### PAPER - II

### CHEMICAL SCIENCES

**Note:** Attempt all the questions. Each question carries *two* (2)marks.

- 1. The atomic number of Cr and Cu is 24, 29 and its electronic configuration is
  - 1)  $3d^5 4s^1$  and  $3d^{10}4s^1$
  - 2)  $3d^4 4s^2$  and  $3d^{10}4s^1$
  - 3)  $3d^5 4s^1$  and  $3d^94s^2$
  - 4)  $3d^4 4s^2$  and  $3d^9 4s^2$
- 2. The difference in the electronegativity scale between the two atom is 1.9, the nature of the bond is
  - 1) 75% ionic
  - 2) 50% ionic
  - 3) 25% ionic
  - 4) 100% ionic
- 3. NaOH and HOCl both contains –OH groups but the former is base while the later is acid in their aquous solution, because
  - 1) Na-O bond is more polar than O-H bond in NaOH
  - 2) -O-H bond is more polar than Na-O bond in NaOH
  - 3) H-O bond in HOCl is less polar
  - 4) -O-Cl bond in HOCl is more polar
- 4. The oil of Vitriol is
  - 1)  $FeSO_4 \cdot 7H_2O$
  - 2)  $CuSO_4 \cdot 5H_2O$
  - $H_2SO_4$
  - 4)  $ZnSO_4 \cdot 5H_2O$

| <b>5.</b> | Gas                                                                                                                                                                  | which bleaches the colour of the flowers and vegetables by reduction is |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
|           | 1)                                                                                                                                                                   | $\mathrm{SO}_2$                                                         |  |
|           | 2)                                                                                                                                                                   | $\mathrm{Cl}_2$                                                         |  |
|           | 3)                                                                                                                                                                   | $\mathrm{H_2S}$                                                         |  |
|           | 4)                                                                                                                                                                   | $\mathrm{Br}_2$                                                         |  |
| 6.        | A greenish yellow gas reacts with an alkali metal hydroxide to form a halite, which can be used in fireworks and safety matches. The gas and halite respectively are |                                                                         |  |
|           | 1)                                                                                                                                                                   | $\mathrm{Cl}_2$ , $\mathrm{KClO}_3$                                     |  |
|           | 2)                                                                                                                                                                   | $\mathrm{Br}_2,\;\mathrm{KBrO}_3$                                       |  |
|           | 3)                                                                                                                                                                   | $I_2$ , $NaIO_3$                                                        |  |
|           | 4)                                                                                                                                                                   | $\mathrm{Cl}_2$ , $\mathrm{NaClO}_3$                                    |  |
| 7.        | The                                                                                                                                                                  | element which has only +3 oxidation state is                            |  |
| ••        | 1)                                                                                                                                                                   | Gd                                                                      |  |
|           | 2)                                                                                                                                                                   | Eu                                                                      |  |
|           | 3)                                                                                                                                                                   | Tb                                                                      |  |
|           | 4)                                                                                                                                                                   | Tm                                                                      |  |
| 8.        | The hybridisation of Copper in $[CU(NH_3)_4]SO_4$ is                                                                                                                 |                                                                         |  |
|           | 1)                                                                                                                                                                   | $\mathrm{Sp}^3d^2$                                                      |  |
|           | 2)                                                                                                                                                                   | $\mathbf{Sp}^3$                                                         |  |
|           | 3)                                                                                                                                                                   | $\mathrm{Sp}^2$                                                         |  |
|           | 4)                                                                                                                                                                   | $\mathrm{d}\mathrm{Sp}^2$                                               |  |
| 9.        | The l                                                                                                                                                                | hexadentate ligand is                                                   |  |
|           | 1)                                                                                                                                                                   | acetyl acetonate                                                        |  |
|           | 2)                                                                                                                                                                   | 8-hydroxy quinolate                                                     |  |
|           | 3)                                                                                                                                                                   | ethylene diamine tetraacetate                                           |  |
|           | 4)                                                                                                                                                                   | ethylenediamine                                                         |  |
| M01       | 02                                                                                                                                                                   | <b>4 E</b>                                                              |  |

