RD Sharma Solutions Class 9 Maths Chapter 10: In RD Sharma Solutions for Class 9 Maths Chapter 10, Congruent Triangles, you'll find help in understanding and solving problems related to triangles that are the same in size and shape. This chapter explains how to identify when triangles are congruent, based on their sides and angles.

By following the clear explanations and step-by-step solutions provided, you can easily grasp the concepts and conditions for congruent triangles. Practicing with these solutions will improve your problem-solving skills and prepare you well for exams.

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles PDF

You can find the PDF for RD Sharma Solutions Class 9 Maths Chapter 10 - Congruent Triangles by clicking the link below. This PDF has detailed solutions to help you understand congruent triangles better and do well in your math studies. Whether you're having trouble identifying congruent triangles or just want to improve your skills, this resource will walk you through each step.

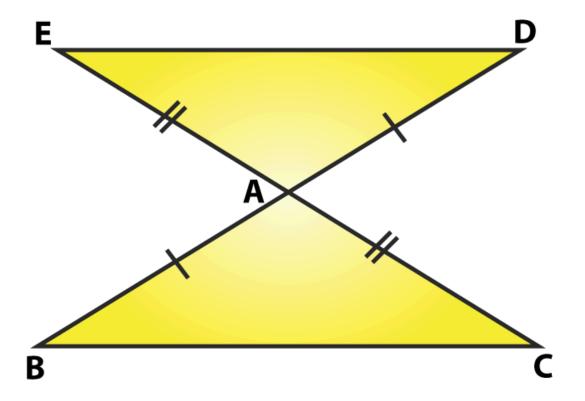
RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles PDF

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles

Solutions for RD Sharma Class 9 Maths Chapter 10, focusing on Congruent Triangles, are provided below. These solutions are aimed at helping students understand and solve problems related to congruent triangles effectively. By following the step-by-step explanations provided, students can develop a deeper understanding of the concept of congruence and enhance their problem-solving skills. With these solutions, students can prepare thoroughly for exams and strengthen their grasp of congruent triangles.

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles Exercise 10.1

Question 1: In the figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove that segment DE # BC.



Solution:

Sides BA and CA have been produced such that BA = AD and CA = AE.

To prove: DE // BC

Consider \triangle BAC and \triangle DAE,

BA = AD and CA= AE (Given)

 \angle BAC = \angle DAE (vertically opposite angles)

By the SAS congruence criterion, we have

△ BAC ≃ △ DAE

We know corresponding parts of congruent triangles are equal

So, BC = DE and \angle DEA = \angle BCA, \angle EDA = \angle CBA

Now, DE and BC are two lines intersected by a transversal DB s.t.

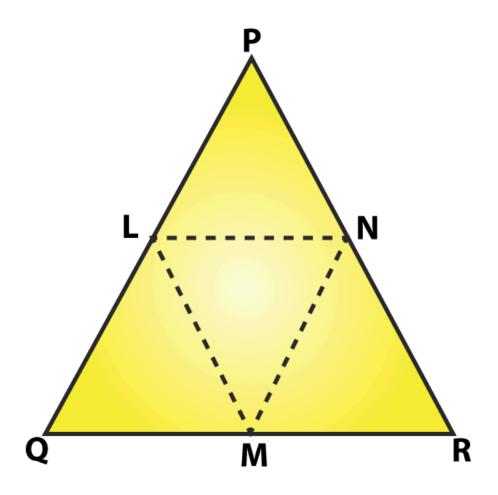
∠DEA=∠BCA (alternate angles are equal)

Therefore, DE // BC. Proved.

Question 2: In a PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP, respectively. Prove that LN = MN.

