
CBSE Class 11 Maths Notes Chapter 13: In CBSE Class 11 Maths, Chapter 13 is all about
Limits and Derivatives. These are important ideas in calculus, a branch of math used in many
fields. In this chapter, students learn about limits, which show how values get closer to each
other.

They also study derivatives, which help find rates of change and slopes of curves. By
understanding these concepts, students can solve problems in math, science, and engineering.
The notes for this chapter explain these ideas clearly, with examples to help students learn and
practice.

Mastering limits and derivatives in this chapter sets a strong foundation for future math studies
and real-world applications.
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You can access the CBSE Class 11 Maths Notes Chapter 13 on Limits and Derivatives in PDF
format using the provided link. These notes cover important concepts such as limits and
derivatives, which are fundamental in calculus. Understanding limits helps in approaching
values or points, while derivatives are crucial for understanding rates of change and slopes of
curves.

By studying these notes, students can strengthen their understanding of calculus and prepare
themselves for higher-level math studies.
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CBSE Class 11 Maths Notes Chapter 13 Limits and
Derivatives
The solutions for CBSE Class 11 Maths Notes Chapter 13 on Limits and Derivatives are
provided below, provide a detailed guide to understanding these fundamental concepts in
calculus. Limits help us understand how values approach each other, while derivatives enable
us to find rates of change and slopes of curves.

With clear explanations and examples, these notes facilitate a deeper understanding of calculus
principles, preparing students for further studies in mathematics and related fields. By mastering
the concepts covered in this chapter, students can build a strong foundation for tackling more
advanced topics in calculus and applying mathematical principles to real-world problems.

Limits



Consider the function 𝑓(𝑥)=𝑥2f(x)=x2. When plotted, we see that as the value of 𝑥x approaches 0,
the value of 𝑓(𝑥)f(x) also moves towards 0.

In general, when 𝑥x approaches a certain value 𝑎a, and 𝑓(𝑥)f(x) approaches a specific value 𝑙l,
then 𝑙l is termed as the limit of the function 𝑓(𝑥)f(x), symbolized as lim⁡𝑥→𝑎𝑓(𝑥)=𝑙limx→a​f(x)=l.

Regardless of the limits, a function should assume a particular value at a given point 𝑥=𝑎x=a.

There are two ways in which 𝑥x can approach a number: from the left or from the right. This
implies that all 𝑥x values near 𝑎a could be either less than 𝑎a or greater than 𝑎a.

The right-hand limit represents the value of 𝑓(𝑥)f(x) determined by 𝑓(𝑥)f(x) values when 𝑥x tends
towards 𝑎a from the right, denoted as lim⁡𝑥→𝑎+𝑓(𝑥)limx→a+​f(x).

Similarly, the left-hand limit signifies the value of 𝑓(𝑥)f(x) dictated by 𝑓(𝑥)f(x) values when 𝑥x
approaches 𝑎a from the left, expressed as lim⁡𝑥→𝑎−𝑓(𝑥)limx→a−​f(x).

In our example, the right and left-hand limits differ. Hence, the limit of 𝑓(𝑥)f(x) as 𝑥x approaches
zero does not exist, even though the function is defined at 𝑥=0x=0.

If the right and left-hand limits converge to the same value, then that common value represents
the limit and is denoted by lim⁡𝑥→𝑎𝑓(𝑥)limx→a​f(x).

Algebra of limits



Theorem 1 states various properties of limits for two functions 𝑓f and 𝑔g:

If both lim⁡𝑥→𝑎𝑓(𝑥)limx→a​f(x) and lim⁡𝑥→𝑎𝑔(𝑥)limx→a​g(x) exist, then:

● The limit of the sum of two functions is the sum of their limits:
lim⁡𝑥→𝑎[𝑓(𝑥)+𝑔(𝑥)]=lim⁡𝑥→𝑎𝑓(𝑥)+lim⁡𝑥→𝑎𝑔(𝑥)limx→a​[f(x)+g(x)]=limx→a​f(x)+limx→a​g(x).

● The limit of the difference of two functions is the difference of their limits:
lim⁡𝑥→𝑎[𝑓(𝑥)−𝑔(𝑥)]=lim⁡𝑥→𝑎𝑓(𝑥)−lim⁡𝑥→𝑎𝑔(𝑥)limx→a​[f(x)−g(x)]=limx→a​f(x)−limx→a​g(x).

● The limit of the product of two functions is the product of their limits:
lim⁡𝑥→𝑎[𝑓(𝑥)⋅𝑔(𝑥)]=lim⁡𝑥→𝑎𝑓(𝑥)⋅lim⁡𝑥→𝑎𝑔(𝑥)limx→a​[f(x)⋅g(x)]=limx→a​f(x)⋅limx→a​g(x).

