c$ (where c is a constant). Substituting $a = 5c$ We get $(5c)^2 = 5b^2 \Rightarrow 5c^2 = b^2$	1/2
	This means 5 divides b^2 so 5 divides b also (Using the theorem, if a is a prime number and if a divides p^2 , then a divides p, where a is a positive integer).	1/2
	Hence a and b have at least 5 as a common factor. But this contradicts the fact that a and b are coprime. This is the contradiction to our assumption that p and q are co-primes.	1/2
	So, $\sqrt{5}$ is not a rational number. Therefore, the $\sqrt{5}$ is irrational	

2	$6x^2 - 7x - 3 = 0 \Rightarrow 6x^2 - 9x + 2x - 3 = 0$	1/2
	$\Rightarrow 3x(2x-3) + 1(2x-3) = 0 \Rightarrow (2x-3)(3x+1) = 0$	
	$\Rightarrow 2x - 3 = 0 \& 3x + 1 = 0$	1/2
	x = 3/2 & x = -1/3 Hence, the zeros of the quadratic polynomials are 3/2 and $-1/3$	
	For verification	1
	-coefficient of x	
	Sum of zeros = $\frac{\text{coefficient of x}^2}{\text{coefficient of x}^2}$ \Rightarrow 3/2 + (-1/3) = -(-7) / 6 \Rightarrow 7/6 = 7/6	1
	constant	
	Product of roots = $\frac{\text{coefficient of x}^2}{\text{coefficient of x}^2}$ \Rightarrow 3/2 × (-1/3) = (-3) / 6 \Rightarrow -1/2 = -1/2	
	Therefore, the relationship between zeroes and their coefficients is verified.	
2	Let the fixed charge by Rs x and additional charge by Rs y per day	
_	Number of days for Latika = 6 = 2 + 4	
	· · · · · · · · · · · · · · · · · · ·	
	Hence, Charge $x + 4y = 22$	1/
	$x = 22 - 4y \dots (1)$	1/2
	Number of days for Anand = 4 = 2 + 2	
	Hence, Charge $x + 2y = 16$	
	$x = 16 - 2y \dots (2)$	
	On comparing equation (1) and (2), we get,	1/2
	$22 - 4y = 16 - 2y \Rightarrow 2y = 6 \Rightarrow y = 3$	1
	Substituting y = 3 in equation (1), we get,	
	$x = 22 - 4(3) \Rightarrow x = 22 - 12 \Rightarrow x = 10$	
	Therefore, fixed charge = Rs 10 and additional charge = Rs 3 per day	
	[OR]	
	AB = 100 km. We know that, Distance = Speed × Time.	½ ½
	$AP - BP = 100 \Rightarrow 5x - 5y = 100 \Rightarrow x - y = 20(i)$	
	$AQ + BQ = 100 \Rightarrow x + y = 100(ii)$	1
	Adding equations (i) and (ii), we get,	1
	$x - y + x + y = 20 + 100 \Rightarrow 2x = 120 \Rightarrow x = 60$	
	Substituting x = 60 in equation (ii), we get, $60 + y = 100 \Rightarrow y = 40$	
	Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr.	

2	P	Since OT is perpendicular bisector of PQ.	
	5 cm	Therefore, PR = RQ = 4 cm	1/2
	T 8 cm O	Now, OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3cm$	1/2
		Now, ∠TPR + ∠RPO = 90° (TPO = 90°)	
	Q .	& ∠TPR + ∠PTR = 90° (<u></u> ** TRP = 90°)	
		So, ∠RPO = ∠PTR	½ ½
		So, \triangle TRP ~ \triangle PRO [By A-A Rule of similar triangles]	1/2
		$rac{TP}{So, PO} = rac{RP}{RG}$	1/2
		$\frac{\text{TP}}{5} = \frac{4}{3} \Rightarrow \text{TP} = \frac{20}{3} \text{cm}$	
3	1	· ·	1,
	$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\tan \theta}{1} + \frac{\tan \theta}{1 - \cot \theta}$		1/2
	LHS = $1 - \frac{1}{\tan \theta} = 1 - \frac{1}{\tan \theta}$	ano	
	$\tan^2\theta$	1	
	<u></u>	$+\frac{1}{\tan\theta(1-\tan\theta)}$	1/2
	$\tan^3 \theta$		
	$= \frac{\tan \theta}{\tan \theta(\tan \theta)}$		
			1/
	tar	$\frac{(\tan^3\theta + \tan\theta + 1)}{\tan\theta(\tan\theta - 1)}$	1/2
	_		
	$=\frac{(\tan^3\theta+}{\tan^3\theta}$		
			1/2
	= tan θ + 1 ·	$+ \sec = 1 + \tan \theta + \sec \theta$	
		$+\frac{\cos\theta}{\cos\theta}$	
	$= 1 + \cos \theta$	$\sin \theta$	1/2
		$\theta + \cos^2 \theta$	1/2
	= 1 + Sin	$\theta\cos\theta$	
	$\frac{1}{100}$	= =	1/2
	$= 1 + \sin \theta$		1/2
		[OR]	1/2
	$\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)2 = 3$		1/2
	$\Rightarrow \sin 2\theta + \cos 2\theta + 2\sin \theta \cos \theta = 3$		1/2
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow 1\sin\theta\cos\theta = 1$		1/2
	<u>I</u>		