Solution:

Draw a figure based on the given instruction,



In \triangle PQR, PQ = QR and L, M, N are midpoints of the sides PQ, QP and RP, respectively (Given)

To prove: LN = MN

As two sides of the triangle are equal, so \triangle PQR is an isosceles triangle

 $PQ = QR \text{ and } \angle QPR = \angle QRP \dots (i)$

Also, L and M are midpoints of PQ and QR, respectively

PL = LQ = QM = MR = QR/2

Now, consider Δ LPN and Δ MRN,

LP = MR

 \angle LPN = \angle MRN [From (i)]

 \angle QPR = \angle LPN and \angle QRP = \angle MRN

PN = NR [N is the midpoint of PR]

By SAS congruence criterion,

Δ LPN = Δ MRN

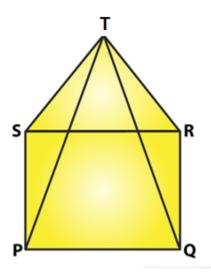
We know that the corresponding parts of congruent triangles are equal.

So LN = MN

Proved.

Question 3: In the figure, PQRS is a square, and SRT is an equilateral triangle. Prove that

(i) PT = QT (ii)
$$\angle$$
 TQR = 15°



Solution:

Given: PQRS is a square, and SRT is an equilateral triangle.

To prove:

(i) PT =QT and (ii)
$$\angle$$
 TQR =15°

Now,

PQRS is a square:

$$PQ = QR = RS = SP \dots (i)$$

And
$$\angle$$
 SPQ = \angle PQR = \angle QRS = \angle RSP = 90°

Also, \triangle SRT is an equilateral triangle:

And
$$\angle$$
 TSR = \angle SRT = \angle RTS = 60°

From (i) and (ii)

From figure,

$$\angle$$
TSP = \angle TSR + \angle RSP = 60° + 90° = 150° and

$$\angle$$
TRQ = \angle TRS + \angle SRQ = 60° + 90° = 150°

$$=> \angle TSP = \angle TRQ = 150^{\circ}$$
 (iv)

By SAS congruence criterion, Δ TSP = Δ TRQ

We know that the corresponding parts of congruent triangles are equal

So,
$$PT = QT$$

Proved part (i).

Now, consider \triangle TQR.

$$QR = TR [From (iii)]$$

Δ TQR is an isosceles triangle.

 \angle QTR = \angle TQR [angles opposite to equal sides]

The sum of angles in a triangle = 180°

$$=> 2 \angle TQR + 150^{\circ} = 180^{\circ} [From (iv)]$$

$$\Rightarrow$$
 2 \angle TQR = 30°

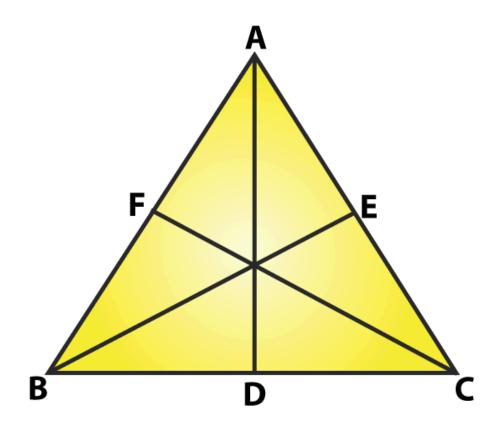
$$=> \angle TQR = 15^{\circ}$$

Hence proved part (ii).

Question 4: Prove that the medians of an equilateral triangle are equal.

Solution:

Consider an equilateral △ABC, and Let D, E, and F are midpoints of BC, CA and AB.



Here, AD, BE and CF are medians of \triangle ABC.

Now,

D is the midpoint of BC => BD = DC

Similarly, CE = EA and AF = FB

Since \triangle ABC is an equilateral triangle

$$AB = BC = CA \dots (i)$$

And also,
$$\angle$$
 ABC = \angle BCA = \angle CAB = 60°(iii)

Consider \triangle ABD and \triangle BCE

$$AB = BC [From (i)]$$

$$\angle$$
 ABD = \angle BCE [From (iii)]

By SAS congruence criterion,

[Corresponding parts of congruent triangles are equal in measure]

Now, consider \triangle BCE and \triangle CAF,

$$BC = CA [From (i)]$$

$$\angle$$
 BCE = \angle CAF [From (iii)]

CE = AF [From (ii)]

By SAS congruence criterion,

[Corresponding parts of congruent triangles are equal]

