ICSE Class 9 Maths Selina Solutions Chapter 10: Here are ICSE Class 9 Maths Selina Solutions Chapter 10. A student's time in class nine is crucial. Understanding the material covered in Class 9 is essential since Class 10 builds on it.

It is recommended that you complete the exercises in every chapter of the Selina publishing book to achieve high scores on the mathematics exam for Class 9. The Selina answers for Maths Class 9 aid students in better comprehending all of the material.

ICSE Class 9 Maths Selina Solutions Chapter 10 Overview

ICSE Class 9 Maths Selina Solutions Chapter 10 introduces isosceles triangles. In this ICSE Class 9 Maths Selina Solutions Chapter 10, students learn that an isosceles triangle has at least two sides of equal length, and the angles opposite these equal sides are also equal.

The ICSE Class 9 Maths Selina Solutions Chapter 10 explains important properties and theorems related to isosceles triangles, such as how the angles opposite the equal sides are equal and how this can be used to find missing angles and sides. By understanding these properties and practicing related problems, students gain the skills to solve various geometric problems involving isosceles triangles.

ICSE Class 9 Maths Selina Solutions Chapter 10

Below we have provided ICSE Class 9 Maths Selina Solutions Chapter 10 -

1. In the triangle

AB = AC

 $\angle A = 48^{\circ}$ and

∠ACD = 18°.

Show that BC = CD.

Solution:

In \triangle ABC, we have

 \angle BAC + \angle ACB + \angle ABC = 180°

 $48^{\circ} + \angle ACB + \angle ABC = 180^{\circ}$

But, $\angle ACB = \angle ABC$ [Given, AB = AC]

$$2\angle ABC = 180^{\circ} - 48^{\circ}$$

$$2\angle ABC = 132^{\circ}$$

$$\angle$$
ABC = 66⁰ = \angle ACB(i)

$$\angle$$
ACB = 66 $^{\circ}$

$$\angle$$
ACD + \angle DCB = 66 $^{\circ}$

$$18^{\circ} + \angle DCB = 66^{\circ}$$

$$\angle DCB = 48^{\circ}$$
(ii)

Now, In $\triangle DCB$,

$$\angle$$
DBC = 66° [From (i), Since \angle ABC = \angle DBC]

$$\angle$$
DCB = 48° [From (ii)]

$$\angle BDC = 180^{\circ} - 48^{\circ} - 66^{\circ}$$

$$\angle$$
BDC = 66 $^{\circ}$

Since $\angle BDC = \angle DBC$

Therefore, BC = CD

Equal angles have equal sides opposite to them.

2. Calculate:

- (i) ∠ADC
- (ii) ∠ABC
- (iii) ∠BAC

Solution:

Given:
$$\angle$$
ACE = 130°; AD = BD = CD

Proof:

(i)
$$\angle$$
ACD + \angle ACE = 180° [DCE is a straight line]

$$\angle ACD = 180^{\circ} - 130^{\circ}$$

Now,

$$CD = AD$$

$$\angle$$
ACD = \angle DAC = 50° ... (i) [Since angles opposite to equal sides are equal]

In ∆ADC,

$$\angle$$
ACD = \angle DAC = 50°

$$\angle$$
ACD + \angle DAC + \angle ADC = 180°

$$50^{\circ} + 50^{\circ} + \angle ADC = 180^{\circ}$$

$$\angle ADC = 180^{\circ} - 100^{\circ}$$

(ii) \angle ADC = \angle ABD + \angle DAB [Exterior angle is equal to sum of opposite interior angles]

But, AD = BD

$$80^{\circ} = \angle ABD + \angle ABD$$

$$\angle ABD = 40^{\circ} = \angle DAB \dots$$
 (ii)

(iii) We have,

$$\angle$$
BAC = \angle DAB + \angle DAC

Substituting the values from (i) and (ii),

$$\angle$$
BAC = 40° + 50°

Hence,
$$\angle$$
BAC = 90°

- 3. In the following figure, AB = AC; BC = CD and DE is parallel to BC. Calculate:
- (i) ∠CDE
- (ii) ∠DCE

Solution:

$$\angle$$
BAC + \angle FAB = 180° [As FAC is a straight line]

$$\angle$$
BAC = $180^{\circ} - 128^{\circ}$

$$\angle$$
BAC = 52 $^{\circ}$

In ∆ABC, we have

$$\angle A = 52^{\circ}$$

 $\angle B = \angle C$ [Given AB = AC and angles opposite to equal sides are equal]

