
SANON-METALS

Learning Outcomes

Physical & Chemical Properties Of Metals and Non Metals

How do Metals and Non Metals React Electrovalent Or Ionic Compound

Extraction Of Metals

Physical Properties

Metals	Non Metals
Lustrous: have shining surface (in pure state), Metallic Lustre	Non-Lustrous
Generally Hard	Generally soft
Malleability: Property of substance that it can be beaten into thin sheets. [Gold & Silver Most Malleable]	Non-malleable
Ductility: Ability of metals to be drawn into thin wires 1g of Gold metal → 2 km length of wire	Non-ductile

Metals	Non Metals
Good conductor of Electricity. Best are silver, copper, gold.	Poor conductor of Electricity
Good Conductor of Heat: Best are Silver Copper.	Poor conductor of Heat
Have high Melting points	Low Melting point
Sonorous : Metals produce a sound on striking a hard surface.	Non- sonorous
Physical state : All metals <u>except</u> — Liquid <u>mercury</u> exist as solids at room temperature.	Solid → Carbon, Sulphur ✓ Liquid → Bromine ✓ Gases → Nitrogen, Chlorine, Oxygen

Exceptions

METALS

- 1. Alkali metals Li, Na, K are so soft that they can be cut with a knife.

 (also Ga & Cs)
- 2.Gallium (Ga) & Cesium (Cs) have low melting point. They melt if you keep them on your palm.
- 3. Lead & Mercury are poor conductors of Heat. (exist as liquid)
- 4. Lead (Pb) is a poor conductor of electricity.

NON-METALS

- 1. lodine and Graphite are Lustrous
- 2. Diamond (form of Carbon) is the hardest natural substance. It has high melting & boiling point.
- 3.Graphite (form of Carbon) conducts electricity

Q1. A metal and a non-metal that exists in liquid state at the room temperature are respectively

CBSE 2024, CBSE 2020

A Bromine and Mercury

C Mercury and Bromine

B Mercury and Iodine

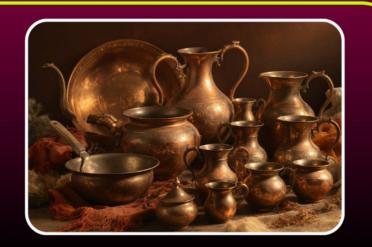
D lodine and Mercury

Q2. Which one of the following metals is malleable and a poor conductor of electricity?

CBSE 2023

A Copper

C Lead


B Zinc

Silver

Copper and aluminium are used for making cooking vessels because -

1.They are good conductor of heat 🗸

2.They have high melting point (do not melt).

Gold and silver used for jewellery making because they are Lustrous, Malleable and Ductile & Corrosion resistant

Carbon is a non-metal that can exist in different forms. Each form is called an Allotrope.

- Q3. (i) Write two properties of gold which make it the most suitable metal for ornaments.
- (ii) Name two metals which are the best conductors of heat.
- (iii) Name two metals which melts when you keep them on your palm.

(CBSE 2020)

- (i) They are Malleable and Ductile
- (ii) Silver and Copper
- (iii) Gallium and Cesium

Chemical Properties

1) Metal + Oxygen

Generally basic in nature (Turns Red Litimus Blue)

$$4K + O_2 \longrightarrow 2K_2O + Heat$$

$$4Na + O_2 \longrightarrow 2Na_2O$$

- K and Na react so vigorously with oxygen that they
 catch fire (Burns in air) even if kept in the open.
- They are kept inside kerosene oil to a. Protect them from burning in air b. Prevents accidental fires.

$$2Mg + O_2 \xrightarrow{Heat} 2MgO$$
Ribbon White powder

$$4AI + 3O_2 \xrightarrow{Heat} 2AI_2O_3$$

Mg ribbon burns with dazzling white light

Aluminium burns with a bright white flame. Forms a protective oxide layer which prevents Aluminium from any further Oxidation. (Zinc and Lead also)

Cu does not burn, (takes long time) & turns Black

NOTE: Gold and Silver DO NOT react with Oxygen even at high Temperature

Q4. Consider the following metals:

K, Ca, Al, Cu, Ag, Fe

Select from the above metals, a metal which

I. does not react with oxygen even at high temperature. $\Rightarrow Ag$

II. reacts with oxygen at ordinary temperature and forms a protective oxide $\Rightarrow A \downarrow$ layer which prevents the metal from further oxidation.

III. catches fire when kept in the open. \rightarrow \angle

IV. does not burn in oxygen but the hot metal is coated with a black coloured oxide layer. \Rightarrow (ψ

Q5. Why is potassium kept immersed in kerosene? /

(CBSE 2021)

(CBSE 2025, 2020, 2016)

Ans - Potassium is highly reactive Metal. It react so vigorously with oxygen that they catch fire (Burns in air) even if kept in the open. They are kept inside kerosene oil to a. Protect them from burning in air

b. Prevents accidental fires.