| 10. | The separation of lanthanides in ion exchange method is based on        |                                                                                                                     |
|-----|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|     | 1)                                                                      | Size of hydrated ions                                                                                               |
|     | 2)                                                                      | Size of unhydrated ions                                                                                             |
|     | 3)                                                                      | Basicity of hydroxides                                                                                              |
|     | 4)                                                                      | Solubility of their nitrates                                                                                        |
| 11. | Which of the following is not considered as an organometallic compound? |                                                                                                                     |
|     | 1)                                                                      | Ferrocene                                                                                                           |
|     | 2)                                                                      | Cis-platin                                                                                                          |
|     | 3)                                                                      | Zeisel's salt                                                                                                       |
|     | 4)                                                                      | Grignard reagent                                                                                                    |
| 12. | The                                                                     | equilibrium constants for the formation of $\mathrm{Ni}(\mathrm{en})_3^{2^+}$ is $10^{10}$ fold greater than the    |
|     | equi                                                                    | librium constant for the formation of $\operatorname{Ni}(\operatorname{NH}_3)_6^{2+}$ . The primary explanation for |
|     | the l                                                                   | large difference is                                                                                                 |
|     | 1)                                                                      | John teller effect                                                                                                  |
|     | 2)                                                                      | Chelate effect                                                                                                      |
|     | 3)                                                                      | Crystal field effect                                                                                                |
|     | 4)                                                                      | Ammonalysis effect                                                                                                  |
| 13. | Gel permeation chromatography can be used to separate                   |                                                                                                                     |
|     | 1)                                                                      | Lanthanides                                                                                                         |
|     | 2)                                                                      | Alkaline earths                                                                                                     |
|     | 3)                                                                      | Alkali metals                                                                                                       |
|     | 4)                                                                      | Low molecular weight peptide                                                                                        |
|     |                                                                         |                                                                                                                     |

- 14. The size of the hole in the centre of the porphyrin ring system is ideal for accommodating
  - 1) 1<sup>st</sup> transition series
  - 2) 2<sup>nd</sup> transition series
  - 3) 3<sup>rd</sup> transition series
  - 4) Alkaline earth metal
- 15. If by mistake some radioactive substance gets into human body, then from the point of view of radiation damage, the most harmful will be one that emits
  - 1) Gamma rays
  - 2) Neutrons
  - 3)  $\beta$  rays
  - 4)  $\alpha$  rays
- **16.** For an Eigen function  $lpha^{ikx}$  of linear momentum operator  $\hat{P}x$  , the Eigen value is
  - 1) ik
  - 2) *i*
  - 3)  $i\hbar$
  - 4) kħ

1) 
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

2) 
$$i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$$

3) 
$$\hat{A}\psi = a\psi$$

4) 
$$\hat{A}\widehat{A}^{\hat{n}} - \widehat{A}^{\hat{n}}\widehat{A}$$

|     | 1)                                                                                                                                                         | $C_{2(z)}$                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|     | 2)                                                                                                                                                         | $oldsymbol{\sigma}_{xy}$                                                              |
|     | 3)                                                                                                                                                         | E                                                                                     |
|     | 4)                                                                                                                                                         | I                                                                                     |
|     |                                                                                                                                                            |                                                                                       |
| 19. | . Eclipsed form of ruthenacene is                                                                                                                          |                                                                                       |
|     | 1)                                                                                                                                                         | $D_{5h}$                                                                              |
|     | 2)                                                                                                                                                         | $C_{5v}$                                                                              |
|     | 3)                                                                                                                                                         | $D_{2h}$                                                                              |
|     | 4)                                                                                                                                                         | $S_{\scriptscriptstyle 5}$                                                            |
|     |                                                                                                                                                            |                                                                                       |
| 20. | Which of the following does not contain $C_3$ axis?                                                                                                        |                                                                                       |
|     | 1)                                                                                                                                                         | $\mathrm{POCl}_3$                                                                     |
|     | 2)                                                                                                                                                         | $\mathrm{NH_4^+}$                                                                     |
|     | 3)                                                                                                                                                         | $\mathrm{H_3O^+}$                                                                     |
|     | 4)                                                                                                                                                         | $\mathrm{ClF}_3$                                                                      |
|     |                                                                                                                                                            |                                                                                       |
| 21. | <b>1.</b> The temperature ( <i>T</i> ) dependence of the equilibrium constant ( <i>K</i> ) of a reaction is correctly described by the following statement |                                                                                       |
|     | 1)                                                                                                                                                         | For an endothermic reaction the slope of $\ln k$ vs $1/T$ plot is positive            |
|     | 2)                                                                                                                                                         | For an endothermic reaction $k \alpha T$                                              |
|     | 3)                                                                                                                                                         | For an endothermic reaction $k = T$                                                   |
|     | 4)                                                                                                                                                         | If $\Delta H$ is independent of temperature, the change in $k$ with $T$ is smaller at |
|     |                                                                                                                                                            | lower temperature                                                                     |
|     |                                                                                                                                                            |                                                                                       |

