

Sample Paper-03

Class 11th NEET (2024)

PHYSICS

SECTION-A

- 1. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R, so that it can complete the loop?
 - (1) $\sqrt{2gR}$
- (2) $\sqrt{3gR}$
- (3) $\sqrt{5gR}$
- (4) \sqrt{gR}
- **2.** A solid cylinder of mass *M* and radius *R* rolls down on an inclined plane of height *h*. The angular velocity of the cylinder when it reaches the bottom of the plane will be;
 - $(1) \quad \frac{1}{2R}\sqrt{gh}$
 - (2) $\frac{1}{R}\sqrt{gh}$
 - $(3) \quad \frac{2}{R} \sqrt{\frac{gh}{3}}$
 - $(4) \quad \frac{2}{R} \sqrt{\frac{gh}{2}}$
- **3.** A particle is projected vertically upwards from the surface of the earth (radius *Re*) with a speed equal to one fourth of escape velocity. What is the maximum height attained by it from the surface of the earth?
 - (1) $\frac{16}{15}R_e$
- (2) $\frac{R_e}{15}$
- (3) $\frac{4}{15}R_e$
- (4) None of these
- 4. Two bodies of masses m and 4m are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is;
 - (1) $-\frac{6Gm}{r}$
 - $(2) \quad -\frac{9Gm}{r}$
 - (3) Zero
 - $(4) \quad -\frac{4Gm}{r}$

- 5. If two forces of same magnitude F have angle of 240° between them, then the magnitude of their resultant will be $\frac{xF}{2}$. What is value of x?
 - (1) 2
- (2) 3
- (3) 4
- (4) 5
- **6.** A steel wire of cross-sectional area $3 \times 10^{-6} m^2$ can withstand a maximum strain of 10^{-3} . Young's modulus of steel is $2 \times 10^{11} \text{ N/m}^2$. The maximum mass the wire can hold is;

(Take $g = 10 \text{ m/s}^2$)

- (1) 40 kg
- (2) 60 kg
- (3) 80 kg
- (4) 100 kg
- 7. A block of wood floats in water with of its volume submerged. If the same block just floats (completely immersed) in a liquid, the density of the liquid (in kg m-3) is;
 - (1) 1250
- (2) 600
- (3) 400
- (4) 800
- **8.** If a section of soap bubble (of radius *R*) by a plane through its center is considered, then force on one half due to surface tension is;
 - (1) $2\pi RT$
- (2) $4\pi RT$
- (3) $\pi R^2 T$
- $(4) \quad \frac{4T}{R}$
- **9.** Length v/s Temperature graph of A & B is given below. Find the relation between $\alpha_A \& \alpha_B$.

- (1) $\alpha_A > \alpha_B$
- (2) $\alpha_A = \alpha_B$
- (3) $\alpha_A < \alpha_B$
- (4) can't say
- 10. Calculate the time required to heat 20 kg of water from 10°C to 35°C using an immersion heater rated 1000 W. Assume that 80% of the power input is used to heat the water. (Specific heat capacity of water = 4200 J/kg k)
 - (1) 40 min
- (2) 44 min
- (3) 36 min
- (4) 48 min

11. Two ideal gases A & B are undergoing through adiabatic process. Choose the **correct** option.

- (1) both A & B are monoatomic.
- (2) both A & B are diatomic.
- (3) B is diatomic, A is monoatomic.
- (4) B is monoatomic, A is diatomic.
- 12. A small mass executes linear S.H.M. about O with amplitude and period T. Its displacement from Oat time T/8 after passing through O is;

- 13. The following figure depicts a wave travelling in a medium. Which pair of particles are in phase?

- (1) A and D
- (2) B and F
- (3) C and E
- (4) B and G
- 14. A simple pendulum has a time period T in vacuum. Its time period when it is completely immersed in a liquid of density $\frac{1^{th}}{8}$ of material of the bob is;
 - (1) $\sqrt{\frac{7}{8}}T$ (2) $\sqrt{\frac{5}{8}}T$ (3) $\sqrt{\frac{3}{8}}T$ (4) $\sqrt{\frac{8}{7}}T$
- **15.** A system is shown in the figure. The time period for small oscillations of the two blocks will be;

16. For the velocity-time graph as shown in the figure, in a time interval from t = 0 to t = 6 s, match the following columns and mark the correct option from the codes given below.

Column-I		Column-II	
(A)	Change in velocity	(I)	- 5/3 SI unit
(B)	Average acceleration	(II)	- 20 SI unit
(C)	Total displacement	(III)	- 10 SI unit
(D)	Acceleration at $t = 3$ s	(IV)	– 5 SI unit

Codes

	A	В	C	D
(1)	I	III	II	IV
(2)	I	III	IV	II
(3)	III	I	II	IV
(4)	II	I	IV	III

- **17.** What is the phase difference between the displacement wave and pressure wave in sound wave?
 - (1) Zero

 - (3) π
- 18. A vehicle is moving on a track with constant speed as shown in Fig. The normal reaction between the tyres and road is;

- (1) maximum at A
- (2) maximum at B
- (3) maximum at C
- (4) same at A, B and C

19. Assertion: A body falling freely under the force of gravity has constant acceleration (9.81 m/sec²).

Reason: Earth attracts everybody towards its centre by the same force.