	$\sin\theta$ $\cos\theta$	
	Now $\tan \theta + \cot \theta = \frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\sin \theta}$	
	$\sin^2\theta + \cos^2\theta$	
	$= \frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}$	
	1 1	
	$= \frac{1}{\sin\theta\cos\theta} = \frac{1}{1} = 1$	
3	$P(8) = \frac{5}{36}$	
	(i) 1(o) 36	1
	$P(13) = \frac{0}{36} = 0$	1
	(ii) $1(13) - 36 = 0$	_
	(iii) P(less than or equal to 12) = 1	1
	Section D	
3	Let the average speed of passenger train = x km/h.	
	and the average speed of express train = (x + 11) km/h	1/2
	As per given data, time taken by the express train to cover 132 km is 1 hour less than the passenger	
	train to cover the same distance. Therefore,	
	$\frac{132}{11} - \frac{132}{11} = 1$	
	$\frac{1}{x} - \frac{1}{x+11} - 1$	1
	$132(x+11-x)$, 132×11 ,	1/
	$\frac{132(x+11-x)}{x(x+11)} = 1 \Rightarrow \frac{132 \times 11}{x(x+11)} = 1$	1/2
	\Rightarrow \uparrow \uparrow	
	$\Rightarrow 132 \times 11 = x(x+11) \Rightarrow x^2 + 11x - 1452 = 0$	1
		1
	$\Rightarrow x^2 + 44x - 33x - 1452 = 0$	1/2
	$\Rightarrow x (x + 44) - 33(x + 44) = 0 \Rightarrow (x + 44)(x - 33) = 0$	1/2
	\Rightarrow x = -44, 33	
	As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the	
	express train will be 33 + 11 = 44 km/h.	1/2
	[OR]	
	Let the speed of the stream be x km/hr	
	So, the speed of the boat in upstream = $(18 - x)$ km/hr	1/2
	& the speed of the boat in downstream = (18 + x) km/hr	
	distance _ distance = 1	1
	ATQ, upstream speed downstream speed	1
	24 24	
	$ \Rightarrow \frac{24}{18 - x} - \frac{24}{18 + x} = 1$	
	$\Rightarrow 24 \left[\frac{1}{18 - x} - \frac{1}{18 + x} \right] = 1 \Rightarrow 24 \left[\frac{18 + x - (18 - x)}{(18 - x) \cdot (18 + x)} \right] = 1$	1
		1/2
		1/2

→ 2 <i>1</i>	2x	$=1 \Rightarrow 24$	2x	_ 1
<i>→</i> ∠4	[18-x).(18+x)	-1-24	$\left[(18-x).(18+x) \right]$	

$$\Rightarrow$$
 48x = 324 - x^2 \Rightarrow x^2 + 48x - 324 = 0

$$\Rightarrow$$
 (x + 54)(x - 6) = 0 \Rightarrow x = -54 or 6

As speed to stream can never be negative, the speed of the stream is 6 km/hr.

3 Figure

Given, To prove, constructions

Proof

Application -----

Volume of one conical depression = $\frac{1}{3} \times \pi r^2 h$

$$=\frac{1}{3}\times\frac{22}{7}\times0.5^2\times1.4$$
cm³ = 0.366 cm³

Volume of 4 conical depression = 4×0.366 cm³

$$= 1.464 \text{ cm}^3$$

Volume of cuboidal box = $L \times B \times H$

$$= 15 \times 10 \times 3.5 \text{ cm}^3 = 525 \text{ cm}^3$$

Remaining volume of box = Volume of cuboidal box – Volume of 4 conical depressions

$$= 525 \text{ cm}^3 - 1.464 \text{ cm}^3 = 523.5 \text{ cm}^3$$

[OR]

Let h be height of the cylinder, and r the common radius of the cylinder and hemisphere.

Then, the total surface area = CSA of cylinder + CSA of hemisphere

$$= 2\pi rh + 2\pi r^2 = 2\pi r(h + r)$$

$$= 2 \times \frac{22}{7} \times 30(145 + 30) \text{cm}^2$$

$$= 2 \times \frac{22}{7} \times 30 \times 175 \text{cm}^2$$

 $= 33000 \text{ cm}^2 = 3.3 \text{ m}^2$

1			
	Class	Number of policy holders	Cumulative Frequency
	Interval	(f)	(cf)
	Below 20	2	2
1	20-25	4	6
1	25-30	18	24
1	30-35	21	45
1	35-40	33	78
1	40-45	11	89
	45-50	3	92