Now, by angle sum property

$$\angle A + \angle B + \angle B = 180^{\circ}$$

$$52^{\circ} + 2 \angle B = 180^{\circ}$$

$$\angle B = 64^{\circ} = \angle C...(i)$$

$$\angle B = \angle ADE$$
 [Given DE II BC]

(i) Now, \angle ADE + \angle CDE + \angle B = 180° [As ADB is a straight line]

$$64^{\circ} + \angle CDE + 64^{\circ} = 180^{\circ}$$

$$\angle$$
 CDE = 180°+ 128°

$$\angle$$
 CDE = 52 $^{\circ}$

(ii) Given DE II BC and DC is the transversal

$$\angle$$
CDE = \angle DCB = 52°... (ii)

Also,
$$\angle$$
 ECB = 64°... [From (i)]

But,

$$\angle$$
ECB = \angle DCE + \angle DCB

$$64^{\circ} = \angle DCE + 52^{\circ}$$

$$\angle DCE = 64^{\circ} - 52^{\circ}$$

4. Calculate x:

Solution:

(i) Let the triangle be ABC and the altitude be AD.

In $\triangle ABD$, we have

 \angle DBA = \angle DAB = 37° [Given BD = AD and angles opposite to equal sides are equal]

Now,

 \angle CDA = \angle DBA + \angle DAB [Exterior angle is equal to the sum of opposite interior angles]

 \angle CDA = 37° + 37°

∴ ∠CDA = 74°

Now, in $\triangle ADC$, we have

 \angle CDA = \angle CAD = 74° [Given CD = AC and angels opposite to equal sides are equal]

Now, by angle sum property

$$\angle$$
CAD + \angle CDA + \angle ACD = 180°

$$74^{\circ} + 74^{\circ} + x = 180^{\circ}$$

$$x = 180^{\circ} - 148^{\circ}$$

 $x = 32^{\circ}$

(ii) Let triangle be ABC and altitude be AD.

In $\triangle ABD$, we have

 \angle DBA = \angle DAB = 50° [Given BD = AD and angles opposite to equal sides are equal]

Now,

 \angle CDA = \angle DBA + \angle DAB [Exterior angle is equal to the sum of opposite interior angles]

$$\angle$$
 CDA = 50° + 50°

∴ ∠CDA = 100°

In \triangle ADC, we have

 \angle DAC = \angle DCA = x [Given AD = DC and angels opposite to equal sides are equal]

So, by angle sum property

$$\angle$$
DAC + \angle DCA + \angle ADC = 180°

$$x + x + 100^{\circ} = 180^{\circ}$$

$$2x = 80^{\circ}$$

$$x = 40^{\circ}$$

5. In the figure, given below, AB = AC. Prove that: \angle BOC = \angle ACD.

Solution:

Let's assume $\angle ABO = \angle OBC = x$ and $\angle ACO = \angle OCB = y$

In ABC, we have

$$\angle BAC = 180^{\circ} - 2x - 2y...(i)$$

As,
$$\angle B = \angle C$$
 [Since, AB = AC]

$$\frac{1}{2} \angle B = \frac{1}{2} \angle C$$

$$\Rightarrow x = y$$

Now,

 \angle ACD = 2x + \angle BAC [Exterior angle is equal to sum of opposite interior angle]

$$= 2x + 180^{\circ} - 2x - 2y$$
 [From (i)]

$$\angle ACD = 180^{\circ} - 2y...$$
 (ii)

In \triangle OBC, we have

$$\angle BOC = 180^{\circ} - x - y$$

$$\angle BOC = 180^{\circ} - y - y$$
 [Since x = y]

∠BOC =
$$180^{\circ} - 2y$$
... (iii)

Thus, from (ii) and (iii) we get

$$\angle BOC = \angle ACD$$

- 6. In the figure given below, LM = LN; \angle PLN = 110°. Calculate:
- (i) ∠LMN
- (ii) ∠MLN

Solution:

Given, LM = LN and \angle PLN = 110°

(i) We know that the sum of the measure of all the angles of a quadrilateral is 360°.