7

M0102

 $\mathbf{E}$ 

18. Equivalent symmetry operation for combined symmetry operation  $\sigma_{xz} \, \sigma_{yz}$  is

- 22. Consider a simple hypothetical reaction A outleftarrow L. The concentration of the product L goes on increasing with time. Hence the rate of the reaction (r) can also be expressed in term of increasing in concentration of product, L as well. Thus r is
  - 1)  $\frac{-dt}{dc1}$
  - $2) \qquad \frac{d[L]}{dt}$
  - 3)  $\frac{dt}{dc1}$
  - 4)  $\frac{-d[L]}{dt}$
- 23. Standard solution of  $KNO_3$  is used to make salt bridge because
  - 1) Velocity of K<sup>+</sup> is greater than of NO<sub>3</sub>
  - 2) Velocity of  $NO_3^-$  is greater than of  $K^+$
  - 3) Velocity of both  $K^+$  and  $NO_3^-$  are nearly same
  - 4) KNO<sub>3</sub> is highly soluble in water
- **24.** In an electrolytic cell, the flow of electron is from
  - 1) cathode to anode solution
  - 2) cathode to anode through external supply
  - 3) cathode to anode through internal supply
  - 4) anode to cathode through internal supply
- 25. The reduction potentials of  $Cu^{2+}/Cu$  and  $Ag^{+}/Ag$  electrodes are 0.34 V and 0.80 V respectively. For what concentration of  $Ag^{+}$  ions will the EMF of the cell at 25°C is zero. Given that the concentration of  $Cu^{2+}$  is 0.01 M
  - 1)  $1.65 \times 10^{-9} \,\mathrm{M}$
  - 2)  $11.45 \times 10^{-9} \,\mathrm{M}$
  - 3)  $2.34 \times 10^{-7} \text{ M}$
  - 4)  $4.22 \times 10^{-7} \text{ M}$

| 26.                   | Which of the following statement is not true for lyophilic sols?                                            |                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                       | 1)                                                                                                          | It is stable                                                                    |
|                       | 2)                                                                                                          | It can be prepared in high concentration                                        |
|                       | 3)                                                                                                          | Its colloidal particles are highly solvated                                     |
|                       | 4)                                                                                                          | Its colloidal particles are less solvated                                       |
|                       |                                                                                                             |                                                                                 |
| 27.                   | Fixed parts of a colloidal sol of AgI are respectively [AgI]Ag <sup>+</sup> and [AgI]I <sup>-</sup> in pres |                                                                                 |
|                       | of                                                                                                          |                                                                                 |
|                       | 1)                                                                                                          | ${ m KI}$ and ${ m AgNO_3}$                                                     |
|                       | 2)                                                                                                          | ${ m AgI}\ { m and}\ { m AgNO}_3$                                               |
|                       | 3)                                                                                                          | AgI and KI                                                                      |
|                       | 4)                                                                                                          | ${ m AgNO_3}$ and ${ m KI}$                                                     |
|                       |                                                                                                             |                                                                                 |
| 28.                   | For                                                                                                         | an ideal gas system the ratio of MPV : AV : Rms is                              |
|                       | 1)                                                                                                          | 1:1.12:1.22                                                                     |
|                       | 2)                                                                                                          | 1:1.414:1.732                                                                   |
|                       | 3)                                                                                                          | 1:2:3                                                                           |
|                       | 4)                                                                                                          | 1:0.82:0.62                                                                     |
|                       |                                                                                                             |                                                                                 |
| 29.                   | Find                                                                                                        | the value of the magnetic field necessary for protons to absorb at frequency of |
| $200.00 \mathrm{MHz}$ |                                                                                                             | $00\mathrm{MHz}$                                                                |
|                       | 1)                                                                                                          | Bz = 4.6973T                                                                    |
|                       | 2)                                                                                                          | Bz = 2.2131T                                                                    |
|                       | 3)                                                                                                          | Bz = 8.1242T                                                                    |
|                       | 4)                                                                                                          | Bz = 6.1234T                                                                    |