(+02>C02 5+02>502

Non Metal Generally gives Acidic Oxides when burnt in air ex - Sulphur - SO₂ Carbon - CO₂

Flame Test

		~ ^\
Element	lon	Flame colour
Lithium	Li⁺	Crimson
Sodium	Na⁺	Yellow 🖊
Potassium	K⁺	Lilac →‱
Calcium	Ca²⁺	Orange-red
Copper	Cu ²⁺	Green

- YELLOW SUN
- GREEN COP
- CAR ORANGE
- RED LIGHT
- PURPLE POTATO

Flame color for salts
- CaCl₂ - Orange - Red

Amphoteric Oxide

Metal oxides are generally basic in nature.
Turns moist red litmus blue.

E.g; MgO, CuO, Na₂O, K₂O.

But, Some metal oxides show both acidic and basic nature like those of Aluminium & Zinc

$$Al_2O_3$$
 + $6HCl$ \longrightarrow $2AlCl_3$ + $3H_2O$ \longrightarrow Base Acid \longleftarrow Salt Water

$$Al_2O_3$$
 + $2NaOH \longrightarrow 2NaAlO_2$ + H_2O_2
Acid Base Salt Water

Such metal oxides which react with both acids as well as bases to produce salts and water are known as Amphoteric oxides

Q6. What are amphoteric oxides? With the help of balanced chemical equations show that aluminium oxide is an amphoteric oxide.

(CBSE 2025,2024 ,2023,2020, 2016,)

ANS -Some metal oxides show both acidic and basic nature like Aluminium oxide and Zinc Oxide. Such metal oxides which react with both acids as well as bases to produce salts and water are known as Amphoteric oxides

$$Al_2O_3$$
 + $6HCl \longrightarrow 2AlCl_3$ + $3H_2O$
Base Acid Salt Water

 Al_2O_3 + $2NaOH \longrightarrow 2NaAlO_2$ + H_2O
Acid Base Salt Water

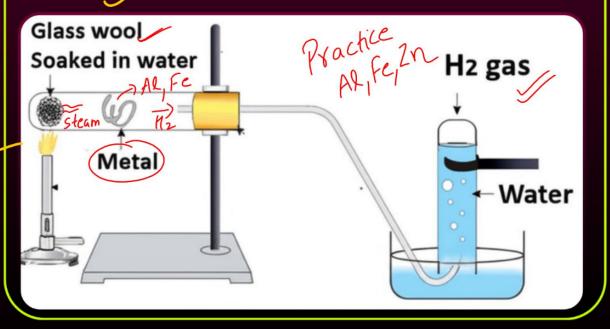
Reactivity Series

Potassium K Kudi Sodium Na Naal Calcium Ca Car Magneisum Mg Mango **Aluminium** Al Alto Zinc Zn Zisko Fe Iron Fir Pb Lead Lekar н Hydrogen Hum Cu Copper Chale Hg **Mercury** Mathura Silver Ag Saath Gold Au Ghumne

Most reactive

Less reactive

2) Metal + Water → Metal Hydroxide / Oxide + H₂)


```
Cat 2 DH-1
                 2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)
Na
       Cold
                 2Na(s) + 2H<sub>2</sub>O(l) \rightarrow 2NaOH(aq) + H<sub>2</sub>(g)
      water
Ca
                 Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)
       Hot
Mg
      Water
                 Mg(s) + 2H_2O(I) \rightarrow Mg(OH)_2(aq) + H_2(g)
Al
Zn
      Steam
                2AI(s) + 3H_2O(g) \rightarrow AI_2O_3(s) + 3H_2(g)
Fe
                3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)
Pb
    Do not
     react
Cu
      with
Hg
```