In quad. PQNL,

$$\angle$$
QPL + \angle PLN +LNQ + \angle NQP = 360°

$$90^{\circ} + 110^{\circ} + \angle LNQ + 90^{\circ} = 360^{\circ}$$

$$\angle$$
LNQ = 360° – 290°

$$\angle$$
LNQ = 70°

$$\angle$$
LNM = 70°... (i)

In Δ LMN, we have

$$\Rightarrow$$
 \angle LNM = \angle LMN [Angles opposite to equal sides are equal]

$$\angle$$
LMN = 70°...(ii) [From (i)]

(ii) In ∆LMN, we have

$$\angle$$
LMN + \angle LNM + \angle MLN = 180°

But,
$$\angle$$
LNM = \angle LMN = 70° [From (i) and (ii)]

$$\Rightarrow$$
 70° + 70° + \angle MLN = 180°

$$\angle$$
MLN = 180° - 140°

7. An isosceles triangle ABC has AC = BC. CD bisects AB at D and \angle CAB = 55°.

Find: (i) \angle DCB (ii) \angle CBD.

Solution:

In \triangle ABC, we have

So, \angle CAB = \angle CBD [Angles opposite to equal sides are equal]

$$\Rightarrow$$
 \angle CBD = 55°

In $\triangle ABC$, we have

$$\angle$$
CBA + \angle CAB + \angle ACB = 180°

But,
$$\angle$$
 CAB = \angle CBA = 55°

$$55^{\circ} + 55^{\circ} + \angle ACB = 180^{\circ}$$

∴ ∠ADC = 2∠DBA

2∠DBA = 42°

∠DBA = 21°

To find x:

 $x = \angle CBA + \angle BCA$ [Exterior angle is equal to the sum of opposite interior angles]

We know that,

$$\Rightarrow$$
 x = 21° + 42°

$$x = 63^{\circ}$$

9. In the triangle ABC, BD bisects angle B and is perpendicular to AC. If the lengths of the sides of the triangle are expressed in terms of x and y as shown, find the values of x and y.

Solution:

In \triangle ABC and \triangle DBC, we have

BD = BD [Common]

 \angle BDA = \angle BDC [Each equal to 90°]

 $\angle ABD = \angle DBC [BD bisects \angle ABC]$

∴ ∆ABD ≅ ∆DBC [ASA criterion]

Therefore, by CPCT

$$AD = DC$$

$$x + 1 = y + 2$$

$$x = y + 1...(i)$$

And, AB = BC

$$3x + 1 = 5y - 2$$

Substituting the value of x from (i), we get

$$3(y+1) + 1 = 5y - 2$$

$$3y + 3 + 1 = 5y - 2$$

$$3y + 4 = 5y - 2$$

$$2y = 6$$

$$y = 3$$

Putting y = 3 in (i), we get

x = 3 + 1

 $\therefore x = 4$

10. In the given figure; AE // BD, AC // ED and AB = AC. Find \angle a, \angle b and \angle c.

Solution:

Let's assume points P and Q as shown below:

Given, ∠PDQ = 58°

 $\angle PDQ = \angle EDC = 58^{\circ}$ [Vertically opposite angles]

∠EDC = ∠ACB = 58° [Corresponding angles ∴ AC || ED]

In \triangle ABC, we have

AB = AC [Given]

 \therefore \angle ACB = \angle ABC = 58° [Angles opposite to equal sides are equal]

Now,

 \angle ACB + \angle ABC + \angle BAC = 180°

 $58^{\circ} + 58^{\circ} + a = 180^{\circ}$

 $\angle a = 180^{\circ} - 116^{\circ}$

 $∠a = 64^{\circ}$

Since, AE II BD and AC is the transversal

 \angle ABC = \angle b [Corrosponding angles]

 \therefore \angle b = 58°

Also, since AE II BD and ED is the transversal

 \angle EDC = \angle c [Corrosponding angles]

 \therefore \angle c = 58°

11. In the following figure; AC = CD, AD = BD and \angle C = 58°.

Find ∠CAB.

Solution:

In \triangle ACD, we have

AC = CD [Given]

 \therefore \angle CAD = \angle CDA [Angles opposite to equal sides are equal]

And,

$$\angle ACD = 58^{\circ} [Given]$$

By angle sum property, we have

$$\angle$$
ACD + \angle CDA + \angle CAD = 180°

$$2\angle CAD = 122^{\circ}$$

$$\angle CAD = \angle CDA = 61^{\circ}...(i)$$

Now.