30. The correct equation representing Maxwell-Boltzmann distribution law is

1) 
$$n_i = g_i e^{-(\alpha + \beta \varepsilon_i)}$$

$$2) \qquad \frac{n_i}{n} = g_i e^{-(\alpha - \beta \varepsilon_i)}$$

3) 
$$n_i = \frac{g_i}{[e^{(\alpha + \beta \varepsilon_i)} - 1]}$$

4) 
$$n_i = \frac{g_i}{[1 - e^{(\alpha + \beta \varepsilon_i)}]}$$

**31.** The IUPAC name of the following compound is

$$O_2N$$
  $CH_3$ 

- 1) 3-methyl-5-nitrocyclohexanone
- 2) 5-methyl-3-nitrocyclohexanone
- 3) 3-methyl-5-nitro-1-oxocyclohexane
- 4) 5-methyl-3-nitro-1-oxocyclohexane

32. The priority order of groups for consideration in Cahn Ingold Prelog rule is

- 1) benzyl > allyl > isopropyl > ethyl
- 2) benzyl > isopropyl > ethyl > allyl
- 3) benzyl > ethyl > allyl > isopropyl
- 4) isopropyl > benzyl > allyl > ethyl

**33.** The Newmann projection of *meso-*2,3-dibromobutane is

|             | 1)                                          | ethyl                                                                                                                          |  |  |
|-------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | 2)                                          | phenyl                                                                                                                         |  |  |
|             | 3)                                          | cyclopropyl                                                                                                                    |  |  |
|             | 4)                                          | neopentyl                                                                                                                      |  |  |
|             |                                             |                                                                                                                                |  |  |
| <b>35.</b>  | Cho                                         | Choose the wrong statement:                                                                                                    |  |  |
|             | 1)                                          | Peterson reaction is known as sila Wittig reaction                                                                             |  |  |
|             | 2)                                          | In Peterson reaction, the stereochemistry of the product formed can be reversed when the catalyst is changed from acid to base |  |  |
|             | 3)                                          | The Peterson olefination goes $via$ four membered cyclic transition state                                                      |  |  |
|             | 4)                                          | The Peterson olefination involves a free radical intermediate                                                                  |  |  |
|             |                                             |                                                                                                                                |  |  |
| 36.         | Tria                                        | Triacetoxyperiodinane is used as the oxidant in                                                                                |  |  |
|             | 1)                                          | Des Martin oxidation                                                                                                           |  |  |
|             | 2)                                          | Swern oxidation                                                                                                                |  |  |
|             | 3)                                          | Baeyer Villiger reaction                                                                                                       |  |  |
|             | 4)                                          | dienone phenol rearrangement                                                                                                   |  |  |
|             |                                             |                                                                                                                                |  |  |
| <b>37</b> . | (S) s                                       | sec-butyl tosylate on acetate treatment gives                                                                                  |  |  |
|             | 1)                                          | (S)sec-butyl acetate                                                                                                           |  |  |
|             | 2)                                          | n-butyl acetate                                                                                                                |  |  |
|             | 3)                                          | t-butyl acetate                                                                                                                |  |  |
|             | 4)                                          | (R)sec-butyl acetate                                                                                                           |  |  |
|             |                                             |                                                                                                                                |  |  |
| 38.         | Which of the following statements is wrong? |                                                                                                                                |  |  |
|             | 1)                                          | All the pericyclic reactions are concerted                                                                                     |  |  |
|             | 2)                                          | All the pericyclic reactions are not stereospecific                                                                            |  |  |
|             | 3)                                          | The pericyclic reactions do not involve intermediates                                                                          |  |  |
|             | 4)                                          | The pericyclic reactions go via cyclic transition state                                                                        |  |  |

Which of the following cabanions is more stable?