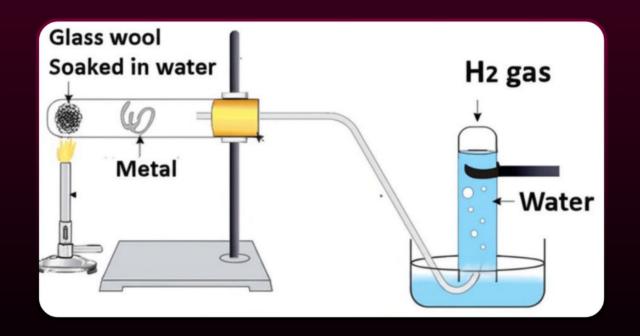
water

Ag

Au Pt

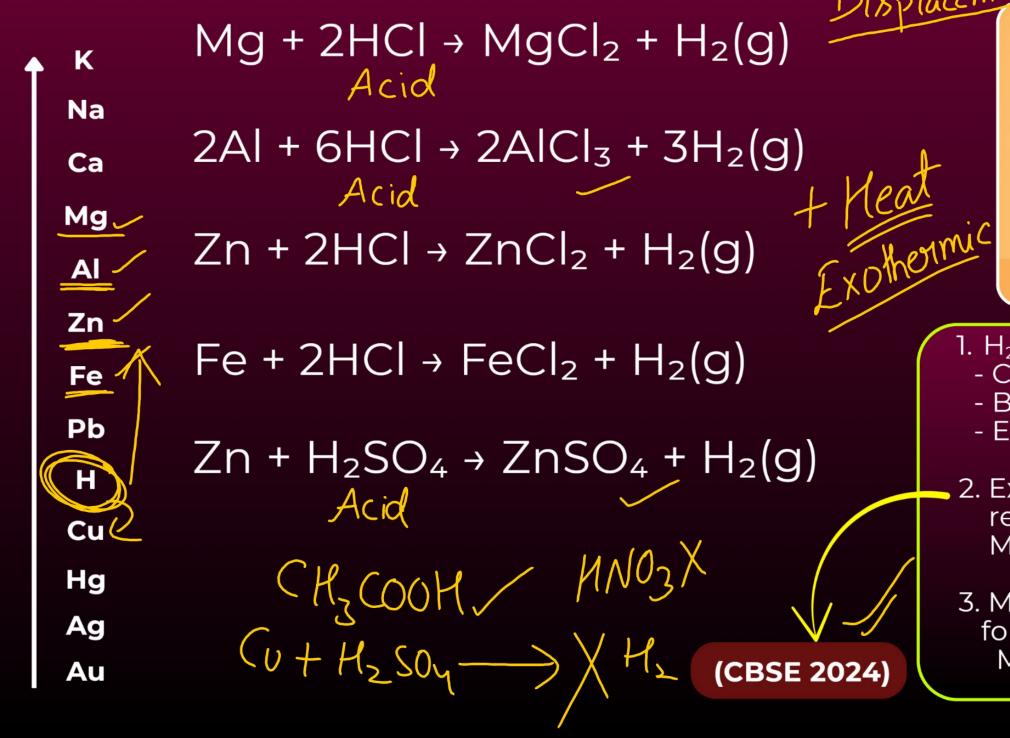
- 1. K,Na reacts violently with cold water. Reaction is highly exothermic. H₂(g) evolved catches fire.
- 2. Ca has Less violent reaction .Do not catch fire.
- 3. Ca and Mg float in water as bubbles of H₂(g) stick to the surface of the metal.

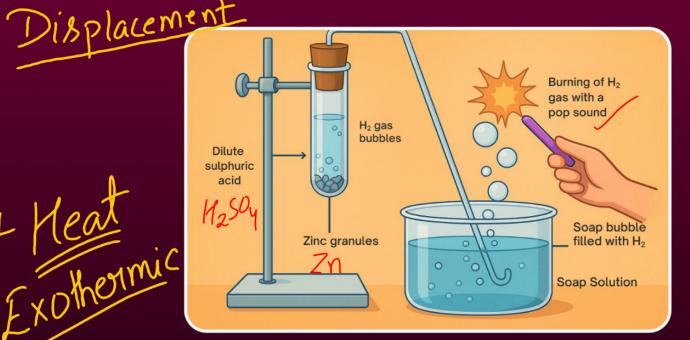
Q7. A metal 'A' reacts violently with cold water and the gas evolved catches fire. No Another metal 'B' when dipped in water starts floating.


The metal 'C' does not react with cold or hot water, but reacts with steam.

The metal 'D' does not react with water at all.

Copper Identify the metals 'A', 'B', 'C' and 'D'.


(CBSE 2023)


Q8. With the help of a labelled diagram show the experimental set up of action of steam on a metal.

(CBSE 2020)

3) Metal + Dil. Acid \longrightarrow Salt + H₂ (Reaction with Acids)

- 1. H₂ Gas Test -
 - Colorless gas./
 - Burns with a pop sound
 - Extinguishes a burning candle
- 2. Exothermic reaction More reactive metal → higher temperature Mg > Al > Zn > Fe
- 3. More reactive metal → higher rate of formation of H₂ (g) Bubble.

 Mg > Al > Zn > Fe

Special Case of Nitric Acid HNO_2

- 1.H₂ (g) is not evolved when a metal reacts with HNO₃ (nitric acid).
- 2. HNO₃ is strong oxidising agent. It oxidises the H₂ gas produced to water And Itself gets reduced to Nitrogen Oxides (NO, NO₂, N₂O)
- 3. Only Magnesium (Mg) & Manganese (Mn) reacts with very dil. HNO₃ to

give H_2 (g).