 \angle CDA = \angle DAB + \angle DBA [Exterior angles is equal to sum of opposite interior angles]

But,

$$\angle$$
DAB = \angle DBA [Given, AD = DB]

So,
$$\angle DAB + \angle DAB = \angle CDA$$

$$\angle DAB = 30.5^{\circ}...$$
 (ii)

In \triangle ABC, we have

$$\angle CAB = \angle CAD + \angle DAB$$

$$\angle$$
 CAB = 61° + 30.5° [From (i) and (ii)]

12. In the figure of Q.11 is given above, if AC = AD = CD = BD; find angle ABC.

Solution:

In $\triangle ACD$, we have

$$AC = AD = CD [Given]$$

Hence, ACD is an equilateral triangle

$$\therefore$$
 \angle ACD = \angle CDA = \angle CAD = 60°

Now,

 \angle CDA = \angle DAB + \angle ABD [Exterior angle is equal to sum of opposite interior angles]

But,

$$\angle$$
DAB = \angle ABD [Given, AD = DB]

13. In $\triangle ABC$; AB = AC and $\angle A$: $\angle B$ = 8: 5; find $\angle A$.

Solution:

Let, $\angle A = 8x$ and $\angle B = 5x$

Given, In ∆ABC

$$AB = AC$$

So, $\angle B = \angle C = 5x$ [Angles opp. to equal sides are equal]

Now, by angle sum property

$$\angle A + \angle B + C = 180^{\circ}$$

$$8x + 5x + 5x = 180^{\circ}$$

$$18x = 180^{\circ}$$

$$x = 10^{\circ}$$

Thus, as $\angle A = 8x$

$$\angle A = 8 \times 10^{\circ}$$

14. In triangle ABC; \angle A = 60°, \angle C = 40°, and bisector of angle ABC meets side AC at point P. Show that BP = CP.

Solution:

In ∆ABC, we have

$$\angle A = 60^{\circ}$$

$$\angle C = 40^{\circ}$$

$$\therefore$$
 \angle B = 180° – 60° – 40° [By angle sum property]

Now, as BP is the bisector of ∠ABC

$$\therefore \angle PBC = \angle ABC/2$$

In $\triangle PBC$, we have

$$\angle$$
PBC = \angle PCB = 40°

∴ BP = CP [Sides opposite to equal angles are equal]

15. In triangle ABC; angle ABC = 90° and P is a point on AC such that \angle PBC = \angle PCB. Show that: PA = PB.

Solution:

Let's assume $\angle PBC = \angle PCB = x$

In the right-angled triangle ABC,

$$\angle$$
ABC = 90 $^{\circ}$

$$\angle ACB = x$$

$$\angle$$
BAC = 180° – (90° + x) [By angle sum property]

$$\angle BAC = (90^{\circ} - x) ...(i)$$

And

$$\angle ABP = \angle ABC - \angle PBC$$

$$\angle ABP = 90^{\circ} - x ...(ii)$$

Thus, in the ∆ABP from (i) and (ii), we have

Therefore, PA = PB [sides opp. to equal angles are equal]

16. ABC is an equilateral triangle. Its side BC is produced upto point E such that C is mid-point of BE. Calculate the measure of angles ACE and AEC.

Solution:

Given, ∆ABC is an equilateral triangle

So,
$$AB = BC = AC$$

$$\angle$$
ABC = \angle CAB = \angle ACB = 60°

Now, as sum of two non-adjacent interior angles of a triangle is equal to the exterior angle

$$\angle$$
CAB + \angle CBA = \angle ACE

$$60^{\circ} + 60^{\circ} = \angle ACE$$

Now,

 \triangle ACE is an isosceles triangle with AC = CF

$$\angle$$
EAC = \angle AEC

By angle sum property, we have

$$\angle$$
EAC + \angle AEC + \angle ACE = 180°

$$2\angle AEC = 180^{\circ} - 120^{\circ}$$

17. In triangle ABC, D is a point in AB such that AC = CD = DB. If \angle B = 28°, find the angle ACD.

Solution:

From given, we get

∆DBC is an isosceles triangle

$$\Rightarrow$$
 CD = DB

 \angle DBC = \angle DCB [If two sides of a triangle are equal, then angles opposites to them are equal]

And,
$$\angle B = \angle DBC = \angle DCB = 28^{\circ}$$

By angle sum property, we have

$$\angle$$
DCB + \angle DBC + \angle BCD = 180°

$$28^{\circ} + 28^{\circ} + \angle BCD = 180^{\circ}$$

$$\angle BCD = 180^{\circ} - 56^{\circ}$$

As sum of two non-adjacent interior angles of a triangle is equal to the exterior angle, we have

$$\angle DBC + \angle DCB = \angle DAC$$

$$28^{\circ} + 28^{\circ} = 56^{\circ}$$

Now,

 \triangle ACD is an isosceles triangle with AC = DC

$$\Rightarrow$$
 \angle ADC = \angle DAC = 56°

$$\angle$$
ADC + \angle DAC + \angle DCA = 180° [By angle sum property]

$$56^{\circ} + 56^{\circ} + \angle DCA = 180^{\circ}$$

$$\angle DCA = 180^{\circ} - 112^{\circ}$$

Thus, $\angle ACD = 64^{\circ}$

18. In the given figure, AD = AB = AC, BD is parallel to CA and \angle ACB = 65°. Find \angle DAC.

Solution:

From figure, it's seen that

 \triangle ABC is an isosceles triangle with AB = AC

As
$$\angle$$
ACB = 65° [Given]

By angle sum property, we have

$$\angle$$
ACB + \angle CAB + \angle ABC = 180°

$$65^{\circ} + 65^{\circ} + \angle CAB = 180^{\circ}$$

$$\angle$$
 CAB = $180^{\circ} - 130^{\circ}$

$$\angle CAB = 50^{\circ}$$

As BD is parallel to CA, we have

 \angle CAB = \angle DBA as they are alternate angles

$$\Rightarrow$$
 \angle CAB = \angle DBA = 50°

Again, from figure, it's seen that

 \triangle ADB is an isosceles triangle with AD = AB.

$$\Rightarrow$$
 \angle ADB = \angle DBA = 50°

By angle sum property, we have

$$\angle$$
ADB + \angle DAB + \angle DBA = 180°

$$50^{\circ} + \angle DAB + 50^{\circ} = 180^{\circ}$$

$$\angle DAB = 180^{\circ} - 100^{\circ}$$

$$\angle$$
DAB = 80°

Now,

$$\angle$$
DAC = \angle CAB + \angle DAB

$$\angle DAC = 50^{\circ} - 80^{\circ}$$

$$\angle$$
DAC = 130°

- 19. Prove that a triangle ABC is isosceles, if:
- (i) altitude AD bisects angles BAC, or
- (ii) bisector of angle BAC is perpendicular to base BC.

Solution:

(i) In

 \triangle ABC, if the altitude AD bisect \angle BAC.

Then, to prove: $\triangle ABC$ is isosceles.

In

 \triangle ADB and \triangle ADC, we have

 $\angle BAD = \angle CAD$ (AD is bisector of $\angle BAC$)

```
AD = AD (Common)

\angleADB = \angleADC (Each equal to 90°)
```

Therefore, △ADB ≅ △ADC by ASA congruence criterion

So, by CPCT

AB = AC

Hence, \triangle ABC is an isosceles.

(ii) In \triangle ABC, the bisector of \angle BAC is perpendicular to the base BC.

Then, to prove: $\triangle ABC$ is isosceles.

In \triangle ADB and \triangle ADC,

 $\angle BAD = \angle CAD$ (AD is bisector of $\angle BAC$)

AD = AD (Common)

 $\angle ADB = \angle ADC$ (Each equal to 90°)

Therefore, △ADB ≅ △ADC by ASA congruence criterion

Thus, by CPCT

AB = AC

Hence, ΔABC is an isosceles.

20. In the given figure; AB = BC and AD = EC.

Prove that: BD = BE.

Solution:

In ΔABC, we have

AB = BC (Given)

So, \angle BCA = \angle BAC (Angles opposite to equal sides are equal)

 $\Rightarrow \angle BCD = \angle BAE \dots (i)$

Given, AD = EC

AD + DE = EC + DE (Adding DE on both sides)

```
\Rightarrow AE = CD ....(ii)

Now, in ΔABE and ΔCBD, we have

AB = BC (Given)

\angle BAE = \angle BCD [From (i)]

AE = CD [From (ii)]

Therefore, ΔABE \cong ΔCBD by SAS congruence criterion
```

ICSE Class 9 Maths Selina Solutions Chapter 10 Exercise 10B

1. If the equal sides of an isosceles triangle are produced, prove that the exterior angles so formed are obtuse and equal.

Solution:

So, by CPCT

BE = BD

Construction: AB is produced to D and AC is produced to E so that exterior angles \angle DBC and \angle ECB are formed.

In $\triangle ABC$, we have

AB = AC [Given]

 \therefore \angle C = \angle B ...(i) [Angles opposite to equal sides are equal]

Since, ∠B and ∠C are acute they cannot be right angles or obtuse angles

Now,

$$\angle$$
ABC + \angle DBC = 180° [ABD is a straight line]

$$\angle$$
DBC = 180 $^{\circ}$ – \angle ABC

$$\angle DBC = 180^{\circ} - \angle B ...(ii)$$

Similarly,

$$\angle$$
ACB + ECB = 180° [ABD is a straight line]

$$\angle$$
ECB = 180° – \angle C ...(iii)

$$\angle$$
ECB = 180⁰ – \angle B ...(iv) [from (i) and (iii)]

$$\angle$$
DBC = \angle ECB [from (ii) and (iv)]

Now,

$$\angle$$
DBC = 180° – \angle B

But, ∠B is an acute angle

$$\Rightarrow$$
 ∠DBC = 180 $^{\circ}$ – (acute angle) = obtuse angle

Similarly,

$$\angle$$
ECB = 180° – \angle C

But, ∠C is an acute angle

$$\Rightarrow$$
 \angle ECB = 180 $^{\circ}$ – (acute angle) = obtuse angle

Therefore, exterior angles formed are obtuse and equal.

