

JEENAL SOLS PAPER DISCUSSION

Sub: Mathematics

Attempt: 01

Date: 22th Jan 2025

Shift: 02

If $2x^2 + (\cos \theta)x - 1 = 0$, $\theta \in [0, 2\pi]$ has roots α and β . Then the sum of maximum and minimum value of $\alpha^4 + \beta^4$ is

- $\frac{41}{16}$

If $\theta \in [0, 2\pi]$ satisfying the system of equations $2\sin^2\theta = \cos 2\theta$ and $2\cos^2\theta = 3\sin\theta$. Then the sum of all real values of θ is

- Β π
- $\frac{\pi}{2}$

Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 4, 9, 16\}$. If $f: A \rightarrow B$, then number of many-one functions from A to B are

- **A** 24
- **B** 232
- **c** 256
- **D** 252

4 boys and 3 girls are to be seated in a row such that all girls seat together and two particular boys B_1 and B_2 are not adjacent to each other. Then the number of ways in which this arrangement can be done.

- **A** 432
- **B** 430
- **c** 516
- **D** 1002

Let \vec{a} and \vec{b} be two unit vectors such that angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$. If $\lambda \vec{a} + 3\vec{b}$ and $2\vec{a} + \lambda \vec{b}$ are perpendicular to each other, then the product of all possible values of λ is _____

Consider a function
$$f(x) = \int_0^{x^2} \frac{t^2 - 8t + 15}{e^t} dt$$
. The number of points of extrema are

- **(A)** 3
- **B** 5
- **C** 7
- **D** 9

If the mean deviation about median for the number 3, 5, $\overline{7}$, 2k, 12, 16, $\overline{21}$, 24 arranged in ascending order is 6 then the median is

f(y) is the solution of differential equation

$$(1+y^2) + (x-2\tan^{-1}y)\frac{dy}{dx} = 0, f(0) = 1, \text{ find } f\left(\frac{1}{\sqrt{3}}\right).$$

If the sum
$$\sum_{r=1}^{30} \frac{r^2({}^{30}C_r)^2}{{}^{30}C_{r-1}} = \alpha \cdot 2^{29}$$
, then $\alpha =$

- (A) 225
- **B** 465
- **c** 345
- **D** 425

 $A: \{1, 2, 3\}$, find the number of relations which are transitive and reflexive but not symmetric and contain (1, 2) and (2, 3).

If *A* is a 3 × 3 matrix and |A| is 1/2 and trace (*A*) = 3 and *B* = adj (adj (2*A*)) then find the value of |B| + trace (*B*).

Let A and B are two events such that $P(A \cap B) = \frac{1}{10}$ and P(A/B) and P(B/A) are the roots of the equation $12x^2 - 7x + 1 = 0$, then $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is equal to

Number of terms in an arithmetic progression is 2*n*. Sum of terms occurring at even places is 40 and sum of terms occurring at odd places is 55. If the first term exceeds the last term by 27, then *n* equals to

- **(A)** 3
- $\left(\mathbf{B}\right)$ 5
- **C** 7
- **D** 4

Perpendicular distance from the point P(-2,0,2) to the line $\frac{x+1}{2} = \frac{y-1}{-1} = \frac{z+3}{2}$

Area bounded by the curves $y = x^2 + 4x + 4$, $y^2 = 16 - 8x$, is:

- (A)
- **B** 8/3
- **c** 4/3
- **D** 8

$$x + y + 2z = 6$$
, $2x + 3y + az = a + 1$, $-x - 3y + bz = 2b$ has infinitely many solutions then $7a + 3b =$

The perpendicular distance of point P(3, 4, 5) from the line $\hat{r}^2 = 2\hat{\imath} - \hat{\jmath} + \hat{k} + \lambda(4\hat{\imath} - \hat{\jmath} + 5\hat{k})$ is

$$\begin{array}{c}
\boxed{\mathbf{D}} & \sqrt{\frac{21}{19}}
\end{array}$$

In the expansion of $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$, where α , β , γ and δ are the coefficient x^3 , x^5 and x^7 respectively. If $\alpha u - \beta v = 18$ and $\gamma u + \delta v = 20$, then u + v is equal to

- $\frac{-14}{15}$
- **B** $\frac{-13}{15}$
- $\begin{array}{|c|c|} \hline \mathbf{c} & \frac{-3}{5} \\ \hline \end{array}$

Thank Nou