● The limit of the quotient of two functions is the quotient of their limits (provided the
denominator is non-zero):
lim⁡𝑥→𝑎𝑓(𝑥)𝑔(𝑥)=lim⁡𝑥→𝑎𝑓(𝑥)lim⁡𝑥→𝑎𝑔(𝑥)limx→a​g(x)f(x)​=limx→a​g(x)limx→a​f(x)​.

In a special case when 𝑔g is a constant function such that 𝑔(𝑥)=𝜆g(x)=λ for some real number 𝜆λ:

● The limit of a constant multiple of a function is equal to the constant multiplied by the
limit of the function: lim⁡𝑥→𝑎[(𝜆⋅𝑓)(𝑥)]=𝜆⋅lim⁡𝑥→𝑎𝑓(𝑥)limx→a​[(λ⋅f)(x)]=λ⋅limx→a​f(x).

Limits of polynomials and rational functions

A polynomial function 𝑓f is one where 𝑓(𝑥)f(x) is either a zero function or takes the form
𝑓(𝑥)=𝑎0+𝑎1𝑥+𝑎2𝑥2+...+𝑎𝑛𝑥𝑛f(x)=a0​+a1​x+a2​x2+...+an​xn, where 𝑎𝑖ai​are real numbers and
𝑎𝑛≠0an​=0 for some natural number 𝑛n.

We know that

limx→ax=alim𝑥→𝑎𝑥=𝑎
limx→ax2=limx→a(x.x)=limx→ax.limx→ax=a.a=a2lim𝑥→𝑎𝑥2=lim𝑥→𝑎(𝑥.𝑥)=lim𝑥→
𝑎𝑥.lim𝑥→𝑎𝑥=𝑎.𝑎=𝑎2

Hence,

limx→axn=anlim𝑥→𝑎𝑥𝑛=𝑎𝑛

Let

f(x)=a0+a1x+a2x2+...+anxn𝑓(𝑥)=𝑎0+𝑎1𝑥+𝑎2𝑥2+...+𝑎𝑛𝑥𝑛

be a polynomial function

limx→af(x)=limx→a[a0+a1x+a2x2+...+anxn]lim𝑥→𝑎𝑓(𝑥)=lim𝑥→𝑎[𝑎0+𝑎1𝑥+𝑎2𝑥2+...+
𝑎𝑛𝑥𝑛]



=limx→aa0+limx→aa1x+limx→aa2x2+...+limx→aanxn=lim𝑥→𝑎𝑎0+lim𝑥→𝑎𝑎1𝑥+li
m𝑥→𝑎𝑎2𝑥2+...+lim𝑥→𝑎𝑎𝑛𝑥𝑛

=a0+a1limx→ax+a2limx→ax2+...+anlimx→axn=𝑎0+𝑎1lim𝑥→𝑎𝑥+𝑎2lim𝑥→𝑎𝑥2+...+
𝑎𝑛lim𝑥→𝑎𝑥𝑛

=a0+a1a+a2a2+...+anan=𝑎0+𝑎1𝑎+𝑎2𝑎2+...+𝑎𝑛𝑎𝑛

=f(a)=𝑓(𝑎)

A rational function 𝑓f is one where 𝑓(𝑥)=𝑔(𝑥)ℎ(𝑥)f(x)=h(x)g(x)​, and 𝑔(𝑥)g(x) and ℎ(𝑥)h(x) are
polynomials such that ℎ(𝑥)≠0h(x)=0.

Then,
lim⁡𝑥→𝑎𝑓(𝑥)=lim⁡𝑥→𝑎𝑔(𝑥)ℎ(𝑥)=lim⁡𝑥→𝑎𝑔(𝑥)lim⁡𝑥→𝑎ℎ(𝑥)=𝑔(𝑎)ℎ(𝑎)limx→a​f(x)=limx→a​h(x)g(x)​=limx→a​h
(x)limx→a​g(x)​=h(a)g(a)​

However, if ℎ(𝑎)=0h(a)=0, there are two scenarios:

● If 𝑔(𝑎)≠0g(a)=0, the limit does not exist.
● If 𝑔(𝑎)=0g(a)=0, we have 𝑔(𝑥)=(𝑥−𝑎)𝑘𝑔1(𝑥)g(x)=(x−a)kg1​(x) and

ℎ(𝑥)=(𝑥−𝑎)𝑙ℎ1(𝑥)h(x)=(x−a)lh1​(x), where 𝑘k is the maximum power of (𝑥−𝑎)(x−a) in
𝑔(𝑥)g(x) and 𝑙l is the maximum power of (𝑥−𝑎)(x−a) in ℎ(𝑥)h(x).

○ If 𝑘≥𝑙k≥l, then the limit is 00.
○ If 𝑘<𝑙k<l, the limit is not defined.