2. In the given figure, AB = AC. Prove that:

- (i) DP = DQ
- (ii) AP = AQ
- (iii) AD bisects ∠A

Solution:

Construction: Join AD.

In $\triangle ABC$, we have

 \therefore \angle C = \angle B ...(i) [Angles opposite to equal sides are equal]

(i) In \triangle BPD and \triangle CQD, we have

$$\angle BPD = \angle CQD [Each = 90^{\circ}]$$

$$\angle B = \angle C$$
 [Proved]

Thus, ∆BPD ≅ ∆CQD by AAS congruence criterion

(ii) Since, ΔBPD ≅ ΔCQD

Therefore, BP = CQ [CPCT]

Now,

AB = AC [Given]

AB - BP = AC - CQ

AP = AQ

(iii) In \triangle APD and \triangle AQD, we have

DP = DQ [Proved]

AD = AD [Common]

AP = AQ [Proved]

Thus, △APD ≅ △AQD by SSS congruence criterion

 \angle PAD = \angle QAD by CPCT

Hence, AD bisects angle A.

3. In triangle ABC, AB = AC; BE \perp AC and CF \perp AB. Prove that:

- (i) BE = CF
- (ii) AF = AE

Solution:

(i) In $\triangle AEB$ and $\triangle AFC$, we have

 $\angle A = \angle A$ [Common]

 \angle AEB = \angle AFC = 90° [Given : BE \perp AC and CE \perp AB]

AB = AC [Given]

Thus, $\triangle AEB \cong \triangle AFC$ by AAS congruence criterion

- \therefore BE = CF by CPCT
- (ii) Since, ΔAEB ≅ ΔAFC

 $\angle ABE = \angle AFC$

∴ AF= AE by CPCT

4. In isosceles triangle ABC, AB = AC. The side BA is produced to D such that BA = AD. Prove that: \angle BCD = 90°

Solution:

Construction: Join CD.

In ∆ABC, we have

$$\therefore$$
 \angle C = \angle B ... (i) [Angles opposite to equal sides are equal]

In \triangle ACD, we have

$$AC = AD [Given]$$

$$\therefore$$
 \angle ADC = \angle ACD ... (ii)

Adding (i) and (ii), we get

$$\angle$$
B + \angle ADC = \angle C + \angle ACD

$$\angle B + \angle ADC = \angle BCD \dots$$
 (iii)

In \triangle BCD, we have

$$\angle$$
B + \angle ADC + \angle BCD = 180°

$$\angle$$
BCD + \angle BCD = 180° [From (iii)]

- 5. (i) In \triangle ABC, AB = AC and \angle A= 36°. If the internal bisector of \angle C meets AB at point D, prove that AD = BC.
- (ii) If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.

Solution:

Given, AB = AC and
$$\angle$$
A = 36°

So, \triangle ABC is an isosceles triangle.

$$\angle B = \angle C = (180^{\circ} - 36^{\circ})/2 = 72^{\circ}$$

$$\angle ACD = \angle BCD = 36^{\circ}$$
 [: CD is the angle bisector of $\angle C$]

Now, $\triangle ADC$ is an isosceles triangle as $\angle DAC = \angle DCA = 36^{\circ}$

In $\triangle DCB$, by angle sum property we have

$$\angle$$
CDB = 180° – (\angle DCB + \angle DBC)

$$= 180^{\circ} - (36^{\circ} + 72^{\circ})$$

$$= 180^{\circ} - 108^{\circ}$$

= 72°

Now, $\triangle DCB$ is an isosceles triangle as $\angle CDB = \angle CBD = 72^{\circ}$

From (i) and (ii), we get

$$AD = BC$$

Hence Proved.