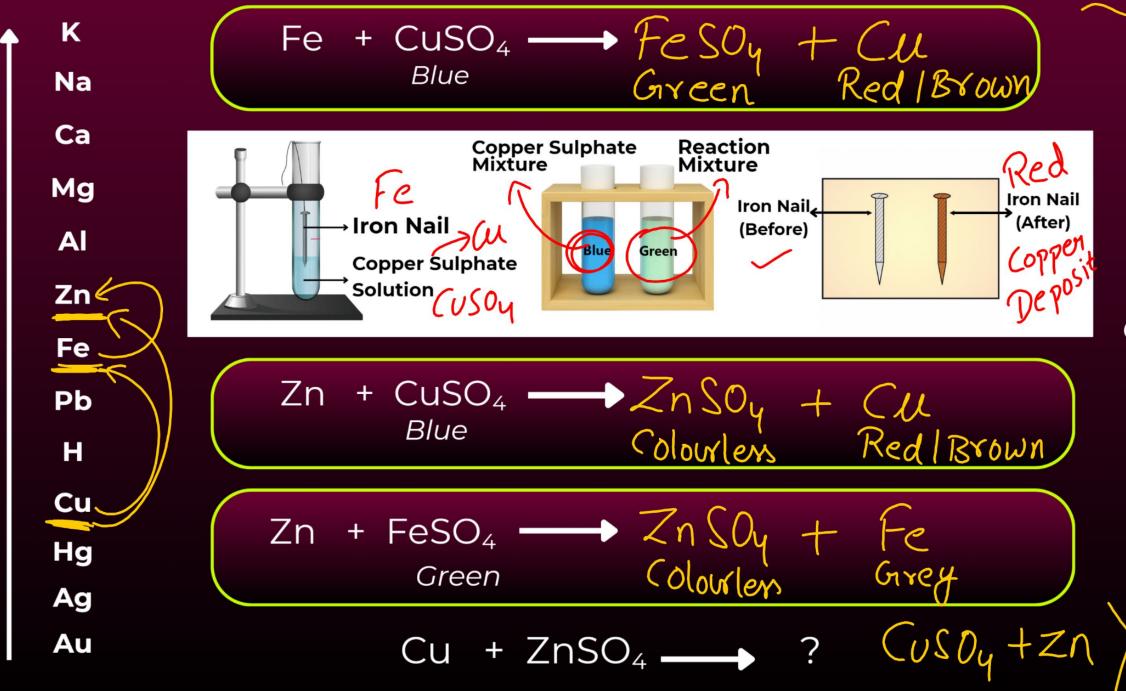
Aqua Regia

Freshly prepared mixture of concentrated Hydrochloric acid and concentrated Nitric acid in the ratio of 3:1.

- (conc) HCl + (conc) HNO₃ Dissolves Gold & Platinum

 - Highly corrosive and fuming liquid

Q9. Assertion (A): Hydrogen gas is not evolved when a metal reacts with nitric acid. $\sqrt{1400}$


Reason (R): Nitric acid is a strong reducing agent and reduces the hydrogen produced in the reaction to water. $\overbrace{}$

(CBSE 2025, 2016)

- A
- Both (A) and (R) are true and (R) is the correct explanation of (A)
- Both (A) and (R) are true but (R) is the not the correct explanation of (A)
- (A) is true, but (R) is false
- (A) is false, but (R) is true

4) Displacement Reaction A + BC ---- AC + B

A is more reactive than B

Best Method to check which metal is more reactive.

Q10. The colour of the solution observed after about 1 hour of placing iron nails in copper sulphate solution is

Q11. A metal, M, displaces iron from aqueous solution of ferrous sulphate but fails to do so in case of aqueous solution of aluminium sulphate. The metal M is

CBSE 2025, 2018

Thermit Reaction / Welding 18 placement


$Fe_2O_3 + 2Al(s) \rightarrow Al_2O_3 + 2Fe(l) + Heat$

The above reaction is so highly exothermic, that heat given out produces Iron Metal in Molten state.

This molten metal is used to join railway tracks or cracked machine parts.

This reaction is known as Thermit Reaction.

$$X \rightarrow Al + O_2 \rightarrow Al_2O_3(Y)$$

Q12. A metal 'X' is used in thermit process. When 'X' is heated with oxygen, it gives an oxide 'Y', which is amphoteric in nature. 'X' and 'Y' respectively are:

A Mn, MnO₂

B AI, AI₂O₃

(CBSE 2025,2024,2023)

C Fe, Fe₂O

D Mg, MgO

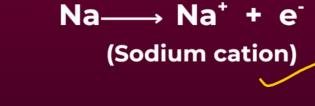
Q13. Aluminium powder is used in thermit welding because:

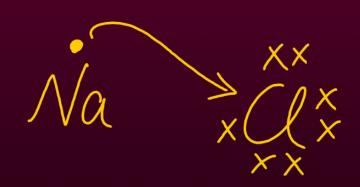
- $Fex Fe_2O_3 + Al$ (CBSE 2025, 2024, 2023)
 (CBSE 2025, 2024, 2023)
- B When it is heated with iron (III) oxide, molten iron is obtained.
- When it is heated with iron (III) oxide, molten aluminium oxide is obtained to join railway tracks.
- Its melting point is low as compared to iron and a molten alloy of iron and aluminium is formed on heating which is used to join railway tracks.