Theorem 2

For any positive integer n𝑛, limx→axn−anx−a=nan−1lim𝑥→𝑎𝑥𝑛−𝑎𝑛𝑥−𝑎=𝑛𝑎𝑛−1.

The proof is shown below.

Dividing (xn−an)(𝑥𝑛−𝑎𝑛) by (x−a)(𝑥−𝑎),

limx→axn−anx−a=limx→a(xn−1+xn−2a+xn−3a2+...+xan−2+an−1)lim𝑥→𝑎𝑥𝑛−𝑎𝑛𝑥
−𝑎=lim𝑥→𝑎(𝑥𝑛−1+𝑥𝑛−2𝑎+𝑥𝑛−3𝑎2+...+𝑥𝑎𝑛−2+𝑎𝑛−1)

=an−1+aan−2+...+an−2(a)+an−1=𝑎𝑛−1+𝑎𝑎𝑛−2+...+𝑎𝑛−2(𝑎)+𝑎𝑛−1

=an−1+an−1+...+an−1+an−1(n terms)=𝑎𝑛−1+𝑎𝑛−1+...+𝑎𝑛−1+𝑎𝑛−1(𝑛 terms)

=nan−1=𝑛𝑎𝑛−1

Limits of Trigonometric Functions



Theorem 3

Theorem 3 states that if 𝑓f and 𝑔g are two real-valued functions with the same domain, and
𝑓(𝑥)≤𝑔(𝑥)f(x)≤g(x) for all 𝑥x in their domain, then if both lim⁡𝑥→𝑎𝑓(𝑥)limx→a​f(x) and
lim⁡𝑥→𝑎𝑔(𝑥)limx→a​g(x) exist, then lim⁡𝑥→𝑎𝑓(𝑥)≤lim⁡𝑥→𝑎𝑔(𝑥)limx→a​f(x)≤limx→a​g(x).

Theorem 4

The Sandwich Theorem, or Theorem 4, asserts that if three real functions 𝑓(𝑥)f(x), 𝑔(𝑥)g(x), and
ℎ(𝑥)h(x) satisfy 𝑓(𝑥)≤𝑔(𝑥)≤ℎ(𝑥)f(x)≤g(x)≤h(x) for all 𝑥x in their common domain, and if
lim⁡𝑥→𝑎𝑓(𝑥)=𝑙=lim⁡𝑥→𝑎ℎ(𝑥)limx→a​f(x)=l=limx→a​h(x), then lim⁡𝑥→𝑎𝑔(𝑥)=𝑙limx→a​g(x)=l.

To prove that cos⁡(𝑥)<sin⁡(𝑥)𝑥<1cos(x)<xsin(x)​<1 for 0<∣𝑥∣<𝜋20<∣x∣<2π​, it is observed that
sin⁡(𝑥)sin(x) lies between cos⁡(𝑥)cos(x) and tan⁡(𝑥)tan(x). Since 0<𝑥<𝜋20<x<2π​, sin⁡(𝑥)sin(x) is
positive. Thus, dividing throughout by sin⁡(𝑥)sin(x),
1sin⁡(𝑥)<𝑥sin⁡(𝑥)<1cos⁡(𝑥)sin(x)1​<sin(x)x​<cos(x)1​, leading to cos⁡(𝑥)<sin⁡(𝑥)𝑥<1cos(x)<xsin(x)​<1.



Two important limits are given:

● lim⁡𝑥→0sin⁡(𝑥)𝑥=1limx→0​xsin(x)​=1
● lim⁡𝑥→01−cos⁡(𝑥)𝑥=0limx→0​x1−cos(x)​=0

Derivatives
The derivative of a function at a given point within its domain of definition is a fundamental
concept in calculus.

Definition 1 states that if 𝑓f is a real-valued function and 𝑎a is a point in its domain, the derivative
of 𝑓f at 𝑎a is defined as lim⁡ℎ→0𝑓(𝑎+ℎ)−𝑓(𝑎)ℎlimh→0​hf(a+h)−f(a)​, provided this limit exists. It is
denoted as 𝑓′(𝑎)f′(a).

Definition 2 defines the derivative of 𝑓f at 𝑥x as lim⁡ℎ→0𝑓(𝑥+ℎ)−𝑓(𝑥)ℎlimh→0​hf(x+h)−f(x)​where the
limit exists. This definition is also known as the first principle of derivative.

The derivative of a function 𝑓(𝑥)f(x) with respect to 𝑥x can be denoted as 𝑓′(𝑥)f′(x), represented as
𝑑𝑑𝑥(𝑓(𝑥))dxd​(f(x)), or if 𝑦=𝑓(𝑥)y=f(x), it is represented as 𝑑𝑦𝑑𝑥dxdy​. Another notation used is
𝐷(𝑓(𝑥))D(f(x)).