- (1) Both **Assertion** (**A**) and **Reason** (**R**) are true and **Reason** (**R**) is a correct explanation of **Assertion** (**A**).
- (2) Both **Assertion** (**A**) and **Reason** (**R**) are true but **Reason** (**R**) is not a correct explanation of **Assertion** (**A**).
- (3) **Assertion (A)** is true and **Reason (R)** is false.
- (4) **Assertion (A)** is false and **Reason (R)** is true.
- **20. Assertion:** To cross the river in minimum time, man should swim in perpendicular to the direction of flow of river.

Reason: In this case along the perpendicular direction to river flow, the component of velocity of man becomes maximum.

- (1) Both **Assertion** (**A**) and **Reason** (**R**) are true and **Reason** (**R**) is a correct explanation of **Assertion** (**A**).
- (2) Both **Assertion** (**A**) and **Reason** (**R**) are true but **Reason** (**R**) is not a correct explanation of **Assertion** (**A**).
- (3) **Assertion (A)** is true and **Reason (R)** is false.
- (4) **Assertion** (A) is false and **Reason** (R) is true.
- **21. Statement-I:** No work is done on a revolving electron around the nucleus of an atom.

Statement-II: Work done by centripetal force is always zero.

- (1) Statement I and Statement II both are correct.
- (2) Statement I is correct, but Statement II is incorrect.
- (3) Statement I is incorrect, but Statement II is correct.
- (4) Statement I and Statement II both are incorrect.
- 22. A block of mass 10kg, moving with acceleration 2m/s² on horizontal rough surface is shown in figure,

$$\rightarrow a = \frac{2m}{s^2}$$
$$\rightarrow F = 40N$$

The value of coefficient of kinetic friction is;

- (1) 0.2
- (2) 0.4
- (3) 0.5
- (4) 0.1

- **23. Statement-I:** The relation between Celsius & Kelvin temperature is given by $t^{\circ}C = (t + 273.15)k$. **Statement-II:** Relation between Celsius & Fahrenheit temperature is $\frac{C}{9} = \frac{F-32}{5}$.
 - (1) Statement I and Statement II both are correct.
 - (2) Statement I is correct, but Statement II is incorrect.
 - (3) Statement I is incorrect, but Statement II is correct.
 - (4) Statement I and Statement II both are incorrect.
- **24.** Two physical quantities have same dimensions then their magnitude;
 - (1) cannot be multiplied.
 - (2) may be added.
 - (3) can always be added.
 - (4) cannot be added or subtracted.
- **25.** A ball is dropped downwards, after 1 sec another ball is dropped downwards from the same point. What is the distance between them, after 3 sec, the first ball has fallen?
 - (1) 25 m
- (2) 20 m
- (3) 50 m
- (4) 9.8 m
- **26.** The velocity of water in a river is 18 km/h near the surface. If the river is 5m deep, find the shearing stress between the horizontal layers of water. The co-efficient of viscosity of water is 10⁻² poise;
 - (1) 10^{-1} N/m^2
 - (2) 10^{-2} N/m^2
 - $(3) 10^{-3} \text{ N/m}^2$
 - (4) 10^{-4} N/m^2
- 27. Two vectors A and B have equal magnitude x. Angle between them is 60° . Then, match the following two columns and mark the **correct** option from the codes given below.

Column-I		Column-II	
(A)	A+B	(I)	$\frac{\sqrt{3}}{2}x^2$
(B)	A-B	(II)	x
(C)	A.B	(III)	$\sqrt{3}x$
(D)	$ A \times B $	(IV)	None

Codes

	11	D	\mathbf{c}	
(1)	I	IV	II	III
(2)	I	III	II	IV
(3)	III	II	IV	I
(4)	Ш	IV	Ţ	П

- **28.** An automobile travelling with a speed of 60 km/h, can brake to stop within a distance of 20m. If the car is going twice as fast i.e., 120 km/h, the stopping distance will be;
 - (1) 60 m
- (2) 40 m
- (3) 20 m
- (4) 80 m
- **29.** Out of the following quantities, which one has dimensions different from the remaining three?
 - (1) Energy per unit volume
 - (2) Force per unit area
 - (3) Product of voltage and charge per unit volume
 - (4) Angular momentum
- **30.** A body of mass M is kept on a rough horizontal surface (friction coefficient μ). A person is trying to pull the body by applying a horizontal force but the body is not moving. The force by the surface on the body is F, then
 - (1) F = Mg
 - (2) $F = \mu Mg$
 - $(3) \quad Mg < F \le Mg\sqrt{1+\mu^2}$
 - $(4) \quad Mg \ge F \ge Mg\sqrt{1+\mu^2}$
- **31.** The ratio between the values of acceleration due to gravity at a height 1 km above and at a depth of 1 km below the Earth's surface is (radius of Earth is *R*)
 - $(1) \quad \frac{R-2}{R-1}$
- $(2) \quad \frac{R}{R-1}$
- $(3) \quad \frac{R-1}{R}$
- (4) 1
- 32. The moment of inertia of a body about a given axis is 1.2 kg/m². Initially, the body is at rest. In order to produce a rotational kinetic energy of 1500 joule, an angular acceleration of 25 radian/sec² must be applied about that axis for a duration of;
 - (1) 4 seconds
 - (2) 2 seconds
 - (3) 8 seconds
 - (4) 10 seconds
- 33. A metal ball of mass 2 kg moving with a velocity of 36 km/h has a head on collision with a stationary ball of mass 3 kg. If after the collision, the two balls move together, the loss in kinetic energy due to collision;
 - (1) 140 J
 - (2) 100 J
 - (3) 60 J
 - (4) 40 J