6. Prove that the bisectors of the base angles of an isosceles triangle are equal.

Solution:

In \triangle ABC, we have

 \therefore \angle C = \angle B ...(i) [Angles opposite to equal sides are equal]

$$\Rightarrow$$
 \angle BCF = \angle CBE ...(ii)

Now, in \triangle BCE and \triangle CBF, we have

$$\angle C = \angle B$$
 [From (i)]

$$\angle$$
BCF = \angle CBE [From (ii)]

BC = BC [Common]

∴ ∆BCE ≅ ∆CBF by AAS congruence criterion

Thus, BE = CF by CPCT

7. In the given figure, AB = AC and \angle DBC = \angle ECB = 90°

Prove that:

- (i) BD = CE
- (ii) AD = AE

Solution:

In ∆ABC, we have

AB = AC [Given]

 \therefore \angle ACB = \angle ABC [Angles opposite to equal sides are equal]

$$\Rightarrow$$
 \angle ABC = \angle ACB ... (i)

$$\angle$$
DBC = \angle ECB = 90° [Given]

$$\Rightarrow$$
 \angle DBC = \angle ECB ...(ii)

Subtracting (i) from (ii), we get

$$\angle$$
DCB - \angle ABC = \angle ECB - \angle ACB

Now,

In $\triangle DBA$ and $\triangle ECA$, we have

$$\angle DBA = \angle ECA [From (iii)]$$

 \angle DAB = \angle EAC [Vertically opposite angles]

AB = AC [Given]

∴ ΔDBA ≅ ΔECA by ASA congruence criterion

Thus, by CPCT

$$BD = CE$$

And, also

AD = AE

- 8. ABC and DBC are two isosceles triangles on the same side of BC. Prove that:
- (i) DA (or AD) produced bisects BC at right angle.
- (ii) \angle BDA = \angle CDA.

Solution:

DA is produced to meet BC in L

In $\triangle ABC$, we have

```
AB = AC [Given]
```

 \therefore \angle ACB = \angle ABC ... (i) [Angles opposite to equal sides are equal]

In ΔDBC , we have

DB = DC [Given]

 \therefore \angle DCB = \angle DBC ... (ii) [Angles opposite to equal sides are equal]

Subtracting (i) from (ii), we get

$$\angle$$
DCB - \angle ACB = \angle DBC - \angle ABC

$$\angle$$
DCA = \angle DBA ...(iii)

Now,

In Δ DBA and Δ DCA, we have

DB = DC [Given]

$$\angle DBA = \angle DCA [From (iii)]$$

AB = AC [Given]

∴ ∆DBA ≅ ∆DCA by SAS congruence criterion

$$\angle$$
BDA = \angle CDA ...(iv) [By CPCT]

In Δ DBA, we have

 $\angle BAL = \angle DBA + \angle BDA ...(v)$ [Exterior angle = sum of opposite interior angles]

From (iii), (iv) and (v), we get

 \angle BAL = \angle DCA + \angle CDA ...(vi) [Exterior angle = sum of opposite interior angles]

In Δ DCA, we have

$$\angle CAL = \angle DCA + \angle CDA ...(vi)$$

From (vi) and (vii)

$$\angle BAL = \angle CAL ...(viii)$$

In \triangle BAL and \triangle CAL,

$$\angle BAL = \angle CAL [From (viii)]$$

$$\angle ABL = \angle ACL$$
 [From (i)

AB = AC [Given]

$$\therefore \triangle BAL \cong \triangle CAL$$
 by ASA congruence criterion

So, by CPCT

 $\angle ALB = \angle ALC$

And, BL = LC ...(ix)

Now,

 $\angle ALB + \angle ALC = 180^{\circ}$
 $\angle ALB + \angle ALB = 180^{\circ}$ [Using (ix)]

 $2\angle ALB = 180^{\circ}$
 $\angle ALB = 90^{\circ}$
 $\therefore AL \perp BC$

Therefore, DA produced bisects BC at right angle.

Or DL ⊥ BC and BL ⊥ LC

9. The bisectors of the equal angles B and C of an isosceles triangle ABC meet at O. Prove that AO bisects angle A.

Solution:

In $\triangle ABC$, we have AB = AC $\angle B = \angle C$ [Angles opposite to equal sides are equal] $\% \angle B = \% \angle C$ $\angle OBC = \angle OCB ...(i)$ $\Rightarrow OB = OC ...(ii)$ [Sides opposite to equal angles are equal]

Now,

In $\triangle ABO$ and $\triangle ACO$, we have AB = AC [Given] $\angle OBC = \angle OCB$ [From (i)] OB = OC [From (ii)]