From (iv) and (v), we have

$$AD = BE = CF$$

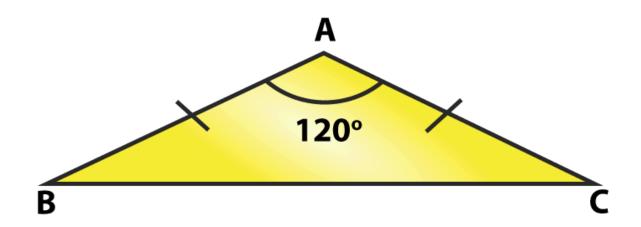
Median AD = Median BE = Median CF

The medians of an equilateral triangle are equal.

Hence proved

Question 5: In a \triangle ABC, if \angle A = 120° and AB = AC. Find \angle B and \angle C.

Solution:



To find: \angle B and \angle C.

Here, \triangle ABC is an isosceles triangle since AB = AC

$$\angle$$
 B = \angle C(i)

[Angles opposite to equal sides are equal]

We know that the sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

$$\angle$$
 A + \angle B + \angle B= 180° (using (i)

$$120^{\circ} + 2 \angle B = 180^{\circ}$$

$$2\angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle B = 30^{\circ}$$

Therefore, $\angle B = \angle C = 30^{\circ}$

Question 6: In a \triangle ABC, if AB = AC and \angle B = 70°, find \angle A.

Solution:

Given: In a \triangle ABC, AB = AC and \angle B = 70°

 \angle B = \angle C [Angles opposite to equal sides are equal]

Therefore, \angle B = \angle C = 70°

The sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

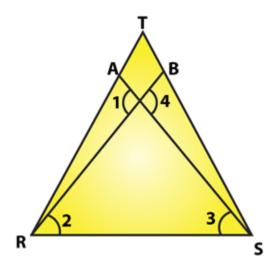
$$\angle$$
 A + 70° + 70° = 180°

$$\angle$$
 A = 180° - 140°

$$\angle A = 40^{\circ}$$

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles Exercise 10.2

Question 1: In the figure, it is given that RT = TS, \angle 1 = 2 \angle 2 and \angle 4 = 2(\angle 3). Prove that \triangle RBT \cong \triangle SAT.



Solution:

In the figure,

$$\angle 1 = 2 \angle 2 \dots (ii)$$

And
$$\angle 4 = 2 \angle 3 \dots$$
 (iii)

To prove: ΔRBT ≅ ΔSAT

Let the point of intersection RB and SA be denoted by O

∠ AOR = ∠ BOS [Vertically opposite angles]

or \angle 1 = \angle 4

 $2 \angle 2 = 2 \angle 3$ [From (ii) and (iii)]

or $\angle 2 = \angle 3(iv)$

Now in \triangle TRS, we have RT = TS

 \Rightarrow Δ TRS is an isosceles triangle

 \angle TRS = \angle TSR(v)

But, \angle TRS = \angle TRB + \angle 2(vi)

 \angle TSR = \angle TSA + \angle 3(vii)

Putting (vi) and (vii) in (v) we get

 \angle TRB + \angle 2 = \angle TSA + \angle 3

 \Rightarrow \angle TRB = \angle TSA [From (iv)]

Consider Δ RBT and Δ SAT

RT = ST [From (i)]

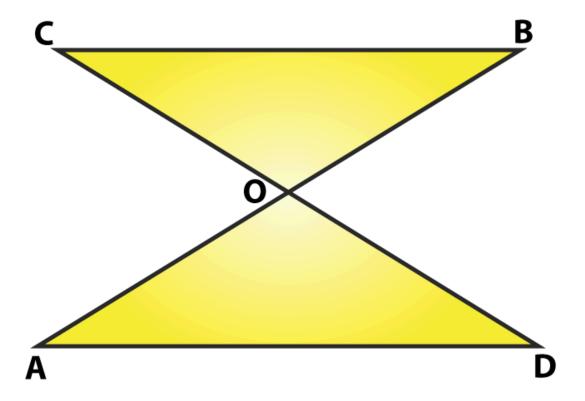
 \angle TRB = \angle TSA [From (iv)]

By the ASA criterion of congruence, we have

Δ RBT ≅ Δ SAT

Question 2: Two lines, AB and CD, intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.