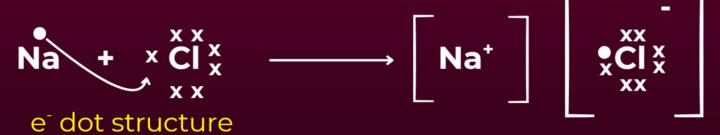
5) Electronic Configuration - Metals & Non Metals

Element	Atmoic no.	Electronic Configuration
Sodium (Na)	11	2,8,1) Lose
Magnesium (Mg)	12	2,8,2
Calcium (Ca)	20	2,8,8,2
Chlorine (Cl)	17	2, 8, 7 [Again
Oxygen (O)	8	2,6 6

4/5/6/7 electron in Valence / Last shell


Non-Metal gain electron to Complete Octet -Stable configuration


Formation of Sodium Chloride (NaCl)



Na (11)
$$\longrightarrow$$
 2, 8, 1
CI (17) \longrightarrow 2, 8, 7

- 1.Na⁺ & Cl⁻ ions (oppositely charged) attract each other. ✓
- 2. Na⁺ & Cl⁻ are held together by strong Electrostatic Forces of attraction.
- 3. Sodium chloride (NaCl) does not exist as a molecule but as a combination of oppositely charged ions $\rightarrow Na^{\dagger}$ and Cl
- 4. The compounds formed in this manner by the transfer of electrons from a metal to a non-metal are known as Ionic Compound or Electrovalent Compound

Formation of Magnesium Oxide (MgO)

Mg (12)
$$\longrightarrow$$
 2, 8, 2 M

Mg \longrightarrow Mg²⁺ + 2e⁻

(Magnesium cation)

O (8) \longrightarrow 2, 6

O + 2e⁻ \longrightarrow O²⁻

(Oxide anion)

(CBSE 2020)


Formation of Magnesium chloride (MgCl₂)

Mg (12)
$$\longrightarrow$$
 2, 8, 2
Mg \longrightarrow Mg²⁺ + 2e⁻
(Magnesium cation)

CI (17) \longrightarrow 2, 8, 7

$$C| + e^{-} \longrightarrow C|^{-}$$
 (Chloride anion)

(CBSE 2020)

Q15. The formation of magnesium oxide is correctly shown in option:

CBSE 2025, 2020,2015

$$Mg: \stackrel{\times}{\hookrightarrow} \stackrel{\times}{\circ} \stackrel{\times}{\circ} \longrightarrow Mg^{2+} \left[\stackrel{\times}{\circ} \stackrel{\times}{\circ} \stackrel{\times}{\circ} \right] \quad \longrightarrow Mg^{2+} \left[\stackrel{\times}{\circ} \stackrel{\times}{\circ} \stackrel{\times}{\circ} \right]_{2}$$

$$\longrightarrow \mathrm{Mg}^{2+} \left[\overset{\mathsf{x}}{\circ} \overset{\mathsf{x}}{\circ} \overset{\mathsf{x}}{\circ} \overset{\mathsf{x}}{\circ} \right]_{2}$$

Q16. Select ionic compounds from the following:

- (b) KCI M NM
- (3) CCI4 NMNM (5) HCI NMNM (d) NaCI M NM

CBSE 2025, 2020,2016

(b) and (c)

(a) and (c)

(c) and (d)

(b) and (d)

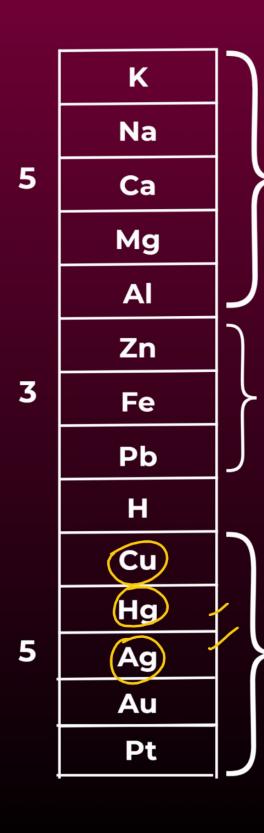
Q17. The atomic number of an element is 20. Write its electronic configuration. State whether this element is a metal or a non-metal. What is its valency? Write the name and formula of the compound which this element forms with chlorine.

(CBSE 2021, 2019)

$$Ca(20) \longrightarrow 2, 8, 8, 2)$$
 Lose $Ca(21)$ valency $Ca(21)$ Valency $Ca(21)$ $Ca(21)$ $Ca(21)$ $Ca(21)$

Ionic / Electrovalent Compounds Properties

- 1. Hard, solid compounds because of strong force of attraction between +ve and –ve ions. Brittle in nature, Breaks into pieces if pressure is applied
- 2. Have High Melting & Boiling points because large amount of energy is required to break strong inter-ionic attraction.