Further, derivative of f at x=a𝑥=𝑎 is also denoted by

Moreover, the derivative of 𝑓f at 𝑥=𝑎x=a can be denoted as 𝑑𝑑𝑥𝑓(𝑥)∣𝑥=𝑎dxd​f(x)∣∣​x=a​,
𝑑𝑓𝑑𝑥∣𝑥=𝑎dxdf​∣∣​x=a​, or (𝑑𝑓𝑑𝑥)𝑥=𝑎(dxdf​)x=a​.

Theorem 5

Theorem 5 provides fundamental rules for finding derivatives of functions.

For two functions 𝑓f and 𝑔g with defined derivatives in a common domain:

● The derivative of their sum is the sum of their derivatives:
𝑑𝑑𝑥[𝑓(𝑥)+𝑔(𝑥)]=𝑑𝑑𝑥𝑓(𝑥)+𝑑𝑑𝑥𝑔(𝑥)dxd​[f(x)+g(x)]=dxd​f(x)+dxd​g(x).

● The derivative of their difference is the difference of their derivatives:
𝑑𝑑𝑥[𝑓(𝑥)−𝑔(𝑥)]=𝑑𝑑𝑥𝑓(𝑥)−𝑑𝑑𝑥𝑔(𝑥)dxd​[f(x)−g(x)]=dxd​f(x)−dxd​g(x).

● The product rule states that the derivative of the product of two functions is the first
function's derivative times the second function plus the first function times the second
function's derivative:
𝑑𝑑𝑥[𝑓(𝑥)⋅𝑔(𝑥)]=𝑑𝑑𝑥𝑓(𝑥)⋅𝑔(𝑥)+𝑓(𝑥)⋅𝑑𝑑𝑥𝑔(𝑥)dxd​[f(x)⋅g(x)]=dxd​f(x)⋅g(x)+f(x)⋅dxd​g(x).

● The quotient rule states that the derivative of the quotient of two functions is the
derivative of the numerator times the denominator minus the numerator times the
derivative of the denominator, all divided by the square of the denominator:
𝑑𝑑𝑥(𝑓(𝑥)𝑔(𝑥))=𝑑𝑑𝑥𝑓(𝑥)⋅𝑔(𝑥)−𝑓(𝑥)⋅𝑑𝑑𝑥𝑔(𝑥)(𝑔(𝑥))2dxd​(g(x)f(x)​)=(g(x))2dxd​f(x)⋅g(x)−f(x)⋅dxd​g(x)​.



Furthermore, the derivative of the function 𝑓(𝑥)=𝑥f(x)=x is a constant.

Theorem 6

Theorem 6 states that the derivative of a function 𝑓(𝑥)=𝑥𝑛f(x)=xn is 𝑛𝑥𝑛−1nxn−1 for any positive
integer 𝑛n.

Proof:

By the definition of the derivative function, we have:

𝑓′(𝑥)=lim⁡ℎ→0(𝑥+ℎ)𝑛−𝑥𝑛ℎ=lim⁡ℎ→0ℎ(𝑛𝑥𝑛−1+…+ℎ𝑛−1)ℎf′(x)=limh→0​h(x+h)n−xn​=limh→0​hh(nxn−1+
…+hn−1)​

=lim⁡ℎ→0(𝑛𝑥𝑛−1+…+ℎ𝑛−1)=𝑛𝑥𝑛−1=limh→0​(nxn−1+…+hn−1)=nxn−1

This can also be proved alternatively:

𝑑𝑑𝑥(𝑥𝑛)=𝑑𝑑𝑥(𝑥⋅𝑥𝑛−1)dxd​(xn)=dxd​(x⋅xn−1) =𝑑𝑑𝑥(𝑥)⋅(𝑥𝑛−1)+𝑥⋅𝑑𝑑𝑥(𝑥𝑛−1)=dxd​(x)⋅(xn−1)+x⋅dxd​(xn−1)
(By the product rule) =1⋅𝑥𝑛−1+𝑥⋅((𝑛−1)𝑥𝑛−2)=1⋅xn−1+x⋅((n−1)xn−2) (By induction hypothesis)
=𝑥𝑛−1+(𝑛−1)𝑥𝑛−1=𝑛𝑥𝑛−1=xn−1+(n−1)xn−1=nxn−1

Theorem 7
Theorem 7 states that for a polynomial function
𝑓(𝑥)=𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+…+𝑎1𝑥+𝑎0f(x)=an​xn+an−1​xn−1+…+a1​x+a0​, where 𝑎𝑖ai​s are real numbers
and 𝑎𝑛≠0an​=0, the derivative function is given by:

𝑑𝑓(𝑥)𝑑𝑥=𝑛𝑎𝑛𝑥𝑛−1+(𝑛−1)𝑎𝑛−1𝑥𝑛−2+…+2𝑎2𝑥+𝑎1dxdf(x)​=nan​xn−1+(n−1)an−1​xn−2+…+2a2​x+a1​