Solution: Lines AB and CD Intersect at O



Such that BC // AD and

BC = AD(i)

To prove: AB and CD bisect at O.

First, we have to prove that \triangle AOD \cong \triangle BOC

 \angle OCB = \angle ODA [AD||BC and CD is transversal]

AD = BC [from (i)]

 \angle OBC = \angle OAD [AD||BC and AB is transversal]

By ASA Criterion:

Δ AOD ≅ Δ BOC

OA = OB and OD = OC (By c.p.c.t.)

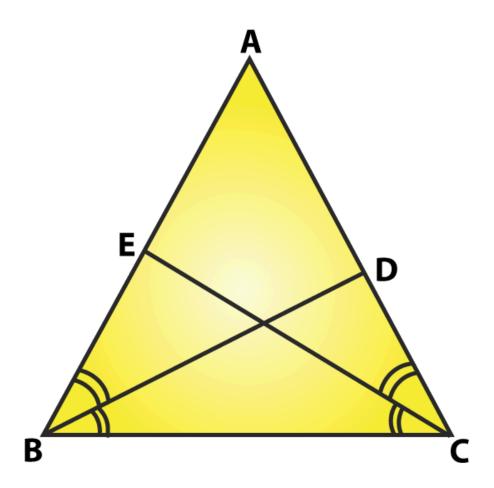
Therefore, AB and CD bisect each other at O.

Hence Proved.

Question 3: BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE.

Solution:

 \triangle ABC is isosceles with AB = AC, and BD and CE are bisectors of \angle B and \angle C. We have to prove BD = CE. (Given)



Since AB = AC

[Angles opposite to equal sides are equal]

Since BD and CE are bisectors of \angle B and \angle C

$$\angle$$
 ABD = \angle DBC = \angle BCE = ECA = \angle B/2 = \angle C/2 ...(ii)

Now, Consider \triangle EBC = \triangle DCB

```
∠ EBC = ∠ DCB [From (i)]

BC = BC [Common side]

∠ BCE = ∠ CBD [From (ii)]

By ASA congruence criterion, \triangle EBC \cong \triangle DCB
```

Since corresponding parts of congruent triangles are equal.

=> CE = BD

or, BD = CE

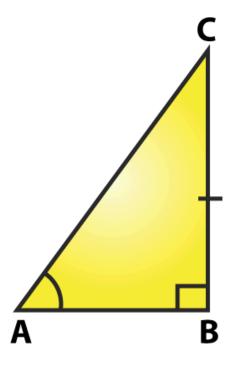
Hence proved.

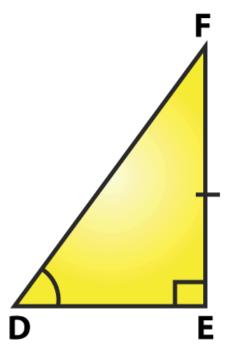
Exercise 10.3

Question 1: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Solution:

In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angles of the other. (Given)





To prove: Both triangles are congruent.

Consider two right triangles such that

$$\angle$$
 B = \angle E = 90°(i)

$$\angle C = \angle F \dots (iii)$$

Here we have two right triangles, \triangle ABC and \triangle DEF

From (i), (ii) and (iii),

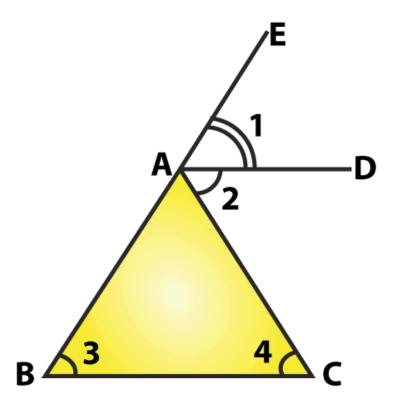
By the AAS congruence criterion, we have \triangle ABC \cong \triangle DEF

Both triangles are congruent. Hence proved.