 (CBSE 2023)
- 3. Generally soluble in water but insoluble in solvents like kerosene, petrol, alcohol etc.
- 4. In Solid State do not conduct electricity as ions cannot move because of strong electrostatic forces of attraction. (CBSE 2023)

In Molten State, Heat Energy weakens the strong electrostatic forces of attraction and ions can move freely, hence in molten state, it conducts electricity.

In aqueous solution, conducts electricity as solution of ionic compound in water contains ions. Ions move to opposite electrodes. (Water weakens the strong electrostatic forces of attraction between ions).

Extraction of Metals

- 1. Minerals → Elements or Compounds which occur Naturally in Earth's crust.
- 2. Ores > Those minerals which contain a very high % of a particular metal & metal can be profitably extracted from it, are called ores.
- 3. Gangue -> Impurities like soil, sand, etc present in metal Ore.
- 4. Enrichment Of Ore / → The process of removing unwanted gangue, Concentration Of Ore from an ore to increase the concentration of the metal

Top in Activity Series

very reactive, so never found in free state as free metal.

COS

Middle in Activity Series

moderately reactive. Found in Earth's crust in form of Oxides, sulphides & Carbonates

Low in Activity Series

Least reactive, hence found in free state as free metals /

Note: Copper, Silver, Mercury are found in free state as well as in combined state as oxides & sulphides.

(CBSE 2024)

The ores of many metals are oxides. This is because oxygen is a very reactive element and is very abundant on the earth.

(CBSE 2023)

Extracting Metals - Middle of Activity Series

Zns Zncoz

K

Na

Ca

Mg

Al

Fe

Pb

Н

Cu

Hg

Ag

Au

Pt

- 1. Present as COS Carbonates ,Oxides or Sulphides in nature.
- 2. Sulphides/Carbonates converted to oxide, as it's easy to extract metal from oxide.
- Roasting: Heating sulphide ores strongly in presence of excess air.

$$\begin{array}{c}
\text{2ZnS} + 3O_2 \xrightarrow{\text{Heat}} 2\text{ZnO} + 2\text{SO}_2
\end{array}$$

Calcination: Heating carbonate ores strongly in limited air.

$$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$$

 Now, metal oxide is reduced (removal of oxygen) with help of Reducing Agent Carbon. (Coke) → Most common Method

$$ZnO + C \longrightarrow Zn + CO$$

Q19. Assertion (A): The extraction of metals from their sulphide ores cannot take place without roasting of the ore.

Reason (R) : Roasting converts sulphide ores directly into metals. \digamma

(CBSE 2024)

Both (A) and (R) are true and (R) is the correct explanation of (A)

- e
- (A) is true, but (R) is false

Both (A) and (R) are true but (R) is the not the correct explanation of (A)

- D
- (A) is false, but (R) is true

Q20. Differentiate between roasting and calcination giving chemical equation for each.

Roasting

Heating sulphide ores strongly in presence of excess air.

$$2ZnS + 3O_2 \xrightarrow{Heat} 2ZnO + 2SO_2$$

Calcination

(CBSE 2023)

Heating carbonate ores strongly in limited air.

$$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$$

Extracting Metals Low in Activity Series

- Their sulphides ore converted to oxides by heating in excess of air Roasting
 - Their oxides on heating converts to metal, without any Reducing Agent

```
Na
Ca
Mg
             Cinnabar (Hgs) - Mercuric (II )Sulphide
 Al
 Zn
              2\text{HgS} + 3\text{O}_2 \xrightarrow{\text{Heat}} 2\text{HgO} + 2\text{SO}_2
 Fe
 Pb
              2HgO \xrightarrow{\text{Heat}} 2Hg + O<sub>2</sub>
Cu
Hg
              2Cu_2S + 3O_2 \xrightarrow{Heat} 2Cu_2O + 2SO_2
Ag
Au
              2Cu_2O + Cu_2S \xrightarrow{Heat} 6Cu + SO_2
Pt
```

Q21. Name the ore of mercury and state the form in which it is found in nature. Write the chemical equations along with the condition required for the reactions involved in the extraction of mercury from its ore. (CBSE 2024)

 $Cu_2S + O_2 + Cu_2S$ Rossing $R.M. Cu_2S$ $Cu_2O + Cu_2S + Cu_2S$ Rossing $R.M. Cu_2S$ $Cu_2O + Cu_2S + Cu_2S$ Rossing $R.M. Cu_2S$ Rossing $R.M. Cu_2S$ Rossing Rossing $R.M. Cu_2S$ Rossing Rossing