**34.** 

- **39.** In acidic medium, oxepin can be easily rearranged to
  - 1) phenol
  - 2) 2,5-dimethylfuran
  - 3) 2,5-dihydroxylfuran
  - 4) 4-hydroxypyran

#### **40.** Choose the correct statement :

- 1) In  $5\alpha$  -cholestan- $3\beta$  -ol the hydroxyl group and the angular methyl group are cis to each other, but in  $5\beta$  -cholestan- $3\beta$  -ol, they are trans to each other
- 2) In  $5\alpha$ -cholestan- $3\beta$ -ol the hydroxyl group and the angular methyl group are trans to each other, but in  $5\beta$ -cholestan- $3\beta$ -ol, they are cis to each other
- 3) In both  $5\alpha$  -cholestan- $3\beta$  -ol and  $5\beta$  -cholestan- $3\beta$  -ol, the hydroxyl group and the angular methyl group are cis to each other
- 4) In both  $5\alpha$  -cholestan- $3\beta$  -ol and  $5\beta$  -cholestan- $3\beta$  -ol, the hydroxyl group and the angular methyl group are trans to each other
- **41.** A compound on ozonolysis yields only acetone and no other carbonyl compounds. The compound is
  - 1) 1-butene
  - 2) 2,3-dimethyl-2-butene
  - 3) 1,3-butadiene
  - 4) cyclohexene
- **42.** The <sup>1</sup>H NMR spectral data of a compound are given: 1.3,t, 6H; 4.29, q, 4H; 7.4 to 7.9, m, 4H. The molecular mass is 222. The compound is
  - 1) diethylphthalate
  - 2) diethyl tere-phthalate
  - 3) dimethyl phthalate
  - 4) dimethyl tere-phthalate

## **43.** Which of the following statements is true?



- 1) A has E configuration and B has Z configuration
- 2) A has Z configuration and B has E configuration
- 3) Both A and B have Z configuration
- 4) Both A and B have E configuration

# **44.** The following compound is used in the treatment of AIDS. How many stereoisomers are possible for this compound?

HOH<sub>2</sub>C 
$$\longrightarrow$$
 NH  $\longrightarrow$  O  $\longrightarrow$  CH<sub>3</sub>

- 1) 4
- 2) 6
- 3) 8
- 4) 27

### **45.** The main function of an enzyme is

- 1) to transport energy
- 2) to shift the equilibrium
- 3) to maintain the Ph
- 4) to catalyse a biological reaction

| 46.         | The diameter of bucky ball is about                                  |                                                                     |  |
|-------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--|
|             | 1)                                                                   | 1A°                                                                 |  |
|             | 2)                                                                   | 100A°                                                               |  |
|             | 3)                                                                   | 1 nm                                                                |  |
|             | 4)                                                                   | 10 nm                                                               |  |
| <b>47</b> . | In medicine ${\rm MgSO_4\cdot 7H_2O}$ is used as                     |                                                                     |  |
|             | 1)                                                                   | purgative                                                           |  |
|             | 2)                                                                   | antiseptic                                                          |  |
|             | 3)                                                                   | analgesic                                                           |  |
|             | 4)                                                                   | Antipyretics                                                        |  |
| 48.         | Choose the supramolecule from the given below compounds              |                                                                     |  |
|             | 1)                                                                   | Glucose                                                             |  |
|             | 2)                                                                   | DNA                                                                 |  |
|             | 3)                                                                   | Caffine                                                             |  |
|             | 4)                                                                   | Glycine                                                             |  |
| 49.         | Eutrophication is process which involves                             |                                                                     |  |
|             | 1)                                                                   | Depletion of ozone layer                                            |  |
|             | 2)                                                                   | Increase in the concentration of $O_3$ in water                     |  |
|             | 3)                                                                   | Decrease in the concentration of dissolved oxygen in water by algae |  |
|             | 4)                                                                   | Decrease in the level of $\mathrm{SO}_2$ in air                     |  |
| <b>50.</b>  | Green Chemistry synthesis could also involves which of the following |                                                                     |  |
|             | 1)                                                                   | High temperature                                                    |  |
|             | 2)                                                                   | Dicholoromethane                                                    |  |
|             | 3)                                                                   | Fossil fuels                                                        |  |
|             | 4)                                                                   | Microwave                                                           |  |
|             |                                                                      |                                                                     |  |

# ROUGH WORK

# ROUGH WORK