Question 2: If the bisector of the exterior vertical angle of a triangle is parallel to the base, show that the triangle is isosceles.

Solution:

Let ABC be a triangle such that AD is the angular bisector of the exterior vertical angle, \angle EAC and AD # BC.



From figure,

 $\angle 1 = \angle 2$ [AD is a bisector of \angle EAC]

 $\angle 1 = \angle 3$ [Corresponding angles]

and $\angle 2 = \angle 4$ [alternative angle]

From above, we have $\angle 3 = \angle 4$

This implies, AB = AC

Two sides, AB and AC, are equal.

 \Rightarrow Δ ABC is an isosceles triangle.

Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Solution:

Let \triangle ABC be isosceles where AB = AC and \angle B = \angle C

Given: Vertex angle A is twice the sum of the base angles B and C. i.e., \angle A = 2(\angle B + \angle C)

$$\angle A = 2(\angle B + \angle B)$$

$$\angle A = 2(2 \angle B)$$

$$\angle A = 4(\angle B)$$

Now, We know that the sum of angles in a triangle =180°

$$\angle$$
 A + \angle B + \angle C =180°

$$4 \angle B + \angle B + \angle B = 180^{\circ}$$

$$6 \angle B = 180^{\circ}$$

$$\angle$$
 B = 30°

Since,
$$\angle$$
 B = \angle C

$$\angle$$
 B = \angle C = 30°

And
$$\angle A = 4 \angle B$$

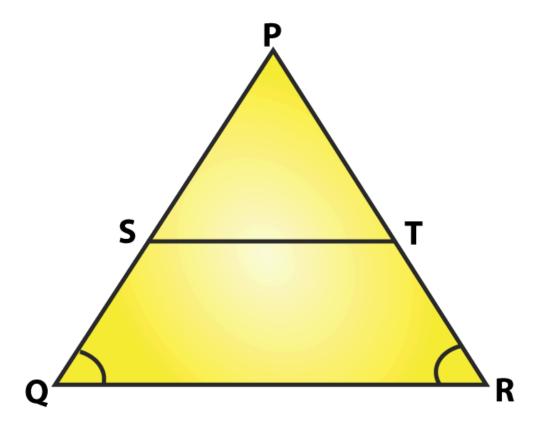
$$\angle$$
 A = 4 x 30° = 120°

Therefore, the angles of the given triangle are 30° and 30° and 120°.

Question 4: PQR is a triangle in which PQ = PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.

Solution: Given that PQR is a triangle such that PQ = PR and S is any point on the side PQ and ST // QR.

To prove: PS = PT



Since, PQ= PR, so \triangle PQR is an isosceles triangle.

 \angle PQR = \angle PRQ

Now, \angle PST = \angle PQR and \angle PTS = \angle PRQ

[Corresponding angles as ST parallel to QR]

Since, \angle PQR = \angle PRQ

 \angle PST = \angle PTS

In Δ PST,

 \angle PST = \angle PTS

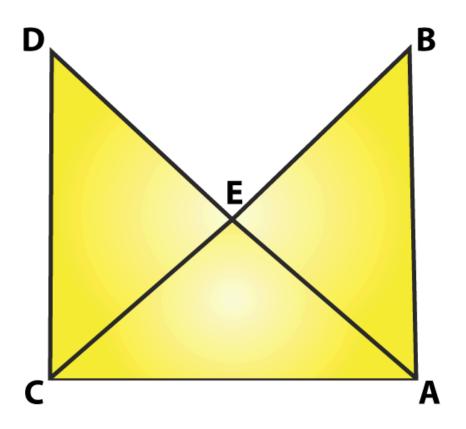
 Δ PST is an isosceles triangle.

Therefore, PS = PT.

Hence proved.

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles Exercise 10.4

Question 1: In the figure, It is given that AB = CD and AD = BC. Prove that ΔADC = ΔCBA.



Solution:

From the figure, AB = CD and AD = BC.

To prove: ΔADC ≅ ΔCBA

Consider Δ ADC and Δ CBA.