Thus, △ABO ≅ △ACO by SAS congruence criterion

```
So, by CPCT
\angleBAO = \angleCAO
Therefore, AO bisects \angle BAC.
10. Prove that the medians corresponding to equal sides of an isosceles triangle are
equal.
Solution:
In \triangle ABC, we have
AB = AC [Given]
\angle C = \angle B \dots (i) [Angles opposite to equal sides are equal]
Now,
1/2 AB = 1/2 AC
BF = CE ... (ii)
In \triangleBCE and \triangleCBF, we have
\angle C = \angle B [From (i)]
BF = CE [From (ii)]
BC = BC [Common]
∴ ∆BCE ≅ ∆CBF by SAS congruence criterion
So, CPCT
BE = CF
11. Use the given figure to prove that, AB = AC.
Solution:
In \triangle APQ, we have
AP = AQ [Given]
\therefore \angleAPQ = \angleAQP ...(i) [Angles opposite to equal sides are equal]
In \triangleABP, we have
\angle APQ = \angle BAP + \angle ABP \dots (ii) [Exterior angle is equal to sum of opposite interior angles]
```

In $\triangle AQC$, we have

 $\angle AQP = \angle CAQ + \angle ACQ \dots$ (iii) [Exterior angle is equal to sum of opposite interior angles]

From (i), (ii) and (iii), we get

$$\angle BAP + \angle ABP = \angle CAQ + \angle ACQ$$

But, $\angle BAP = \angle CAQ$ [Given]

$$\angle CAQ + ABP = \angle CAQ + \angle ACQ$$

$$\angle ABP = \angle CAQ + \angle ACQ - \angle CAQ$$

$$\angle B = \angle C$$

So, in $\triangle ABC$, we have

$$\angle B = \angle C$$

⇒ AB = AC [Sides opposite to equal angles are equal]

12. In the given figure; AE bisects exterior angle CAD and AE is parallel to BC.

Prove that: AB = AC.

Solution:

Since, AE | BC and DAB is the transversal

$$\therefore$$
 \angle DAE = \angle ABC = \angle B [Corresponding angles]

Since, AE | BC and AC is the transversal

$$\angle CAE = \angle ACB = \angle C$$
 [Alternate angles]

But, AE bisects ∠CAD

$$\therefore$$
 \angle DAE = \angle CAE

$$\angle B = \angle C$$

⇒ AB = AC [Sides opposite to equal angles are equal]

13. In an equilateral triangle ABC; points P, Q and R are taken on the sides AB, BC and CA respectively such that AP = BQ = CR. Prove that triangle PQR is equilateral.

Solution:'

and
$$AP = BQ = CR ...(ii)$$

```
Subtracting (ii) from (i), we get
```

$$AB - AP = BC - BQ = CA - CR$$

$$BP = CQ = AR ...(iii)$$

 \therefore $\angle A = \angle B = \angle C \dots (iv)$ [Angles opposite to equal sides are equal]

In \triangle BPQ and \triangle CQR, we have

$$\angle B = \angle C$$
 [From (iv)]

∴ ∆BPQ ≅ ∆CQR by SAS congruence criterion

So,
$$PQ = QR$$
 [by CPCT] ... (v)

In \triangle CQR and \triangle APR, we have

$$\angle C = \angle A$$
 [From (iv)]

∴ ∆CQR ≅ ∆APR by SAS congruence criterion

From (v) and (vi), we get

$$PQ = QR = PR$$

Therefore, PQR is an equilateral triangle.

Benefits of ICSE Class 9 Maths Selina Solutions Chapter 10

Studying Chapter 10 on Isosceles Triangles from the ICSE Class 9 Maths Selina Solutions offers several benefits:

Understanding Basic Properties: Students gain a clear understanding of the fundamental properties of isosceles triangles, including the fact that the angles opposite the equal sides are equal. This foundational knowledge is crucial for solving more complex geometric problems.

Enhanced Problem-Solving Skills: By applying the properties and theorems related to isosceles triangles, students develop strong problem-solving skills. They learn how to use these properties to find missing angles and sides in various geometric configurations.

Foundation for Advanced Topics: Mastery of isosceles triangles provides a solid foundation for studying more advanced geometric concepts. Understanding these basic principles helps in grasping more complex theorems and proofs in later chapters.

Preparation for Exams: The ICSE Class 9 Maths Selina Solutions Chapter 10 equips students with the knowledge and practice needed for exams. It covers essential theorems and their applications, which are often tested in ICSE exams.

Improved Analytical Thinking: Working through problems involving isosceles triangles enhances analytical and logical thinking skills. Students learn to approach problems systematically and apply theoretical knowledge in practical scenarios.