Extracting Metals - Top of Activity Series

Na20 CaO MgO

K Na Ca Mg Al

Fe

Pb

Н

Cu

Hg

Ag

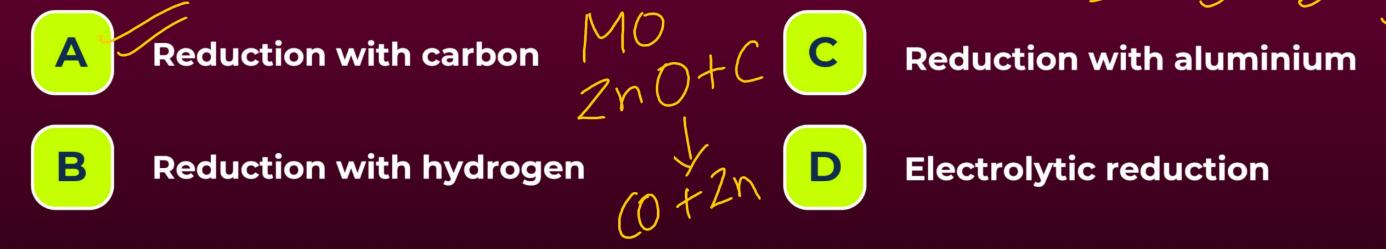
Pt

1. Carbon cannot reduce their oxides, these metals are very reactive & have More affinity (likeness) for oxygen than carbon. $Na_2O+C\longrightarrow O_2X$

2. Such Metals are obtained by Electrolytic Reduction (Reduction with help of electric current)

Na, Ca, Mg → Electrolysis of Molten chlorides; Al from Oxide

$$NaCI$$
 electric Na^+ + CI^- (Molten) (Cation) (Anion)


At Cathode: $2\sqrt{a} + 2e \rightarrow 2\sqrt{a}$

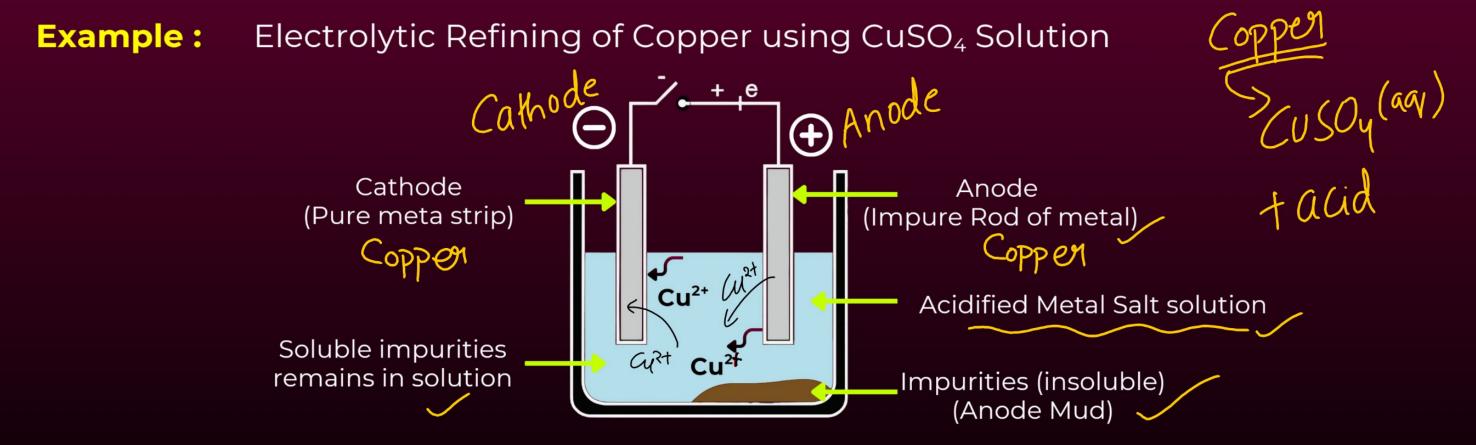
At Anode:

 $2a-2e+a_2$

Q22. The most common method of extraction of metals from their oxide ores is:

(CBSE 2025,2023, 2016, 2018)

Q23. Why can metals high up in the reactivity series not be obtained by reduction of their oxides by carbon?


CBSE 2025, 2018,2016

Ans- Metals high in the reactivity series cannot be extracted by Carbon Reduction because they have a much Stronger Affinity for oxygen than carbon. Carbon is not a strong enough reducing agent to remove oxygen from these stable, highly reactive metal oxides. Therefore, a more powerful process like <u>electrolytic reduction</u> is required.

Refining of Metals

- 1. Metal obtained after Carbon Reduction or Electrolytic Reduction is not very pure.
- 2. The most common method for refining metal is Electrolytic Refining.

At Anode: Pure copper enters solution /

At Cathode: Equivalent amount of Pure Copper from solution deposits at Cathode.

- Q24. The metals produced by various reduction processes are not very pure. They contain impurities which must be removed to obtain pure metals. The most widely used process for refining impure metals is electrolytic refining. In this process, the chemical effect of electric current is used.
- (a) Name the materials used to make anode and cathode in the refining of copper by this process.
- (b) Name the salt of copper used as an electrolyte in this process and write its molecular formula.
- (c) What happens when a steady current is passed through the electrolyte? Name the part of the electrolytic cell where (1) pure copper is obtained and (2) impurities settle.