AB = CD [Given]

BC = AD [Given]

And AC = AC [Common side]

So, by the SSS congruence criterion, we have

ΔADC≅*ΔCBA*

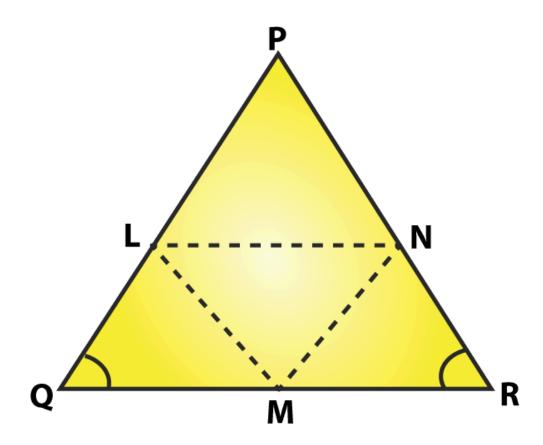
Hence proved.

Question 2: In a \triangle PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP, respectively. Prove that LN = MN.

Solution:

Given: In \triangle PQR, PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively

To prove: LN = MN



Join L and M, M and N, N and L

We have PL = LQ, QM = MR and RN = NP

[Since L, M and N are mid-points of PQ, QR and RP, respectively]

And also, PQ = QR

 $PL = LQ = QM = MR = PN = LR \dots(i)$

[Using mid-point theorem]

MN // PQ and MN = PQ/2

 $MN = PL = LQ \dots(ii)$

Similarly, we have

LN $/\!\!/$ QR and LN = (1/2)QR

 $LN = QM = MR \dots (iii)$

From equations (i), (ii) and (iii), we have

PL = LQ = QM = MR = MN = LN

This implies, LN = MN

Hence Proved.

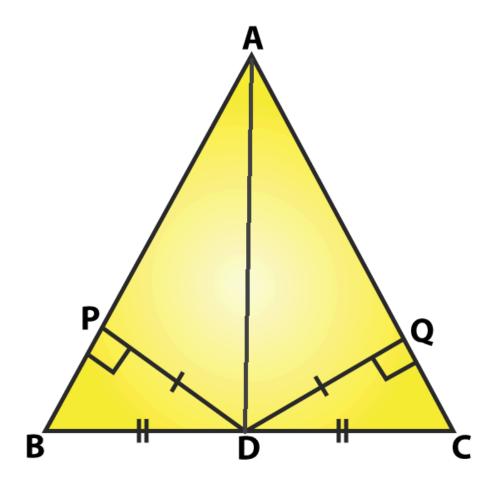
RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles Exercise 10.5

Question 1: ABC is a triangle, and D is the mid-point of BC. The perpendiculars from D to AB and AC are equal. Prove that the triangle is isosceles.

Solution:

Given: D is the midpoint of BC and PD = DQ in a triangle ABC.

To prove: ABC is isosceles triangle.



In \triangle BDP and \triangle CDQ

PD = QD (Given)

BD = DC (D is mid-point)

 \angle BPD = \angle CQD = 90°

By RHS Criterion: △BDP ≅ △CDQ

BP = CQ ... (i) (By CPCT)

In $\triangle APD$ and $\triangle AQD$

PD = QD (given)

AD = AD (common)

APD = AQD = 90°

By RHS Criterion: △APD ≅ △AQD

So, PA = QA ... (ii) (By CPCT)

Adding (i) and (ii)

BP + PA = CQ + QA

AB = AC

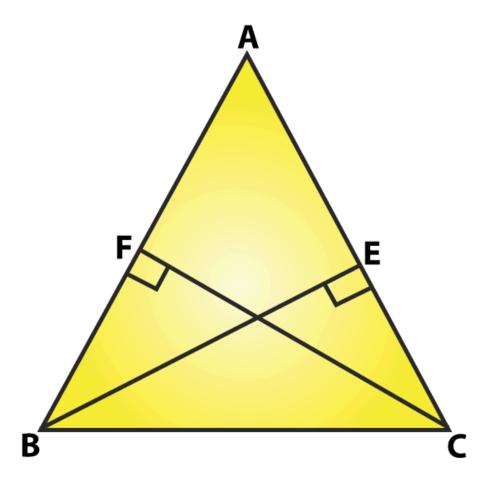
Two sides of the triangle are equal, so ABC is an isosceles.