- **34.** A steel ring of radius r and cross-sectional area A is fitted into a wooden disc of radius R(R > r). If the Young's modulus of steel is Y, then the force with which the steel ring is expanded is?
 - (1) AY(R/r)
 - (2) A Y (R r)/r
 - (3) (Y/A)[R r/r]
 - (4) Y r/A R
- **35.** A ball is dropped on a floor and bounces back to a height somewhat less than the original height. Which of the curves depicts its motion **correctly**?

SECTION-B

Which of the substances A, B and C has the lowest heat capacity? If heat is supplied to all of them at equal rates, the temperature versus time graph is shown below?

- (1) A
- (2) B
- (3) C
- (4) All have equal specific heat

- **37.** The escape velocity of an object launched from the surface of the earth;
 - (1) depends on the mass of object.
 - (2) depends on the mass of planet towards which, it is moving.
 - (3) does not depend on the mass of earth.
 - (4) does not depend on the mass of object.
- **38.** In the P V diagram shown, the gas does 5J of work along isothermal a, b and 4J along adiabatic b and c. What is the change in the internal energy of the gas if the gas traverses the straight path from a to c?

- (1) 1 J
- (3) 5 J
- (2) 4 J
- (4) 9 J
- **39.** A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416 Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to;
 - (1) 1 kg
- (2) 2 kg
- (3) 4 kg
- (4) 16 kg
- **40.** Tension in the cable supporting and elevator, is equal to the weight of the elevator. From this, we can conclude that the elevator is going up or down with a:
 - (1) uniform velocity
 - (2) uniform acceleration
 - (3) variable acceleration
 - (4) either (2) or (3)
- **41.** A closed rectangular tank is completely filled with water and is accelerated horizontally with an acceleration a towards right. Pressure is
 - (i) maximum at, and
- (ii) minimum at

- (1) (i) B (ii) D
- (2) (i) C (ii) D
- (3) (i) B (ii) C
- (4) (i) B (ii) A

- **42.** If *T* is the surface tension of a liquid, the energy needed to break a liquid drop of radius *R* into 64 drops in;
 - (1) $6\pi R^2 T$
 - (2) $\pi R^2 T$
 - (3) $12\pi R^2T$
 - (4) $8\pi R^2 T$
- 43. A mass of M kg is suspended by a weightless string of length L. The work done by the horizontal force F required to displace the string to an angle of 45° with the initial vertical direction;
 - (1) $FL\sqrt{2}$
- $(2) \quad 2\sqrt{2}FL$
- $(3) \quad \frac{FL}{2\sqrt{2}}$
- $(4) \quad \frac{FL}{\sqrt{2}}$
- **44.** A car moving on a horizontal road may be thrown out of the road in taking a turn;
 - (1) by the gravitational force.
 - (2) due to the lack of proper centripetal force.
 - (3) due to the rolling frictional force between the tyre and road.
 - (4) due to the reaction of the ground.
- **45.** Which figure shows the **correct** force acting on the body sliding down an inclined plane?

 $(m \to \text{mass}, f_s \to \text{force of friction})$

- **46.** The work of 146 kJ is performed in order to compress one kilo mole of gas adiabatically and in this process the temperature of the gas increases by 7°C. The gas is $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$;
 - (1) diatomic
 - (2) triatomic
 - (3) a mixture of monoatomic and diatomic
 - (4) monoatomic
- **47.** The total K.E. of one mole of an ideal gas is E = (3/2)RT. Then C_p will be;
 - (1) 0.5 R
- (2) 0.1 R
- (3) 1.5 R
- (4) 2.5 R
- **48.** The force acting on a particle varies with displacement x as F = kx then work done by the force in displacing particle from (0, 0) to (x, 0) will be proportional to;
 - (1) $x^{2/3}$
- (2) x^2
- (3) x^3
- (4) x

- **49.** A force of 10 *N* acts on a body of mass 20 kg for 10 seconds. Change in its momentum is;
 - (1) 5 kg m/s
 - (2) 100 kg m/s
 - (3) 200 kg m/s
 - (4) 1000 kg m/s
- **50.** Energy of simple harmonic motion is proportional to (symbols have their usual meanings)
 - $(1) \quad \frac{1}{\omega^2}$
 - (2) ω
 - (3) A^2
 - (4) $\frac{1}{A^2}$

PW Web/App - https://smart.link/7wwosivoicgd4

Library- https://smart.link/sdfez8ejd80if