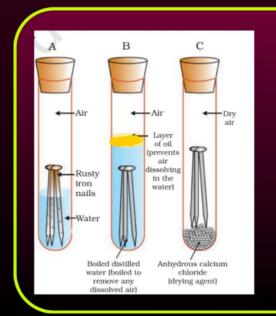
(CBSE 2025,2021,2018)

ANS-

- a) Anode Impure Rod of Copper Cathode Thin Sheet Of Pure Copper
- b) Aqueous Copper Sulphate -
- c) When Steady current is passed, Electrolysis occurs and Pure copper Metal Ions from Anode Rod enters solution and an Equivalent amount of Pure Copper from solution deposits at Cathode.
- Pure copper is obtained at Cathode . Impurities settle below anode as Anode Mud

Displacement Reactions in Extraction Of Metals

Q25. Displacement reactions also play a key role in extracting metals in the middle of the reactivity series." Justify this statement with two examples.


Corrosion

When a metal is attacked by substances around it such as moisture (water vapour + oxygen), acid etc., it is said to corrode and this process is called corrosion.

Example -

1) Rusting of Iron

Conditions Necessary For Rusting - 1. Water 2. Oxygen ----> MOIST AIR

Which Tube will show Rusting Of Iron?

2) Tarnishing of copper

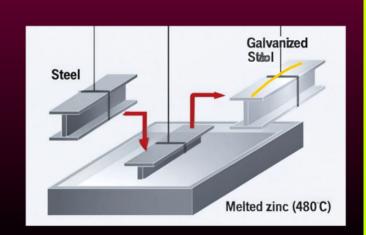
Basic Copper carbonate (green)

3) Tarnishing of silver

Silver → Sulphur in Air → Silver sulphide (Black)

Note: Corrosion is an example of Oxidation

Prevention of Corrosion



Painting, Oiling, Greasing, Anodising, Galvanising

Galvanisation

Steel & Iron are coated with thin layer of Zinc to protect from Rusting. Even when the zinc coating is broken, Zinc corrodes first because zinc is more reactive than iron, thus preventing iron.

Al203

Anodising

Process of forming a thick oxide layer of Aluminium. This layer prevents corrosion of metal. The oxide layer also give articles attractive finish.

Ca

Mg

Αl

Zn

Fe

Pb

- Q26. (a) Define corrosion.
- (b) What is corrosion of iron called?
- (c) How will you recognise the corrosion of silver?
- (d) Why corrosion of iron is a serious problem?
- (e) How can we prevent corrosion of iron?

(CBSE 2023 2019, 2017,2016)

- a) When a metal is attacked by substances around it such as moisture (water vapour + oxygen), acid etc., it is said to corrode and this process is called corrosion.
- b) Rusting
- c) It will turn black from silver colour
- d) corrosion of iron is a serious problem as it -
- i) **Weakens the metal** -Rust eats the iron and makes it weak and breakable. Bridges, buildings, and vehicles can get damaged.
- ii)**Economic loss** -Repairing or replacing rusted iron needs a lot of money.
- e) By Painting, Oiling, Greasing, Anodising, Galvanising

Alloy

A homogeneous mixture of two or more metals, or a metal & non metal.

- 1. Steel Pure Iron + Carbon (0.05%) → Hard & Strong Iron Carbon Alloy
- 2. Stainless steel → Iron + Nickel + Chromium Hard & do not rust
- 3. Amalgam → Alloy in which one metal is mercury ///
- 4. Brass (BCoZ) → Alloy of Zn + Cu
- 5. Bronze (CoaT) → Alloy of Copper & Tin (Cu + Sn)

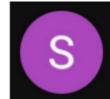
Poor conductor of Electricity

6. Solder (SoTeLa) → Alloy of Lead & Tin (Pb + Sn) Melts very easily - Low Melting Point

The properties of an alloy is different from the metals from which it is obtained.

@divyasharma123a 3 days ago 22:02 option (D)

@numankhan8061 2 weeks ago 22:00 (D) retina.


@NaitikSharma-gs5re 1 day ago 22:00 ,D)Retina

@Naman-he7xp 9 days ago 22:00 option d) retina

@priyvrattripathi351 • 4 days ago22:40 D option hai sir

@sadiq_md 10 days ago 22:00 Option (D) Retina

@Aryanartist489 2 days ago 22:00 Retina

@PratapSinghar-h7f 1 day ago 22:00 option d = RETINA

@rajshreechaudhary6155 1 day ago 22:00 .
d) retina.

@AdityaStudySpace 1 day ago sir option D.retina

@pranjal3061 4 days ago 22:01 retina

@pranagashe6833 14 hours ago22:06 Ans is option (D) Retina

@AyushDeshmukh-sl8xb 11 hours ago
Option [D] Retina