Question 2: ABC is a triangle in which BE and CF are, respectively, the perpendiculars to the sides AC and AB. If BE = CF, prove that Δ ABC is isosceles

Solution:

ABC is a triangle in which BE and CF are perpendicular to the sides AC and AB, respectively, s.t. BE = CF.

To prove: \triangle ABC is isosceles



In \triangle BCF and \triangle CBE,

 \angle BFC = CEB = 90° [Given]

BC = CB [Common side]

And CF = BE [Given]

By RHS congruence criterion: △BFC ≅ △CEB

So, \angle FBC = \angle EBC [By CPCT]

=>∠ ABC = ∠ ACB

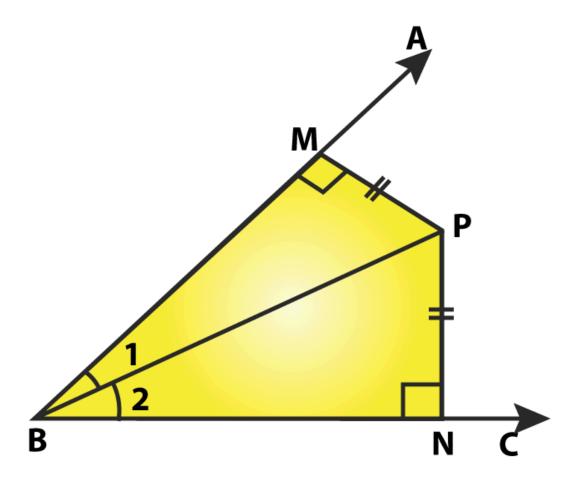
AC = AB [Opposite sides to equal angles are equal in a triangle]

Two sides of triangle ABC are equal.

Therefore, \triangle ABC is isosceles. Hence Proved.

Question 3: If perpendiculars from any point within an angle on its arms are congruent. Prove that it lies on the bisector of that angle.

Solution:



Consider an angle ABC and BP be one of the arms within the angle.

Draw perpendiculars PN and PM on the arms BC and BA.

In \triangle BPM and \triangle BPN,

$$\angle$$
 BMP = \angle BNP = 90° [given]

BP = BP [Common side]

MP = NP [given]

By RHS congruence criterion: ΔBPM≅ΔBPN

So, \angle MBP = \angle NBP [By CPCT]

BP is the angular bisector of $\angle ABC$.

Hence proved

RD Sharma Solutions Class 9 Maths Chapter 10 Congruent Triangles Exercise 10.6 Page No: 10.66

Question 1: In \triangle ABC, if \angle A = 40° and \angle B = 60°. Determine the longest and shortest sides of the triangle.

Solution: In \triangle ABC, \angle A = 40° and \angle B = 60°

We know the sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

$$40^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$$

$$\angle$$
 C = 180° - 100° = 80°

$$\angle$$
 C = 80°

Now, $40^{\circ} < 60^{\circ} < 80^{\circ}$

$$\Rightarrow$$
 \angle A $<$ \angle B $<$ \angle C

 \Rightarrow \angle C is a greater angle and \angle A is a smaller angle.

Now.
$$\angle A < \angle B < \angle C$$

We know the side opposite to a greater angle is larger, and the side opposite to a smaller angle is smaller.

Therefore, BC < AC < AB

AB is the longest and BC is the shortest side.

Question 2: In a \triangle ABC, if \angle B = \angle C = 45°, which is the longest side?

Solution: In \triangle ABC, \angle B = \angle C = 45°

The sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

$$\angle$$
 A + 45° + 45° = 180°

$$\angle$$
 A = 180° - (45° + 45°) = 180° - 90° = 90°
 \angle A = 90°
=> \angle B = \angle C < \angle A

Therefore, BC is the longest side.