1/2

1

2 1

1/2

1/2

1/2

1

½ 1

1/2

2

½ 1

1

١	50-55	6	98
	55-60	2	100
1			

 $n = 100 \Rightarrow n/2 = 50$, Therefore, median class = 35 - 40,

Class size, h = 5, Lower limit of median class, I = 35,

frequency f = 33, cumulative frequency cf = 45

$$\Rightarrow \text{Median} = I + \begin{bmatrix} \frac{n}{2} - cf \\ \hline f \end{bmatrix} \times h$$

$$\Rightarrow Median = 35 + \left\lfloor \frac{50 - 45}{33} \right\rfloor \times 5$$

$$= 35 + \frac{25}{33} = 35 + 0.76$$

Therefore, median age is 35.76 years

Section E

1	Since the production increases uniformly by a fixed number every year, the number of Cars	
	manufactured in 1st, 2nd, 3rd,, years will form an AP.	
	So, a + 3d = 1800 & a + 7d = 2600	1
	So d = 200 & a = 1200	1
2	$t_{12} = a + 11d \Rightarrow t_{30} = 1200 + 11 \times 200$	1
	t ₁₂ - u · 11d → t ₃₀ - 1200 · 11 × 200] 1
	$\Rightarrow t_{12} = 3400$	
3	<u>n</u> <u>10</u>	
	$S_n = \frac{1}{2} [2a + (n-1)d] \Rightarrow S_{10} = \frac{1}{2} [2 \times 1200 + (10-1) 200]$	
	$\Rightarrow S_{10} = \frac{13}{2} [2 \times 1200 + 9 \times 200]$	
	\Rightarrow S ₁₀ = 2 [2 × 1200 + 9 × 200]	
	S F v [2400 + 1900]	
	$\Rightarrow S_{10} = 5 \times [2400 + 1800]$	
	\Rightarrow S ₁₀ = 5 × 4200 = 21000	
	[OR]	
	Let in n years the production will reach to 31200	
	n n	- '
	$S_n = \frac{1}{2} [2a + (n-1)d] = 31200 \Rightarrow \frac{1}{2} [2 \times 1200 + (n-1)200] = 31200$	
	$\frac{n}{2}$	
	\Rightarrow 2 [2 × 1200 + (n - 1)200] = 31200 \Rightarrow n[12 + (n - 1)] = 312	
	\Rightarrow n ² + 11n - 312 = 0	
	$\Rightarrow n^2 + 24n - 13n - 312 = 0$	

1/2

1

1

1

 \Rightarrow (n + 24)(n - 13) = 0

 \Rightarrow n = 13 or – 24. As n can't be negative. So n = 13

3 Case Study – 2

1	$LB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow LB = \sqrt{(0 - 5)^2 + (7 - 10)^2}$	1/2
	$LB = \sqrt{(5)^2 + (3)^2} \Rightarrow LB = \sqrt{25 + 9} \ LB = \sqrt{34}$ Hence the distance is 150 $\sqrt{34}$ km	1/2
2	Coordinate of Kota (K) is $\left(\frac{3\times 5+2\times 0}{3+2}, \frac{3\times 7+2\times 10}{3+2}\right)$	1/2
	$= \left(\frac{15+0}{5}, \frac{21+20}{5}\right) = \left(3, \frac{41}{5}\right)$	1/2
3	L(5, 10), N(2,6), P(8,6)	
	$LN = \sqrt{(2-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{9+16} = \sqrt{25} = 5$	1/2
		1/2

$$NP = \sqrt{(8-2)^2 + (6-6)^2} = \sqrt{(4)^2 + (0)^2} = 4$$

$$PL = \sqrt{(8-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} \Rightarrow LB = \sqrt{9+16} = \sqrt{25} = 5$$

1/2

as LN = PL \neq NP, so Δ LNP is an isosceles triangle.

[OR]

Let A (0, b) be a point on the y – axis then AL = AP

$$\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$$

½ ½

1/2

$$\Rightarrow$$
 $(5)^2 + (10 - b)^2 = (8)^2 + (6 - b)^2$

⇒ 25 + 100 - 20b + b² = 64 + 36 - 12b + b² ⇒ 8b = 25 ⇒ b =
$$\frac{25}{8}$$

1/2

So, the coordinate on y axis is $0, \frac{2}{8}$

3 Case Study – 3

1	$\sin 60^{\circ} = \frac{PC}{PA}$	
	$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3}m$	
2	$\sin 30^{\circ} = \frac{PC}{PB}$	
	$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36m$	
3	$\tan 60^{\circ} = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC} \Rightarrow AC = 6\sqrt{3}m$	1
		1/_

	$\tan 30^{\circ} = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB} \Rightarrow CB = 18\sqrt{3}m$	1/2
	Width AB = AC + CB = $6\sqrt{3} + 18\sqrt{3} = 24\sqrt{3}$ m	1/2
	[OR]	1
	RB = PC = 18 m & PR = CB = 18 $\sqrt{3}$ m	1/2
	$\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}} \Rightarrow QR = 18m$	/2
	QB = QR + RB = 18 + 18 = 36m. Hence height BQ is 36m	